Classification of positive solutions of heat equation with supercritical absorption - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Classification of positive solutions of heat equation with supercritical absorption

Résumé

Let $q\geq 1+\frac{2}{N}$. We prove that any positive solution of (E) $\prt_t u-\xD u+u^q=0$ in $\mathbb{R}^N\times(0,\infty)$ admits an initial trace which is a nonnegative Borel measure, outer regular with respect to the fine topology associated to the Bessel capacity $C_{\frac{2}{q},q'}$ in $\BBR^N$ ($q'=q/q-1)$) and absolutely continuous with respect to this capacity. If $\nu$ is a nonnegative Borel measure in $\BBR^N$ with the above properties we construct a positive solution $u$ of (E) with initial trace $\gn$ and we prove that this solution is the unique $\gs$-moderate solution of (E) with such an initial trace. Finally we prove that every positive solution of (E) is $\gs$-moderate.
Fichier principal
Vignette du fichier
moderate-6.pdf (479.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00850494 , version 1 (06-08-2013)
hal-00850494 , version 2 (14-12-2013)

Identifiants

Citer

Konstantinos Gkikas, Laurent Veron. Classification of positive solutions of heat equation with supercritical absorption. 2013. ⟨hal-00850494v1⟩
320 Consultations
192 Téléchargements

Altmetric

Partager

More