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respect to this capacity. If v is a nonnegative Borel measure in RY with the above properties we
construct a positive solution u of (E) with initial trace v and we prove that this solution is the unique
o-moderate solution of (E) with such an initial trace. Finally we prove that every positive solution of
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Abstract

Let ¢ > 14 £. We prove that any positive solution of (E) dyu — Au + u? = 0 in RY x (0,00)
admits an initial trace which is a nonnegative Borel measure, outer regular with respect to the fine
topology associated to the Bessel capacity C2 , in RY (¢" = q/q — 1)) and absolutely continuous with

2,

(E) is o-moderate.
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1 Introduction

Let ¢ > 1, Qr = RY x (0,T) with 7 > 0 and Q = RY x (0,00). It is proved by Marcus and Véron [19]
that for any positive function u € C*1(Qr) solution of

Ou — Au+u? =0 (1.1)

there exists a unique couple (S, 1) where S is a closed subset of R and p a positive Radon measure on
R := RY \ S such that

lim [ w(z,t)de = 0o (1.2)
t—0 o

for all open set @ of RN such that SN O # (), and

lim u(z, t)((x)dr =

150 ((@)du(z) V¢ e CFE(R). (1.3)
RN RN

To this couple (S, 1) we associate a unique outer Borel measure v called the initial trace of u and denoted
by tr(u). The set S is the singular set of v and the measure p is the reqular set of v. Conversely, to any
outer Borel measure v we can associate its singular part S(v) which is a closed subset of RY and its regular
part 41, which is a positive Radon measure on R(v). We denote v ~ (S,u). When 1 < ¢ < q. := 22
Marcus and Véron [19] proved that there the trace operator ¢r defines a one to one correspondence between
the set U, (Qr) of positive solutions of (1.1) in Q7 and the set B7I(RY) of positive outer Borel measures
in RY. This no longer the case if ¢ > ¢, since not any closed subset of RY (resp. any positive Radon
measure) is eligible for being the singular set (resp. the regular part) of the the initial trace of some

positive solution of (1.1). It is proved in [4] that the initial value problem

O — Au+ [ulTtu =0 in Q (1.4)
u(.,0) = p in RV '
where p is a positive bounded Radon measure admits a solution if and only if y satisfies
C: (E)=0= u(E)=0 VE cRY, FE Borel, (1.5)

where C'2 , stands for the Bessel capacity in RN (¢ = q/(q—1)). It is shown in [19] that this result holds
q k)

even if ;1 is unbounded; this solution is unique and denoted u,. If G is a Borel subset of RY we denote
by 9,(G) the set of Borel measures p in G with the property that

C: ,(F)=0= u(F)=0 VE C G, FE Borel, (1.6)

In the same article it is proved that a a necessary and sufficient condition in order v ~ (S, 1) to be the
initial trace of a positive solution of (1.1) is

€ My(R) (1.7)
and
S§=0,SUS” (1.8)
where
S ={2€8:u(B(2)NS) =00, Vr > 0} (1.9)
and
S ={2€8:C2 ,((Br(2)NS) >0, Vr >0} (1.10)

3



A striking result due to Le Gall [15] shows that if ¢ = 2 and N > 2, a positive solution of (1.1) is not
uniquely determinef by its initial trace v &~ (S, ) if S # (). The results is actually extended to any ¢ > g,
in [19).

A similar approach has been carried out if one consider the boundary trace problem for the positive
solutions of the elliptic equation
~Au+uT'u=0 inQ (1.11)

where Q is a bounded C? domain in RV (N > 2) and ¢ > 1. The boundary trace is defined in a
way somewhat similar to the initial trace by considering the limit in the weak sense of measures, of the
restriction of u to the set ¥, := {z € Q : dist (z,Q2° = ¢)}, when ¢ — 0. The boundary trace tryq(u)
is a uniquely determined outer regular Borel measure on 0f2, with singular part S, a closed subset of
0Q and regular part u, a positive Radon measure on R = 9\ S. This equation possesses a critical
exponent go = (N +1)/(N —1). The main contributions which lead to a complete picture of the boundary
trace problem over a period of twenty years are due to Gmira and Véron [11], Le Gall [13], [14], Dynkin
and Kuznetsov [5],[6], [7] [8], [9],[12], Marcus and Véron [17],[18],[20],[21],[23], [22], [16], and Mselati [24].
These contributions can be summarized as follows:

(i) If 1 < ¢ < g, the boundary trace operator establishes a one to one correspondence between the set
U4 (2) of positive solutions of (1.11) and the set of positive outer regular Borel measures on 0S2.

(i) If ¢ > g. the boundary value problem

—Au+ |u[lu =0 in
u=p in 092 (1.12)
where p is a positive Radon measure on 92 admits a solution (always unique) if and only if
Cz (E)=0= pu(E)=0 VEC0Q,FE Borel, (1.13)
q7

where C'2 g 18 the Bessel capacity in RV~1,
q b

(iii) If ¢ > ge, a outer regular Borel measure v = (S, ) on 0N is the boundary trace of a positive solution
of (1.11) if and only if
C: ,(E)=0= p(E)=0 VECS,E Borel,
q7

and (1.8) holds with (1.9) and (1.10) where the capacity is relative to dimension N-1.
(iv) If ¢ > g, a solution is not uniquely determined by its boundary trace whenever S # ().

However in [23] Marcus and Véron have defined a notion of precise trace for the case g > g, with the
following properties,

v) If we denote by ¥, the fine topology of 02 associated with the C2 ,-capacity, there exists a T -closed
q q q
q b
subset S, of 02 such that for every z € S,

lim [ u(e,0)dS = o0 (1.14)

e—0 =

for every ¥ ,-open neighborhood E of z where (r,0) € [0,€p] x 0 are the flow coordinates near 0f2, and
for every z € Ry := 00\ S, there exists a T,-open neighborhood = of z such that

lim [ u(e,0)dS < oo. (1.15)

e—0 =



(vi) There exists a nonnegative Borel measure p on R, outer regular for the T,-topology, such that

liH(l) us = uy_y, locally uniformly in 2, (1.16)
€E— =
where uZ is the solution of
—Av+ [T lv=0 in Q¢ :={z € Q:dist (z,00) > €} (1.17)
v =u(€,.)X= in ¥, = 09,. '

The couple (Sy, i) is uniquely determined and it is called the precise boundary trace of u. It can also be
represented by a Borel measure with the T4 -outer regularity. It is denoted by trgﬂ (u).

Concerning uniqueness Dynkin and Kuznetsov introduced in [9] the notion of o-moderate solutions,
which are elements u of U (€2) such that there exists an increasing sequence {u,} of nonnegative Radon
measures on J€) such that wu,, — v when n — oco. In [23] Marcus and Véron proved that a o-moderate
positive solution of (1.11) is uniquely determined by its precise boundary trace. This precise trace is
essentially the same, up to a set of zero C2 -capacity, as the fine trace that Dynkin and Kuznetsov
introduced in [9] using probabilistic the Brownian motion; however their construction is only valid when
q < 2. Finally, in [16], Marcus proved that any positive solution is o-moderate. Notice that this result
was already obtained by Mselati [24] in the case ¢ = 2 and then by Dynkin [6] for ¢. < ¢ < 2 by using a
combination of analytic and probabilistic techniques.

In this article we define a notion of precise initial trace for positive solutions of (1.1) associated to
T 4-topology, which denotes the C» ¢ fine topology of RY. We denote by H.] is the heat operator in @
q7

defined by

1 _le—yP?
B0 = oy [ e (1.1

for all £ € LY(RYN). We define the singular set of u € U, (Qr) as the set of z € RY such that for any
% 4-open neighborhood O C RY of z, there holds

/ H[x,, Juldzdt = oo (1.19)
Qr

The singular set, denoted by S, = S,(u), is T,-closed. The regular set is R, := RY \ S;; it is T,-open. If
z€S;and O C RY is a T 4-open neighborhood of z such that

/ H[x,, |uldzdt < oo, (1.20)
Qr

2
then for any n € L>® N Wa'? (RY) with T 4-support contained in O there exists

limy o /RNu(x,t)(n(x))Qq/dx =Lo(n). (1.21)

There exists a positive Borel measure i1 on R, outer regular for the T -topology, such that for €,-open
subset = C R, there holds

lime_y0 Ue (- 1) = Uy_p (1.22)
where e, is the solution of
v —Av+ |7 o =0 in Q° :=RY x (¢,00) (1.23)
v(.,€) = Xz in RV, ’



The set (Sy, 1) is called the precise initial trace of w and denoted by tr,(u). To this set we can associate
a Borel measure v on RY. It is absolutely continuous with respect to the C2 ,-Capacity in the following
q b
sense
VQ C RY, T, - open ,YA C RN, A Borel ,C2 ,(A) = 0= pu(Q\ A) = p(Q). (1.24)
q b
It is also outer regular with respect to the €, -topology in the sense that for every Borel set £ C RN
p(E) =inf{u(Q) : Q@ D E, Q T,y- open } =sup{p(K): K C E, K compact }. (1.25)

A measure with the above properties is called T,-perfect. Similarly to Dynkin, we say that a positive
solution u of (1.1) is o-moderate if the exists an increasing sequence {u,, } of nonnegative Radon measures
in RY such that u,, — u when n — co. It is proved in [22] that if F C R is a closed subset, the maximal
solution Up with initial trace (F,0) coincides with the maximal o-moderate solution Vx with the same
trace and which is defined by

Vi = sup{uy, : pp € My(RY), u(F¢) = 0} (1.26)
and is indeed o-moderate. Following Dynkin we define an addition among the elements of U (Qr) by
V(u,v) € U (Qr) X U+ (QT), u® v is the largest element of U, (Qr) dominated by u + v. (1.27)
The main results of this article are the following

Theorem A. If v is a Ty-perfect measure with singular part S, and regular part i on Ry then v, @ USa
is the only o-moderate element of Uy (Q) with precise trace v.

In order to extend Marcus’s result we need a parabolic counterpart of Ancona characterization of
positive solutions of Schrodinger equation with singular potential [1]. We prove a representation theorem
for any positive solution of

Ou—Au+V(z,t)u=0  in Q, (1.28)
where V is a Borel function which satisfies
0 <V(z,t) < g for almost all (z,t) € Q. (1.29)

Let T be fixed and let ¢ be defined by

_Jz—y?

T 1
— - 2 %= @ 4(s—t d d ] .
Vet /t /RN (4r(s — )2 ¢ VY s)dyds  in Qr

Theorem B.There exists a kernel I' defined in Qr X Qr satisfying

_QIJ%E —a2 xsizlzt2
at—y <T@tys) <t 5= Y@b).,5) € Qrx Qruiths <t. (1.30)
t—s) 2 t—s) 2

where the a; and c; are positive contants depending on T and V', such that for any positive solution u of
(1.28), there exists a positive Radon measure p in RN such that

u(z,t) = e¢(x’t)/ I(x,t,y,0)du(y) for almost all (x,t) € Qr. (1.31)
RN

The next result, combined with Theorem A, shows that in the case ¢ > ¢. the precise trace operator
realizes a one to one correpondence between the set of positive solutions of (1.1) and the set of T,-perfect
Borel measures in RV,

Theorem C Any positive solution of (1.1) is o-moderate.

Several proofs in this work are transposition to the parabolic framework of the constructions performed
in [23] and [16]. However, for the sake of completeness and due to the technicalities involved, we kept
many of them.



2 The % -fine topology

We assume that ¢ > 1+ % We say that a domain £ C IRY is Tg-open (resp T,-closed) if it is open (resp.
closed) in the T -topology.

Notation 2.1 Let A, B C RVN.
a) A is Ty-essentially contained in B, denoted A C9 B, if

037 q/(A \ B) = O
b) The sets A, B are T,-equivalent, denoted A ~? B, if

Cs ,(AAB) =0,

c)The T4-closure of a set A is denoted by A. The Tq-interior of A is denoted by A°.
d) Given € > 0, A% denotes the e—neighbourhood of A.
e) The set of T -thick points of A is denoted by by(A). The set of Ty-thin points of A is denoted by eq(A).

Ais Ty -open < A C eq(A°), Bis T, closed < by(B) C B.

Consequently, N
A=AUby(A), A° = ANey(A°).

The capacity C'2 o Possesses the Kellogg property (see [2, Cor. 6.3.17]), namely,
q?
C% q,(A \ bg(A4)) =0. (2.32)
Therefore ~
A CTby(A) ~1 A,
but, in general, b,(A) does not contain A.

Proposition 2.2 (i) If Q is a T4-open, then e (Q°) is the largest Tq-open set that is Tq-equivalent to Q.
(i) If F is a T4-closed then by(F') is the smallest T,-closed set that is T,-equivalent to F.

The proof is [23, Prop. 2.1]. We collect below several facts concerning the T -topology that are used
throughout the paper.
Proposition 2.3 Let ¢ > 1+ %
i) Every Tq-closed set is Ty-quasi closed ([2, Prop 6.4.13]).
i)If E is Ty-quasi closed then E ~1 E (2, Prop 6.4.12)).
iii)A set E is Ty-quasi closed if and only if there exists a sequence {Ey,} of closed subsets of E such that
Cz (E\ En) — 0 ([2, Prop. 6.4.9]).
q7

iv) There exists a positive constant ¢ such that, for every set E,

C2

a7q/

(B) < cCa_y(B),

([2, Prop 6.4.11]).
v) If E is T4-quasi closed and F ~9 E then F is T -quasi closed.

vi) If {E;} is an increasing sequence of arbitrary Borel sets then

Cg’q,(U E;) = lim C2 ,(E;).

2
i—soo a1
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vii) If {K;} is a decreasing sequence of compact sets then

Ca S E) = lim s, (K).
viit) Fvery Suslin set and, in particular, every Borel set E satisfies
C: ,(E) = inf{Cz2 ,(G): ECG, G open}
q7

Eyq
= sup{C: ,(K): K C E, K compact}.
q7

For the last three statements see [2, Sec. 2.3]. Statement (v) is an easy consequence of [2, Prop. 6.4.9].
However note that this assertion is no longer valid if "€ ,-quasi closed” is replaced by ”%,-closed.” Only
the following weaker statements holds:

If £ is Ty -closed and A is a set such that C2 ,(A4) =0 then E'U A is T, -closed.
q7

The next corollary is an easy consequence of (iii).

Corollary 2.4 A set E is T4-quasi closed if and only if there ezists a sequence {Ep,} of T,-quasi closed
subsets of E such that C2 ,(E\ Ep,) — 0.
q7

Definition 2.5 Let E be a T;-quasi closed set. An increasing sequence {E,,} of closed subsets of E such
that C2 ,(E'\ Ep) — 0 is called a Ty-stratification of E.
q7

(i) We say that Ey, is a proper T,-stratification of E if
1
Cz ¢ (Bmi1 \ Bm) < 5oy
(it) If V is a Tq-open set such that Cz: ,(E\'V) =0 we say that V is a Ty-quasi neighborhood of E.
q7

The following result is valid in any locally compact metric space.

Lemma 2.6 Let K be a closed subset of an open set A. Then there exists an open set G such that

KcGcGcA.

Proof. Let x € K. We set B, = By(x); n € Nand K,, = B, N K. Since K,, is compact, we can easily
show that there exists a decreasing sequence {g,} to the origin such that Kt C K;» C A. Now we have

00 on [e9) — 00
UKz c Kz c UKy c A
n=1 n=1 n=1

If we prove that the set

En
2

o9
U
n=1

is closed then the proof follows with G = |J;2, K> . We will prove it by contradiction. We assume

that there exists a sequence z,, € |J,o K,? such that z, — x and = ¢ (J,7 K,? . We have a1 = Ty
such that dist(z,,,K) = inf{|z,, —y|: y € K} < 5. Also we assert that there exists x,, such that
dist(n,, K) < %. Indeed, If this is not valid then Vn € N we have 2 < dist(z,, K) < &, which implies
x € K;. Thus we have clearly a contradiction. Inductively, we can construct a subsequence {z,, } such
that dist(x,,, K) < %’“, Vk € N. If we send k to infinite, we reach to a contradiction, since we would have
dist(x, K) = 0 and using the fact that K is closed, we would obtain that z € K. O



Lemma 2.7 Let E be a Ty-closed set. Then:
i) Let D be an open set such that C2 ,(E\ G) = 0. Then there exists an open set O such that
q
q7

EcCi0cOc?D. (2.33)
(i1) Let D be a T4-open set such that E C1 D. Then there exists a T4-open set such that (2.33) holds.

Proof. (i) Since END ~% E we have that END is T,-quasi closed, (see the discussion of the quasi topology
in [2, sec. 6.4]). Thus there exists a proper ¥,-stratification of EN D, say {E;,} and E ~9 E' = J;2, E;.
If E’ is closed the result follows by Lemma 2.6. We assume that E’ is not closed. Thus, we can assume
without loss of generality that

Em+1\Em7£@ ¥Ym € N.

We set E, = G, where G is the open set of Lemma 2.6 with K = E,, and A = D. Now since C2 q,(Em \
q7
E,_1)< 2”1%’ there exists an open set D,,, D Ey, \ En—1 ;m > 2, such that C2 q,(Dm) < zim Also we
q7
set D1 = E}. Also we have by Lemma (2.6),

DmmEmcDmmcE;cD vYm € N.

Also, since E' = Ey U Jy>_o(Em \ Em—1) we have that

o o
E'c|)DmnE,c|]DnnE,CD.
m=1 m=1

oo

Thus, it is enough to prove that the set |J,._; Dy, N EJ, is T4-quasi closed. Indeed, for each n > 1, we

have

o n o o9]
Cz’q/<U DmﬂE;I\UDmmE;J < 037(1/( U DmﬂE{n>§ > Cz (D)

m=n+1 m=n+1

< c i C: q,(Dm)Sc i 2-m,
2,

m=n+1 m=n+1

And the result follows by Corollary 2.4, since |J,,,_, DnTF\W/E,’n is T4-quasi closed.
The proof of (ii) is same as in [23, Lemma 2.4 (ii)]. O

Lemma 2.8 (a) Let E be a T;-closed set and {Ey,} a proper %,-stratification for E. Then there exists a
decreasing sequence of open sets {Q;} such that UE,, == E' C @Q; for every j € N and

(i) N;Q; = E', Qj+1 C1 Qy,

(M) limj_,oo C% q’(Qj) = C% q,(E).

(b) If A is a T4-open set, there exists a decreasing sequence of open sets { Ay} such that

ACNpAy = A, Cz (Ap\A) = 0asm—o0, A~TA.
q7

Furthermore there exists an increasing sequence of closed sets {F;} such that F; C A" and
() UF =&, FCUFy,
(i1) Cg,q/(Fj) — C%,q/(A) as j — oo.



Proof. Let {D;} be a decreasing sequence of open sets such that D; D E, Vj € N and

lim C2 /(Dj)=C2 ,(E)=C:,
j—ooo g q’ q’

(E).

Case 1: E is closed (thus E,, = F for any m € N).
By Lemma 2.6 there exists a decreasing sequence {Elm} to the origin with €11 < 1, such that

o ln _
ECQ1:UKn2 CQ1CD17

n=1

fln
where K,, = By, (z) N E z € E. Also we have proven in Lemma 2.6 that the set | J7-; K, ? is closed.
Again by Lemma 2.6 there exists a decreasing sequence {e3,,} to the origin with €3, < €15, Vn and

€2.n

o0
EcQQZUKnT C Qy C Dy.

‘We note here that

T e2n

QQCUK“ CUK ,

€2,n

and since K, * is closed we have
Q2 C Qs C Q1.

Inductively, there exists a decreasing sequence {¢;,} to the origin with respect to n such that we have
VneN:¢gj, <epn, Vj>k.

S
EcCQj= UK” C Q; C Dj,
n=1
and B
Qj CQjCQj—l-
Now note that )
ECQ]'CEE,

thus ' = N@);. Finally,

C%q,(E) < limC%’q/(Qj) < hmc%,q/(Dj) = (>

and the result follows in this case.

Case 2: F is not closed.

There exists a proper T -stratification of E, say {E,,} and E ~7 E' = |J;2, E;. Also by the Case 1, we
can assume without loss of generality that

Epni1\En #0 Vm € N.

Set Q" the sets in previous case replacing E by Ep,. Now since C2 ,(En, \ E-1) < cC ¢ (Em \ E1), we
q b

can choose an open set D} such that Ca q,(Dl
q )

m) < 5. Then in view of Lemma (2.7) t he set

o
= J pLner,
m=1

10



is an open set such that _
E'CQiCQiCDs.

Also the set

S —_—

U phoer

m=1
is T4-quasi closed.
By Lemma 2.7 there exists an open set D2 such that

D? c D? c D}
By induction, there exists a sequence of open sets {Dﬁn} such that
. ~ . 1 . c
Thus in view of Lemma 2.7 the set -
Q= Dhnay
m=1

is open and the set

U Dl N Q™
m=1

is T4-quasi closed.
For any m we have

e~

D}, NQJ C DHLNQ™ C DHLNQ™ C Dy NQT,.

Thus
e} —~— o0
— . -
Q;cQ;c|JDphnrc|) D' nQr, cD;
m=1 m=1
Now since the set (o, DI n Q;“ is T4~ quasi closed we have

Q; CQjC Q1
Finally we have

EcQjcE,
thus E/ = NQ;. And the result follows in this case since

Cz y(E) <1mCz ,(Q)) <lWmCsz (D)) = Cz ().

(b) The proof is same as in [23, Lemma 2.6 (b)] and we omit it. O

The next results are respectively proved in [23, Lemma 2.5] and [23, Lemma 2.7].

Proposition 2.9 Let E be a bounded T,-open set and let D be a cover of E consisting of T4-open sets.
Then, for every e > 0 there exists an open set O such that C2 q,(Og) < e and E\ O is covered by a
q7

finite subfamily of D.

Proposition 2.10 Let Q be a T4-open set. Then, for every § € Q, there exists a Ty-open set O¢ such
that

£€QeCQeCQ

11



3 Lattice structure of U, (Q)

Consider the equation

Ou— Au+ |[ulTlu =0, inQu =RY x (0,T], where ¢ > 1+ % (3.1)

A function u € LY (Qr) is a subsolution (resp. supersolution) of the equation if du — Au + |u|9™ u <0
(resp. > 0) holds in the sense of distributions.

If u e L] (Qr) is a subsolution of the equation then by Kato’s inequality (9; — A)|u|+ |u|? < 0 in the

sense of distributions. Thus |u| is a subsolution of the heat equation and consequently u € LjS (Qr). If
u € L} (Qr) is a solution then u € C%1(Qr).

loc

Proposition 3.1 Let u be a non-negative function in L7S (QT).

(i) If u is a subsolution of (3.1), there exists a minimal solution v dominating u,

i.e. u<v <U for any solution U > wu.

(ii) If u is a supersolution of (3.1), there exists a mazimal solution w dominated by u,
i.e. V<w <wu for any solution V < u.

All the above inequalities hold almost everywhere .

Proof. (i) Jz be a mollifier in RN+, If u is extended by zero outside of Qr, then the function u. = J; *u
belong to C®°(RN*1) and lim. ,ou. = & = u, a.e.. Also we have that u. — u in L (Qr). Also we note
that we can choose € > 0 small enough such that the function u. is subsolution in Br(0) X (s, 00) where

R > 0 and 0 < s. Let v. be the positive solution of

O — Av + [v)i~tv = 0, in Br(0) x (s,00),
V= Ug, on 0BR(0) x (s,00), (3.2)
v(.,8) = uc(.,s) in Br(0).

In view of the proof of Lemma 2.4 and Remark 2.5 in [19] we can prove that v, > u.. Also since v. is a
subsolution of heat equation we have ve < |[uc|| 100 (Br(0)x(s,11) < ||Ullzo0 (BR(0)x (s,77)- Thus there exists a de-
creasing sequence €; to the origin such that v., — v in LY(Bg(0) x (s, T]), u < v < [|u||pee (B (0)x (s,77); 0 <
s <T < oo and v is a positive solution of

O — Av + [v)i~tv = 0, in Br(0) x (s,T],
v =u, on 0BR(0) x (s,T], (3.3)
v(.,s) =ul(.,s) in Br(0).

Let {R;} be an increasing function to the infinite and s; be a decreasing function to the origin. Let v; be
the positive solution of the above problem with R = R; and s = s;. Since v; > u, we have by maximum
principle that vj;1 > v;. Thus by Keller-Osserman inequality and standard parabolic arguments, there
exists a subsequence, say {v;}, such that v; — v locally uniformly in Q7. And the results follows in this
case by the construction of v.

(ii) Since u € LI(BRr(0) x (s,T]) there exists a solution w of the problem

Ow — Aw + |u|? =0, in Br(0) x (s,T]
w =0, on dBR(0) x (s, T (3.4)
w(.,s) =0 in Br(0).

Hence u+w is supersolution of the heat equation with boundary and initial data u. Consequently, u+w > z
where z is the solution of the heat equation with boundary and initial data w. Also, the function z — w is
a subsolution, thus there exists a solution v < u of the problem (3.3) with boundary and initial data w.
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As before, let {R;} be an increasing sequence tending to infinity and s; be a decreasing sequence tending
to 0. Let v; be the positive solution of the problem (3.3) with R = R; and s = s;. Since v; < u, we have
by maximum principle that v; 11 < v;. Thus by standard parabolic arguments, there exists a subsequence,
say {v;}, such that v; — v locally uniformly in Q. And the result follows by the construction of v. [

Proposition 3.2 Let u and v be nonnegative, locally bounded functions in Q.

(i) If uw and v are subsolutions (resp. supersolutions) then max(u,v) is a subsolution (resp. min(u,v) is a
supersolution).

(i1) If uw and v are supersolutions then u + v is a supersolution.

(iii) If u is a subsolution and v is a supersolution then (u —v)4 is a subsolution.

Proof. The first two statements are well known; they can be verified by an application of Kato’s inequality.
The third statement is verified in similar way:
d

(% —A)(u—v)4 < signy(u— v)(% —A)(u—v) < —signy(u—v)(u! —v?) < —(u—0)i.

Notation 3.3 Let u, v be nonnegative, locally bounded functions in Qr.
(a) If w is a subsolution, [u]; denotes the smallest solution dominating w.
(b) If u is a supersolution, [u]l denotes the largest solution dominated by u.

(¢c) If u, v are subsolutions then u V v := [max(u,v)];.
(d) If u, v are supersolutions then u A v := [inf(u,v)]" and v ®v = [u +v]'.
(e) If u is a subsolution and v is a supersolution then u © v := [(u — v)4];.

Proposition 3.4 (i) Let {ur} be a sequence of positive, continuous subsolutions of (3.1). Then U :=
sup up s a subsolution. The statement remains valid if subsolution is replaced by supersolution and sup
by inf .
(ii) ([5]) Let T be a family of positive solutions of (3.1). Suppose that, for every pair uy, ug € T there
exists v € T such that

max(uj,uz) < v, resp. min(uy, ug) > v.

Then there ezists a monotone sequence {uyn} in T such that
up Tsup 7T, resp. u, J inf T.
Thus supT (resp. inf T ) is a solution.

Proof. (a) We set v; = max (max(u1, ug), max(max(ui,u2), u3), ..., max(max(...),u;)) . By proposition 3.2
we have that v; is a subsolution. Also we have that vj;1 > v;. Thus the positive solution [v;]; is increas-
ing with respect to j. Also by Keller-Osserman inequality, we have that [v;]+ — v, where v is a positive
solution. Thus v; — v where v is a subsolution of (3.1). Now since u; < v for each i € N, we have that
U < wv. But v; < U for each j € N, which implies v < U. And thus v = U. The proof for ”inf” is similar
and we omit it.

(b) The proof is same as in [5]. Let A = (z,t,) be a countable dense subset of Q7 and let wy,, € T satisfy
the condition sup,,, tm(Tn,tn) = w(xy,,ty,). since T is closed with respect to V, there exists an increasing
sequence of v,, € T such that v = lim v,,, coincides with w on A. We claim that v = w everywhere. Indeed,
v < wu. Suppose u € T. Then u < w and therefore © < v on A. Since A is everywhere dense and u, v are
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continuous, u < v everywhere in Q,, which implies v > w = sup u. O

As a consequence we have the following result which extends to equation (1.1) what Dynkin proved
for (1.11) [5, Theorem 5.1].

Theorem 3.5 The set U (Qr) is a complete lattice stable for the laws & and ©.

4 Partition of unity in Besov spaces

2
Lemma 4.1 Let U C RY be a T,-open set and z € U. Then there exists a function f € Wa (RY) with
compact support in U such that f(z) > 0. In particular, there exists a bounded Tq-open set V' such that
Vcu.

Proof. We suppose that z is not interior point of U with respect to Euclidian topology, since otherwise
the result is obvious. Since U is T,-open we have that U€ is thin at z. Also by assumption on z, we have
that z € Uc\ U. By [2, p. 174], we can find an open set W D U¢, z € W\ W and W is thin at 2.

We recall that for a set E with positive Cz -capacity, FE .= yre = G1 * (G1 % up)P~! where pp is the

capacitary measure on E. Then, by [2, Proposmon 6.3.14], there ex1st5 r>0 Small enough such that

1

p -
1% (z)<2,

where p is the capacitary measure of B(z,7) N W and V* the corresponding Besov potential (see [2,
Theorems 2.2.7, 2.5.6 ]). Now by [2, Theorem 6.3.9], we have V* > 1 quasi everywhere on B(z,r) N W,
and by [2, Proposition 2.6.7] V# > 1 everywhere on B(z,r) N W. Thus

1
VH(z) < 3 <1< VH(x), Vz € B(z,r)NW.
Thus we can find rp > 0 small enough such that
1
VH(z) < 5 < 1 <inf{V*(z): x € B(z,r0) \ U}.

Now let 0 < H(t) be a smooth nondecreasing function such that H(t) =t for t > 1 and H(t) = 0 for
t < 0. Also let € C§°(RY) such that 0 <5 < 1, supp  C B(z,79) and 7(z) = 1. Then the function

f(z) =nH(1 =VH),

2
belong to Wa'? (RY). Now, since by definition V* is lower semicontinuous we have that the set {1 —u > 0}
is closed. Hence the support of f is compact and

suppf C suppnN{l—u >0} C U.
O

Lemma 4.2 let U be a T4-open set and z € U. Then there exists a T4-open set V, such that z € V C U,
2
and a function p € WaT (RN) such that 1 =1 g.e. on'V and 1 = 0 outside U.
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Proof. As before, we assume that z is not interior point of U. Let V* be the Besov potential of the previous

lemma, with
1

VHE(z) < 7 V=1 on B(z,ro) \ U.
By [2, Proposition 6.3.10] V* is quasi continuous, that we can find a T,-open set W which contains z such
that

Vi(x) <=, q.e onW.

B~ =

Let € C§°(RY) such that 0 <n <1, suppn C B(z,79) and n(z) = 1,V x € B(z,%). Set
1
f=2nH (1 - H <§ —V“(ﬂ:)) —V“(x)) .
Then f € Wg’ql(RN), 0< f<1land f=0onB(z,1)\U. Also, f =1on B(z,2)NW and f = 0 outside

of B(z,r9) NU. g

Lemma 4.3 Let % <1, K be a compact set and U be a T4-open set such that K C U. Also, let {U;} be a
sequence of Ty-open subsets of U covering U up to a set of zero C» g -copacity Z. We assume that there
q7

2 7
exists a nonnegative u € WaT (RN) N L(RN) with T,-supp u C K C U. Then there exist m(k) € N and
nonnegative functions uy ; € L>®(RN) with Tq-supp u j C Uj, such that

m(k)
Uk,j < U (4.1)
j=1
and
m(k)
Jim = 32 ksl oy = O
]:

Remark. if u changes sign, the conclusion of Lemma remains valid without inequality (4.1).

Proof. Without loss of generality we can assume that U and the U;U; are bounded. For any j > 0, there
exists open sets G, j such that C: q,(Gk,j) <27k=i Z G0 and for j > 1, the sets U; U Gy, ; are open.
q7

Also the sets

o o

G = UGkvj’ UGkUUj

§=0 J=1

are open and Cz (Gy) — 0 when k — oo.
q7

Since Gy, is open, its Besov potential F@* is larger or equal to 1 everywhere on Gy, [2, Theorems 2.5.6,
2.6.7 ]). Also we have

HV“'“H‘;’VQ < AC: ,(G),

a .q’ (RN) - g 4
where A is a positive constant which depends only on n, ¢. Now consider a smooth nondecreasing function

H such that H(t) =1 for t > 1 and H(t) = ¢ for t < i, then the function ¢, = H(VH*) € W%’q,(RN),
0 < ¢r <1, ¢p =1 on G, and there exists a constant A’(n,q) > 0 such that

||¢k||§]ﬁ/%’q/(RN) < A'C%q/(Gk).
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Set ¢, = 1 — ¢p. By Lebesgue’s dominated theorem we have that

lu—tpul|* 5, , =0 (4.2)
wWa® (RN)
Thus it is enough to prove that
m(k)
uhy = Z Uk - (4.3)
j=1

Fix k € N. Then there exist open balls By, ;; 4,5 = 1,2... such that

00 00
Ek,j,i C Uj U Gy, and U G U Uj = U Bk,j,i-
j=1 ij=1

Since K is compact, there exists m(k) € N such that

m(k)

K C U Bk,j,i-
ij=1

Now consider wy, ;; € C§°(RY) such that
{wk,ji > 0} = By
7]7 7]7
Then set "
S Wi

Ukj = Wk Sy
ij=1 Wk,j,i

Then ug ; € L°(RY), satisfies 1 and
Ty-suppuy,j C (K \ Gg) N By, C Uj.

O
Remark. We conjecture that the result still holds in the case % > 1, but we have not been able to prove
(4.2).

5 The regular set and its properties
Let ¢ >1,T > 0. If Qr = RY x (0,T), we recall that U, (Qr) is the set of positive solutions u of

Ou —Au+u? =0 in Qr. (5.1)

If a function ( is defined in RYY. We denote by T,-supp(¢) the T ,-closure of the set where |¢| > 0.
Let U be a Borel subset of R and xy be the characteristic function on U. We set

1 _la—y)?
H(xv)(z,t) = w / e xudy.
(4mt)2 JRN

For any ¢ € RV the following dichotomy occurs:

(i) either there exists a T4-open bounded neighborhood U = Uy of & such that
T /
/ / uTH|xy* dzdt < oo, (5.2)
o JrN
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where ¢/ = q—1
(ii) or for any ¥,-open neighborhood U of £

T
/ / wIH[xy 7 dzdt = oo
0 RN

(5.3)

Definition 5.1 The set of ¢ € RY such that (i) occurs is Ty-open. It is denoted by R,(u) and called the

reqular set of u. Its complement Sy(u) = RN \ R, (u) is T,-closed and called the singular set of u.

Proposition 5.2 Let n € W%’q/(RN) N L°(RY) with T,-support in a T,-open bounded set U. Also let

u € UL (Qr) satisfy

T
U= / / uwIH[xy ]9 dadt < oo.
0o JrN

1 q 2q
l(n) : %1_1)]% ox uwiHn) ! de.

Then there exists

Furthermore

)] < COota) (Il + e e )

Proof. Put h = Hin] and ¢(r) = r+ Since |n| < ||n||Lexv, there holds

ulp(h d:ﬂdt' < ||77|| / / wIH[x )% dzdt := ||77|| 1. My < oo.
RN

Moreover

/ /RN w(Op(h) + Ap(h))) + uig(h)dxdr = /RN up(h)(., s)dz — /RN wd(h) (., t)dz.

But
Orp(h) + A (h) = 2¢'p(h)h*(2h Oth + (24 — 1)|Vh|?).
By Holder

‘/:/RN“(MW + AG(h))dudr

IN

1

t q / a
¢ ( Iy u%(h)dwdr) ( / / <h+rath\+rvm2>qudr)
s JRN s JRN
/ |, 1okl dadr < / [ ol dwar < il

and by Gagliardo-Nirenberg and the maximum principle

IN

By interpolation

t T
| [ wnkraede < [ ] onprasar < clinlf AR, = Clllif oI,
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Therefore,

w(d,0(h) + Ag(h))dzdr

1
t .
gc(/ / u%(h)dm) Il il .
s JRN wWa’

This implies that the left-hand side of (5.7) tends to 0 when s,¢ — 0, thus there exists

I(n) == lim ulep(h)(., s)dz

s—0 JpN

It follows from (5.7)

/ / wW(@d(h) + Ab(R))) + ulp(h)dzdr + / wb(h)(, T)dz = I(1).
]RN RN

Since [u¢(h)(., T)| < C(T)||n|[*%, we derive

/

2" 2q
1) < ol + ClEwllal” 5., < © (Inllze + 1l 3.0

Proposition 5.3 Let the assumptions of Lemma 5.2 be satisfied. Then

: 2q' _
lim UU(m,t)m (z)dx = 1(n).

Proof. Using (5.6) with h replace by hs(z,t) := Hin|(z,t — s), we get

/ /RN w(Od(hs) + A(hs))) + uig(ho)dudr + /R _ug(hs)(., T)dw = / w(hs)(., s)da.

RN
When s — 0
/ up(hs)(., T)dx — up(h)(.,T)dx,
RN

RN

/ST /]RN ulp(hg)dxdr — /OT /RN ulg(h)dzdr,

by the dominated convergence theorem. Furthermore,

and

T—s

o u(z,t+s) — wu(z,t))(Op(h)+ Agb(h))dxdt‘

1
T—s a
2/ / /
([ [ e o)~ utw it dsan) il
0 RN Wa

which tends to zero. Finally,

/TTS /RN ulp(h)dzdr — 0.

Subtracting (5.7) to (5.12), we derive
lim [ (., 5)(¢(h)(.;8) — d(n))dz = 0,

s—0 JpN

which implies the claim.
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Proposition 5.4 Assume that U is a bounded T,-open set and

. 2q’
}g% Uu(m,t)n+q (x)dz = oo, (5.13)

for some 0 < n € wa? (RY) N L2 (RN with T,-support in U, then

T
/ / uwIH[n]* dadt = co. (5.14)
0 JRN

Proof. We will prove it by contradiction. If the integral (5.14) is finite, then combination of Lemma 5.2
and Lemma 5.3 yields to a contradiction. O

Proposition 5.5 Let £ € Sg(u). Then for any Ty-open set G which contains &, there holds

li = 00. 1
lim Gu(w,t)dw 00 (5.15)

Proof. If € € S;(u) and if G is T,-open and contains &, then by Lemma 4.2 there exist 1 € Wg’ql RM) N
L®(RY) and a Tq4-open set D C G such that n =1 on D, n = 0 outside of G and 0 <7 < 1. Thus

T T
00 :/ / wIH[x p]*? ddt §/ / wIH[n)* dadt,
0 JRN 0 JRN

lim uH[n)* dz = 0o =
t—0 RN

which implies

. /
lim un®@ dz = oo,
t—0 RN

and the result follows by the properties of 7. (]

5.1 Moderate solutions

Firstly, let us recall some well known results. If u is a moderate solution of (3.1) then u € LI(K) for any
compact K C Q... and u satisfies

lim u(z,t)((z)dr = (x)du, V¢ € C°(RY). (5.16)

t—=0 JpN RN

for a unique Radon measure u. Also we have

_//oou(gbt+A¢)dmdt+//oouq¢d$dtZ/RN 6(x, 0)dp,

Vo € CHE1(Q,,), with compact support.
The above measure has the property that vanishes on sets with C'2 ,-capacity zero. Also there exists
q b

2
an sequence {p,} C W~ a(RV) of Radon measures such that p, — u in the weak* topology.
Now we assume that the moderate solution is positive or equivalently the respective measure p is

2
positive. Thus the previous sequence can be chosen, increasing and particularly {u,} C W_E’q(IR{N )N
MY (RY). Where M (RY) is the set of all positive bounded Radon measures in RY.
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2
If v € W a(RY) N9t (RY), then we have for some constant C' > 0 independent on v(see Lemma
3.2[22])

~1
C Ml 3.0 gy < I 0r) < O 3.0 .17
where H[v] is the solution of the heat equation in  with v as initial data.

Lemma 5.6 Let u be a moderate positive solution with initial data p. Then for any T > 0 and bounded
$4-open set we have

T
/ / ud(t, 2)H* [xoldzdt < .
0 JRN

Proof. Let 0 <n € C(RY) and n =1 on O and s < T. We define here h = H[n(z,t), hs = H[n](z,t — s)
and ¢(r) = |r[?. Then we have

T
/ / u(a 1) (D (he) + Ad(he)) + [ul1 () drdt + / u(he)(, T)dx = / u(x, 5)(n)d.
s JRN RN RN

In view of (2.23) in your notes, there exist a constant C(q,n) such that

T
[ [ rotnasat + [ s miae <0 ([ utespotmar - LI, , )
s RN RN RN W a’

Now using Fatou’s lemma and the fact that

lim sup/ u(z, s)dr < oo, V bounded €.
Q

s—0

the result follows. O

Theorem 5.7 Let u be a positive moderate solution with u as initial data, then
(i) p is regular relative to the T,-topology.
(ii) For each quasi continuous function ¢ € L*°(RYN) with bounded T,-support in RY | we have

lim u(z, t)p(x)dx = o(z)dp.
t—0 RN RN

Proof. The proof is similar to the one given [23].
(i) Every Radon measure on RY is regular in the usual sense:

w(E) = inf{u(D): EC D, Dopen}
= inf{u(K): K C E, K compact},

for any Borel set E. But the set { E C D, D T -open} C { E C D, D gopen}, hence
p(E) <inf{u(D): EC D, D T4 open} <inf{u(D): E C D, D open} = p(FE),

and the result follows.
(ii) Since the measure pu; = u(t, z)dz — p in the weak™ topology we have

limsup p(F) < p(E), liminf . (A) > p(A),
t—0 t—0
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for any compact set E, respectively, open set A. This extends to any bounded ¥,-closed set E (resp.

Tg-open set A).

Indeed, let £ be a Ty-closed set and {K,} be an increasing sequence of closed sets such that C2 ,(E\
q?

K,) — 0. Then for any m € N and any open set E C O we have

limsup i (E) < limsup pu(Kp,) + limsup (B \ Kpn) < p(O) + limsup pe(E\ Kpp).
t—0 t—0 t—0 t—0

Now we assert that
lim limsup i (E\ Kp,) = 0.

We will prove it by contradiction. We assume that lim,, o limsup, o ue(E \ Kp,) =€ > 0.

Let {t,} be a deacreasing sequence tending to 0 and lim,,_,o pir, (E \ Kp,) = limsup,_,q pt(E \ Kp,). Then
there exists subsequence of positive solutions {uj'}7° with initial data Pty X E\JK such that u]® — u™
for any m € N. Since u is a moderate solution and u}' < u we have that 4™ is a moderate solution.
Also by construction, the sequence {u™} is nonincreasing and u,, < Up\g,,. By proposition 5.17 we have
Up\k,, — 0 which implies u,, — 0 and

lim lim gy, (E\ Kpy) = 0.

m—00 k—o00

The proof follows in the case where E is T -closed. The proof is similar in the other case.
If Ais T4-open and

then
lim i (A) = p(A).

Without loss of generality we may assume that ¢ > 0 (since otherwise we set ¢ = ¢T —¢~) and ¢ < 1.
Given k € N and m = 0,...,2F — 1 choose a number a,, ; in the interval (m27%, (m + 1)27%) such that

(¢~ ({ami})) = 0. Put
A = ¢ ((amp, (@mi1]), m=1,...,2" =1, Agy = ¢ "((aok, (a1k]),
then we note that since ¢ has compact support the above sets are bounded and

lim e (A i) = (A i), ¥m >0, k € N. (5.18)

Set the simple function f = Zikz_ol mQ*kXAm’k, then ¢ 1 ¢ uniformly and by (5.18),

lim [ (e, t)gpdz = /]R budn, Ve OPRY).

t—0 JrN

This completes the proof of (ii). O

5.2 Vanishing properties
Definition 5.8 A continuous function w € U (Qr) vanishes on a T,-open subset G C RN, if for any

n e Wt (RN) A L°(RN) with T -supp(¢) C? G, there holds
q

lim [ w(z, t)niq, (x)dzdt = 0. (5.19)
t—0 G

When this is case we write u ~g 0. We denote by Ug(Qr) the set of u € U (Qr) which vanishes on G.
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We have the obvious result

Proposition 5.9 Let A be a T,-open subset of RN and uy, us € U (Qr).
If us =4 0 and uy < ug then uy ~4 0.

Proposition 5.10 Let G,G’ be T4-open sets such that G ~1 G'. If u € Ua(Qr) then u € Ue (Qr)

Proof. If n € Wg’q/(]RN) N L°(RY) with T -supp(¢) C? G, then T -supp(¢) C? G'. Since |G\ G| =
|G’ \ G| = 0 the result follows. O

If G is an open subset, this notion coincides with the usual definition of vanishing, since we can take
test function nC{°(G). in that case u € C(Qr U {G x {0}}).

Lemma 5.11 Assume u € Ug(Qr). Then for any n € Wl (RM)YN L>®(RYN) with T,-supp(n) C? G, there
holds

T
/ / WTH [ dedt + / w(ar, TYH (2, T)dz < Cillnl| % lll” 5 . (5.20)
0 RN RN wa

q

Proof. If u € Ug(Qr) and n € WE’QI(RN) N L= (RY) with T,-supp(n) C? G, there holds, with h = H]n]
and ¢(r) = riq/.

T
/ /a(~M@¢@)+A¢Mﬁ)+u%ﬂ@duh4i/ wb(h) (., T)dz = 0. (5.21)
0 RN RN

Therefore (5.20) follows from (5.8). O

Lemma 5.12 Let G C RY be a T,-open set. Then there exists an nondecreasing sequence {u,} C Ug(QT)
which converges to supUa(Qr). Furthermore supUg(Qr) € Ua(QT).

Proof. If uy and ug belongs to Ug(Qr), then uj + ug is a supersolution and it satisfies (5.19). Therefore
u1 V ug is a solution which is smaller than wu; + ug, thus uy Vug € Ug(Qr). By Proposition 3.4 there exists
a increasing sequence {u,} C Ug(Qr) which converges to u := supUg(Qr). By (5.21),

Aé@ﬁﬂﬁ@ﬂm+ﬁwm»+%wmwm+/

und(h)(., T)dz = 0. (5.22)
RN

Now, ufé(h) T ulg(h) in LY(Qr) and u,¢(h)(.,T) 1 up(h)(.,T) in L*(RN). If E is any Borel subset of
Qr, there holds by Hélder, as in (5.8)

T T % ’ ’
‘ /0 /E wn(Dr$(h) + A (h))dadr gc( /O /E uzqs(h)dxdf) llflill® 5, (5:23)

The right-hand side tends to zero when |E| — 0, thus by Vitali’s convergence theorem, we derive

T
L/ /ﬁ(—u&%ﬂh}+A¢@ﬁ)+u%%Mdmh4i/ wb(h)(, T)dz = 0, (5.24)
0 RN RN
from (5.22). Thus u € Ug(QT). O

Definition 5.13 (a) Let u € U (Q1) and let A denote the union of all T,-open sets on which u vanishes.
Then A€ is called the fine initial support of u, to be denoted by Ty-supp (u).
(b) Let F be a Borel subset of RY. We denote by Ur the mazimal element of Uz.(Qr).
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5.3 Maximal solutions
Definition 5.14 Let SIRZ(RN) be the set of all positive bounded Radon measures in RY. Also let Uy, €
UL (QT) be the moderate solution with initial data fi.
For any Borel set E C RN of positive C2 ¢ ~capacity put
q?
2
Vinod(E) = {uy: pew 0 (RN) n Sml—)i—(RN% p(E°) = 0},
Vi = sup Viod(E).

The following result due to Marcus and Véron [22] shows that the maximal solution which vanishes
on a an open set is indeed o-moderate. This is obtained by proving a capacitary quasi-representation of
the solution via a Wiener type test.

Proposition 5.15 Let F' be a closed subset of RN. Then
Urp =Vp.

Furthermore, for any ¢ > 1+ % there exist two positive constants C1, Co > 0, depending only on n and
%4 such that

I N _k F N Fy(z,t)
Cit a1 k+1 Cy ,| ————=|<U
cES e, ( ) <o

V(E+1)t

= & N _k F N Fi(z,t) (5.25)
< (st qll;)(k+1)2e 4C%,q/ W), V(z,t) € Q,
where Fy(z,t) = {y € RN : V&t < |z —y| < /(k + 1)t}
Remark. We recall that the main argument for proving uniqueness is the fact that
Ur < @VF in Q. (5.26)

=0

This argument introduced in [17] for elliptic equations has been extended to parabolic equations in [19],
[22].

Definition 5.16 Let F be a Borel subset of RY. We denote by Ur the mazimal element of Uz.(Qr).

Proposition 5.17 If {A,} is a sequence of Borel sets such that C2 ,(A,) — 0, then Ua, — 0.
q7

Proof. Let O,, be an open set such that A, C O,, and C3 q,(On) <(C2 q,(An) + % Now since O, is open,
q’ q’

037 , 18 an outer measure, by (2.32) and (iv)-Proposition 2.3, we have

C2 ,(5n) =C2 , ((On N bq(On)) U (6n N eq(ﬁn))) <(C2 q,(On) < cC3 ,(On).
q7
Thus C-: 4 (On) — 0. The result follows by
q7

Uga, < Uan

and by Proposition 5.25. U
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Corollary 5.18 Let E be a Borel set such that C: ,(E) = 0. If u € Uz (Qr) then uw = 0. In particular
q?
Ug=0.

Proposition 5.19 Let E, F' be Borel sets.
(i) If E, F are g-closed then Ug ANUp = Ugnp.
(i) If E, F' are T4-closed then

Up<Up & [EC?FandC: q/(F\E)>O],
q7
UE:UF & EBEAIMFE (5.27)

(111) If F, is a decreasing sequence of Tq-closed sets then
limUfg, = Ur where F =NF,.

(iv) Let A be a T,-open set and u € U4 (Qr). Suppose that u vanishes Ty-locally in A, i.e. for every point
o € A there exists a Tq4-open set Ay such that

o€ ACA, ury, 0.
Then w vanishes on A. In particular any v € Uy (Qr) vanishes on the complement of Tq-supp (u).

Proof. The proof is similar to the one in [23] dealing with elliptic equations.

(i) Ug A Up is the largest solution under inf(Ug, Ur) and therefore, by definition, it is the largest solution
which vanishes outside £ N F.

(ii) By (5.25) Ug and U satisfies the same capacitary quasi-representation up to universal constants. By
the Remark and (5.26),

C C
ENquéUEEUFEF;UEiUE:UF.

The proof of
EClF = Ug <Up.

follows from Proposition 5.15the fact that Ug = Vg and Up = Vg and Vg < Vp. In addition,

Cz y(F\E) > 0= Ug # U

Indeed, if K is a compact subset of '\ E of positive capacity, then Ux > 0 and Ux < Up but Ux £ Ug.

Therefore Ug = Up implies E ~? F' and Ug < Up implies £ C9 F.

(iii) If V := lim U, then Up < V. But T4-supp (V) C F, for each n € N and consequently V' < Up.

(iv) First assume that A is a countable union of T,-open sets {A,,} such that u ~4, 0 for each n. Then u

vanishes on UleAk for each k. Therefore we can assume that the sequence Ay, is increasing. Put F), = A¢.

Then v C Up, and by (iii), Ug, | Up where F' = A€. Thus u < U, i.e.,which is equivalent to u /4 0.
We turn to the general case. It is known that the (o, p)-fine topology possesses the quasi-Lindelof

property (see Sec. 6.5.11-[2]). Therefore A is covered, up to a set of capacity zero, by a countable

subcover of {A, : o € A}. Therefore the previous argument implies that u ~ 4 0. U

Proposition 5.20 (a) Let E be a T,-closed set. Then

Ugp = inf{Up: E C D, D open}
= sup{Uk : K C E, K closed}. (5.28)
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(b) If E, F are two Borel sets then
Ug = Urne ® Up\F-

(c) Let E, Fyn, n=1,2,... be Borel sets and let u be a positive solution of (3.1). If either C2_,(EAF,) — 0
q

or ﬁn i\ E then
UFn — UE.

Proof. (a) Let {Q;} be the decreasing sequence of open sets of Lemma 2.8-(a) such that NQ; = ﬂ@j =
E' ~% E. Thus by Proposition 5.19 (iii) we have that Uy, — U, this implies the first equality in (a).
Let {£},} be a nondecreasing sequence of closed subset of E such that C2 ,(E'\ F,,) — 0. Let Dy, Dy
q7

be open sets such that F,, C Dy and E \ F,, C Ds. Also set D3 = (51 U 52)‘3. Let ug) be the positive
solution of

ou—Au+u! = 0, in RN x(8,T]
wx,f) = xpUe on RY x {8}, (5.29)

where 0 < 8 < T.
For any (z,t) € RY x (3, T] we have

U < ug) + u(;) + u(ﬁg).
Letting 5 — 0 (taking an subsequence if it is necessary) we have ug) — u® and
Up <o +u® 4O in Qr,

But «() < Up, thus
Ugp <Up, +Up, +u®),

Now u®) < Up, and u®) < Ug thus by Proposition 5.20-(a) u® < Upsng. But Dy U Dg is an open set
and thus C2 (D3 N E) = 0, which implies by Corollary 5.18 that 1) = 0. Finally we have that
q b

Ug < Up, + Up,.
Since D; is arbitrary, we have by the first assertion of this Proposition
Ug <Uf, +Up\p,- (5.30)
But C’% q,(E \ F,,) — 0, thus by Proposition 5.17, we have
Ug < nh_)rrgo Ur, = Ug = ,}i_)H;oUFn’

since Up, < Ug for any n € N.
(b) By similar argument as in the proof of (5.30) we can prove that

Ug <Upne +Up\r = Ug < Urng ® Up\rF.

On the other hand, both Upng, Ug\r vanishes outside of E. Consequently Upng @ Up\  vanishes outside

E so that
Ug 2 Upng © Up\F,

25



and the result follows in this statement.
(¢) The previous statement implies,

Urg < Up,ne +Up\F,, Ur, <Up,ne + Up,\E- (5.31)

If Cs2 q/(E A F,) — 0 then Proposition 5.17 implies Ugap, — 0. And the result follows in this case by
q7

(5.31).
If F,, | E the result follows in this case by Proposition 5.19(iii). O

Proposition 5.21 If E is a T,-closed set, then
Ug =Vg.
Thus the mazimal solution Ug is o-moderate. Furthermore Ug satisfies the capacitary estimates (5.15).

Remark. Actually the estimates hold for any Borel set E. Indeed by definition, Ugp = Uz and

. ENF,(x,t) o ENFy(z,t)

2 4, | —— ] ~C2 , | —F— | .

a9 (n+ 1)t T\ \/(n+ 1)t

Proof. The proof is same as in [23].

Let {E} be a Ty-stratification of E. If u € Vy,0q and p = tru then u,, = sup uy, where pu = pxg,. Hence

Vi = sup Vg, . By proposition 5.25, Ug, = Vg, . These facts and Proposition 5.20(c) we have Ug = V. It
is known that Ug, satisfies the capacitary estimates (5.15). In addition

Ei N F,(x,t) E N E,(x,1)
C: | ———=——=|—-0C: , | ————=.
a1 (n+ 1)t T\ \/(n+1)t
Therefore Ug satisfies the capacitary estimates. O

5.4 Localization

Definition 5.22 Let A be a Borel subset ngN, we denote by [u|s the supremum of the v € U (QT)
which are dominates by u and vanishes on A°€.

We note here that [u]a =u AUy
Lemma 5.23 If G Cc RN is a Ty-open set and u € Ug(QT), then

u = sup{v € Ug(Qr) : v < wu, v vanishes on an open neighborhood of G}.

Proof. Set A = G° and let {4, } be a sequence of closed subsets of A, such that C2 (A \ A,) — 0. By
q7

Proposition 5.20 we have
Ua <Ua, +Upga,:

thus
u:u/\UAgu/\UAn—i—u/\(UA\An).

By Proposition 5.17, we have

UA\ A, 7 0.
Thus
u= lim uAU,g,,
n—o0o
and the result follows. O

26



Proposition 5.24 Let u € U (Q1).
(i) If E is T4-closed then,

[ulg = inf{[ulp: E C D, D open}. (5.32)
= sup{[u]r: F C E, F closed}. (5.33)
(i) If E, F are two Borel sets then
[ulg < [ulFne + [ulp\F, (5.34)
and
([ulelr = [[ulr]E = [ulFnE. (5.35)

(iii) Let E, F,,, n = 1,2, ... be Borel sets and let u be a positive solution of (3.1). If either Cz q,(EAFn) —
q?

0 or ﬁn J E then
[ulp, = [ule-

Proof. The proof is similar as in [23].
(i) Let D = {D} be the family of sets in (5.32). By (5.28) (with respect to the family D)
inf(u,Ug) = inf(u, inf Up) = inf inf(u,Up) > inf [u]|p. (5.36)
DeD DeD DeD
Obviously
[ulp, A lulp, = [U]DinDs,

thus we can apply the Proposition 3.4 to obtain that the function v := infpeplu]p is a solution of (3.1).
Hence (5.36) implies [u]|g > v. The opposite inequality is obvious.

For the equality (5.33), Firstly, we note that the set {v € U} (Qr) : v < u, Typ-supp (v) C? E} is
closed under V. Thus by Proposition 3.4, there exists an increasing sequence {v,} such that v, ~g-= 0
and lim v, = [u|g. Since v, is an increasing sequence by Proposition 5.23 we can construct an increasing
sequence {wy,} such that each w, vanishes on an open neighborhood B, of E, B,, C B4 and limw, =
[u] . Now set K,, = B¢, then

sending n to infinity we have the desired result.
(ii) Let v € U4 (Qr), v < u and Ty-supp (v) C E. Let D and D’ be open sets such that ENF C D and

e ~——

E\ F C D'. By Lemma 2.8-[19], there exists a unique solution vjl-; ﬁ < j € N of the problem

1
Oru — Au + \u!q_lu = 0, in RV x (=,T]
J
1 1 . 1
u(z, 3) = xp(z)v(z, 3) in RY x {3}

2
J
X(D1UDy)e- In view of proof of Proposition 5.20 we can prove that v < vjl» + vj2- + v?. By standard argument

Also we consider v% and v? the unique solutions of the above problem with initial data x p/(z)v(z, %) and

there exist a subsequence, say v;»;i = 1,2, 3 such that v;- — o' and v < v! + 9% + v3. Now since v vanishes

outside of E, thus vanishes outside of (D; U Ds), consequently we have that v(z, %) — 0, which

XX(DyuDy)e
implies that v? — 0. Thus we have

v <ol 4+0? < [ulp + [u]pr.
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By (5.32) we have
v < [ulpne + U] g\ F,

since v € {w € U4 (Qr) : w < u, Tg-supp (w) C? E} is arbitrary the result follows in the case where E is
closed. In general, the result follows by (5.33).
Put A= F and B = F. It follows directly from definition that,

[[U]A]B < inf(u, UA, UB).
The largest solution dominated by u and vanishing on A°U B¢ is [u]4~p. Thus

[u]a]p < [u]ans-

On the other hand
[u]anB = [[u]anB]B < [[u]a]B,
this proves (5.35). (iii) (By 5.34)

[l < [up,nE + [Ulp\F, [u]F, < [ulp,ne + [u]p\E-

If 037 o (E A F,) — 0, then by Proposition (5.17)(c) we have Ugap, — 0, and since [u]p\r,, [ulp,\p <
UgarF,, the result follows by the above inequalities, if we send n to infinite.
If F,, | E. By Proposition (5.17)(c) we have Ug,, — Ug, thus

[ulg <lim[u|p, =limu A Ug, <liminf(u,Ug,) < inf(u, Ug).

And since [u]g is the largest solution under inf(u, Ug) and the function v = lim[u|p, is a solution of (3.1),
we have that Ug < v, and the proof of (5.34) is complete. O

;-

Definition 5.25 Let u be a positive Radon measure on RN which vanishes on compact sets of C2 q
capacity zero. !

(a) The T4-support of i (denoted Ty-supp(p)) is the intersection of all T4-closed sets F' such that pu(F€) =
0.
(b) We say that u is concentrated on a Borel set E if u(E€) = 0.

Proposition 5.26 If i is a measure as in the previous definition then,

Ty-supp (1) ~7 Tq-supp (u,).

Proof. Put F' = supp?u,. By Proposition 5.19(iv) w, vanishes on F and by Proposition 5.23(c) there
exists an increasing sequence of positive solutions u, such than each function u,, vanishes outside a closed
subset F, say Fy,, and u, 1 u,. If S, := Tg-supp (u,) then S, C F, and {S,} increases. Thus {S,} is
an increasing sequence of closed subsets of F' and, setting p, = uxg, , we find u, < uy, < u, so that
Uy, T uy. This,in turn, implies

pn T, Tgsupp(p) €| ) S, C F

n=1

If D is an open set and p(D) = 0 it is clear that u, vanishes on D. Therefore u,, vanishes outside of S,,,
thus outside T4-supp (1). Consequently u,, vanishes outside T,-supp(u), i.e., F' C? Tg-supp ().

Second proof The result follows by Proposition 5.7 and Definition 5.8 U
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Definition 5.27 Let u be a positive solution and A a Borel set. Put

[u]t == sup{[u]p : F C? A, F q—closed}.

Definition 5.28 Let 8 > 0, u € C(Qr). For any Borel set A we define ué the positive solution of

o —Av+ v = 0, in RY x (8, 00)
v(m,ﬁ) = XA(x)U(x,B) in RN X {/8}

Proposition 5.29 Let u be a positive solution of (3.1) and put E = T;-supp (u).
(1) If D is a T4-open set such that E C9 D then

D_ 1D
[l = lim uf = [ulp = u (5.37)
(11) If A is a T4-open set
ura 06 u® = limu? =0, VQ g—open: Q C9 A. (5.38)
B—0 s
(iii) Finally,
urg0s [ut =0. (5.39)

Proof. The proof is same as in [23]
Case 1: F is closed. Since u vanishes in E°, it follows u € C(Qs U E°) and u = 0 on E°. If, in addition,
D is an open neighborhood of E we have

lim | ¢(x)u(z,t)dz =0, Vo € Co(E°).

t—0 Ec
Thus,
lim ué)c =0
Since
u?ﬁuﬁu?—ku?, vt > 8,
it follows
u = lim ug. (5.40)

If we assume that D is Tg-open and E C? D then, for every € > 0, there exists an open set O such that
D CO., ECO;and C: ,(0;) <e where Oy = O\ D. It follows
q7

ug®(z,t) — uf (z,t) < Ups(x,t — ), Vi > 8.

We note here that the lim. o Uo: (x,t — 8) = 0 uniformly with respect to 3. Since limg_,o ugg (z,t) =uit

follows that v = lim ué) . The same arguments shows that lim ué) “ = 0. Thus we have
u= limug < |ulp < wu.

[u]p. By Lemma 2.7, there exists a Tj-open set @ such that £ C? Q C @ c? D, then
. Hence u = [u]P.

N
I
=
QO
IA
=
o
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In addition, in this case for (5.38), we have that £ C? A¢ C1 Q°. Thus the direction ”=" follows by
the previous argument if we replace D by Q°. For the opposite direction, by Proposition 2.10, we have for

c

~ o
any & € A, there exist a To-open set O¢ such that O C? A. Thus we have that by (i) that v = lim uﬁé.

OC
Now since uﬁé ~Q. 0, ¥ > 0, by Proposition 5.17(i), we have that u ~0, 0, and the result follows in this
case by Proposition 5.19(iv).

Case 2. E Tg-closed. Let {E,} be a Ty-stratification of E such that C: ,(E\ E,) — 0. If D is a
q7
T g4-open such that £ C? D then, by the first case we have,

lim ([u]g, )5 = [ug,. A1
By (5.34) and definition of uﬁE, we have (since [u]p = u)

uf = (Wg)f < (Wens)f + (Wee) s = ([We)f + (Wes,), - (5.42)

Let 8 be a decreasing sequence to the origin, such that the following limits exist
D

— T D — 1 —
w = kl;n;ouﬁk, Wy, = kl;n;o ([U]E\En)ﬁk , n=12,...

Then by (5.41) and (5.42),
[ulg, <w <[ug, +w, < [ulg, +Up\g,-
Further, by (5.33) and Proposition 5.20(c)

[U]En — [U]E =u, UE\En — 0.

Hence w = w. This implies (5.40) which in turn implies (5.37).
To verify (5.38) in the direction = we apply (5.42) with D replaced by Q. We obtain

([Wp)§ < (W)§ + (Weg,)s -

By the first case we have

1i Q@ _ .
ﬁg%([U]En)g

Let B be a decreasing sequence to the origin, such that the following limits exist

: Q : Q _
kh_r)rgouﬁk, klggo ([U]E\E")Bk , n=12 ...
Then

. Q . Q
klggo ug < khﬁfglo ([U]E\En)ﬁk < Up\E,»

since Ug\g,, — 0 we obtain (5.38) in the direction = . The assertion in the opposite direction is proved
as in Case 1. This complete the proofs of (i) and (ii).

Finally we prove (iii). First assume that v ~4 0. If F' is a Tj-closed set such that F' C? A, then by
Lemma 2.7 there exists a T4-open set T, such that F' C? Q C Q C? A. Therefore, applying (5.37) to
v := [u]p and using (5.38) we obtain

V= limvg2 < limug =0.

By definition of [u]4, this implies [u]4 = 0. N N
If [u]* = 0, Then for any Tg-open set Q C Q C9 A we have [u]g = 0.. Now since T,-supp (ug) c?Q

we have for some subsequence 8y, | 0, limy_, o ugk < [u]g = 0. Thus by (5.38) we have u ~¢ 0. Applying
once again Proposition 2.10 and Proposition 5.19(iv) we conclude u &4 0. U
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Definition 5.30 Let u, v € U, (Qr) and let A be a Ty-open set. We say that u =v on A if uS v and
v & u vanishes on A. This relation is denoted by u =~ 4 v.

Proposition 5.31 Let u, v € U (Qr) and let A be a Ty-open set. Then,
(i) 0
YRR — =0. 5.43
wma v lim fu— ol (5.3

for every T,-open set Q) such that é c? A.
(it)

urgv S [ulp = [vp, (5.44)

for every T,-closed set F' such that F' C? A.

Proof. The proof is same as in [23].

By definition u ~4 v is equivalent to u © v == 0 and v © u ~4= 0. Hence, by (5.38) we have wg =

(ue v)g —550 0. Set fg = ((u— v)+)§2 and consider the problem

ow—Aw+|w|? = 0, in B;(0) x (8, 00)
w = 0, on 0B;(0) x (8, 00)
w(x,s) = p, in ux {B}.
Let w; and f; be solutions of the above problem, with initial data xg(u © v)(z, 8) and xg(u —v)+(x, 3).
By Lemma 2.7-[19], the sequence {w;} and {f;} are increasing. Also, we recall that u © v is the smallest

solution which dominates the subsolution (v —v), thus w; > v;, Vj € N. Furthermore, in view of Lemma
2.8-[19], we have limw; = wg and lim f; = fz. Thus wg > fs and sending 8 to the origin we have

((w—v)1)§ —0.

By the same argument we have
(v = u)1)§ =0,

this implies (5.43) in the direction = .
For the opposite direction, we consider the problem
Ow — Aw + |w|? = 0, in B;(0) x (8, 00)
w = h, on 0B;(0) x (B,00)
w(x,s) = p, in ux {G}.
Let Q C Q C? Abea Tg-open set and w; be the solution of the above problem, with h = x¢g(|u —v|) and
1= xqlu—v|dz. Also, let f; be the solution of the above problem with h = xgc|u—v| and p = xge|u—vl|dz,

then
lu —v| <wj + fj.

In view of Lemma 2.8-[19], there exist a subsequence, say w; and f; such that limw; = w and lim f; = f,
such that w, f solve the problem

o —Av+ v = 0, in RY x (8, 00)
v(z,B) = p mRY x{g},
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with initial data p = xg|u — v|dz and p = x@c|u — v|dx respectively. By uniqueness of the problem (see
Lemma 2.8-[19]), we have w = |u — v|§2 and f = |u — v|§c. Let Bk be a decreasing sequence such that the
following limit exist

lim |u—v|9 .

Qv = v,
Since lim |u — v|§ = 0, we have
|lu—v| < lim |u— v|§c.

k—oco k
@ ~@= 0. Now using the fact

Now since |u — v|§: ~@ 0, by Proposition 5.17(i) we have limy_,oc [u — v|j,

that u © v is the smallest solution which dominates the subsolution (u — v)y, we have u S v, v & u <
limy o0 |0 — v|§: and the result follows in this case by Propositions 5.23 and 5.19(iv).

(ii) We assume that u ~4 v.

For any two positive solutions u, v we have

u+(w—u)yr <v+(u—v)r<v+ucv (5.45)
If F'is a T4-closed set and ) a T,-open set such that F' C? (), we assert that
[ulp < [v]g + [uev]g. (5.46)
To verify this inequality, firstly we observe that (see (5.34))
u=[ulgy < [ulg + [ulgr

thus by (5.45)
i < Julgw < v+uS < [olg + los + [u S vlg+ [uS vlg-.

The subsolution w := ([u]p — ([v]g + [u ©v]g))
definition we have

, is dominated by the supersolution [u © v]ge + [v]ge. By

w < [l < [ue vlge @ lge < [u o vlge + Plr,

thus [w]; =g 0. But w < [u]p which implies [w]; < [u]r, that is Ty-supp ((w];) C? F C? Q. Taking into
account that [w]; ~¢g 0 we have that w = [w]{ = 0 and the proof of (5.46) is completed.

If we choose a T -open set @ such that F' C? Q C @ C? A (see Lemma 2.7), then using the fact that
ucvrs=0= [ucv]r =0 (see (5.39)) and (5.46), we have

[u]F < [vlg-

Now by Lemma 2.8(a), we can construct a decreasing sequence {Q;} of open sets such that NQ; ~¢ F,
thus by Proposition 5.24(iii) we have

[ulp <lim[v]g, = [v]F.

Similarly, [v]r < [u]r and hence equality.
Next we assume that [u]p = [v]p for any T -closed set F' C? A. If Q) is a T,-open set such that
Fci1Q c@c?A (see Lemma 2.7), we have

us v < ([ulg @ [ulge) © [v]e,
where in the last inequality we have used the fact that

w= fulpy < ulg + fulgr = u < fulg @ [ulge < [ulg + [ulge-
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Now since ([u]g @ [u]ge) © ([v]g) is the smallest solution dominating (([u]g @ [u]ge) — [v]g), , we have
((lulg @ [ulge) = [WlQ), < (([ulg + [ulge) — [vlQ); = lulg + [ulqe — [v]o = [ulqe,
since by assumption we have [u)g = [v]¢. Thus we have
[uS vl <uov < [ulge,

That is Tg-supp ([u ©v]r) C? F and [u© v]p ~¢ 0, which implies [u © v]F = 0, and by 5.39 u© v ~4= 0.
Similarly, v © u &~ 4 0. U

Corollary 5.32 If A is a T4-open set, the relation ~4 is an equivalence relation in Uy (Qr).

Proof. This is an immediate consequence of (5.43). O

6 The precise initial trace

6.1 The regular initial set.

Lemma 6.1 Let v € U (Qr) and Q be a T,-open set. Then for any n € W%’q/(RN) N L2 (RYN) with
T g-support in Q°, we have

T
/ / (u A UQ)(t, 2)H? [n]  dzdt < co.
0 RN

Proof. By Proposition 5.9 and the properties of Ug, we have

: 2q' -
}g% 0 u A Ug(z,t)ny?! (x)dx =0,

and the result follows by the estimates in Lemma 5.11. O

Proposition 6.2 Let u € U, (Qr) and Q be a Ty-open set. We assume that uAUg is a moderate solution
with initial data p. Then for any § € Q there exists a Ty-open set O¢ C () such that

T
/ / ud(t, z)H> [XOe]+drdt < oco.
0 RN
Furthermore, for any n € W%’ql (RY) N L2(RY) with T,-support in Q, we have

lim u(x,t)niq/(x)dx:/ n? dy
t—0 Q Q

2 7 /
Proof. Let n € Wa'" (RY) N L>®°(RY) with T,-support in Q. Since niq is a quasi continuous function we
have by Lemma 5.7 that

lim u/\UQ(x,t)niq/ (x)dz = / 7 dp.
t—0 Q Q

BS/ |)l()|)eI (ZI(ES ()f IJQC we lla‘\/e
11111 1)( ye\ L t , X dﬂj — ()-
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Combining all above and using the fact that u < u A Ug + u A Uge we have

2q/ _ . 2q/ < . 2(],
/Qn du }g% Qu/\UQ(az,t)n+ (x)dx %51(1] Qu(x,t)n+ (z)dz

<1 24 i ) 20!
}g% Qu/\UQ(az,t)n+ (x)dx + %51(1] Qu/\UQ (z,t)n (z)dx

- / 7% dpi + 0.
Q

In view of the proof of Lemma 5.2 and by 5.3 we have

/OT /RN (u A UQ)q(t,x)HQq/ [N+ dzdt < oo, (6.1)

for any 7 € wad (RY) N L=(RY) with T,-support in Q. By Lemma 4.2, there exists n € Wg’ql(RN) N
L®(RY) such that 0 < np < 1,7 =1o0n O¢ C @ and T,supp (n) C Q. Thus we have by (6.1) and the
properties of 7

T
/0 /RN (u A UQc)q(t,x)qu/ [Xog]dxdt < 00. (6.2)
|

2
Definition 6.3 (Section 10.1-[2]) Let Q be a Borel set. We denote W a7 (E€) the closure of the space of
C* functions (with respect the norm || - HW%"") with compact support in E°

Proposition 6.4 Let u be a positive solution of (3.1) and Q be a bounded T,-open set such that

T
/ / wd(t, ) H? [xQldzdt < oo.
0 RN

(1) Then, there exists an increasing sequence of T4-open set {Qy} with the properties @, C Q, @n C? Qnt1
and Qo :=Up> 1 Qn ~? Q, such that the solution

v = u A @y 18 moderate vy, T ug, tr(vn) = po

(ii) For any n € Wg’q/(Q) we have

2ltim u(m,t)niq,(x)dﬂ::/niq,(:n)d,uQ.
—0 Q Q

Proof. We Choose a point z € ). Then by Lemma 4.2 there exists a T4-open set V, such that z € V C

VC @, and a function ¢ € Wg’q/(]RN) such that ¢y =1 qg.e. on V and ¥ = 0 outside @). By Lemma 2.10,
there exist a T4-open set z € O, C 5Z cV.
We assert that the solution
v, =uAUg, (6.3)

is moderate.
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Indeed, let Br(0) be a ball with radius R large enough such that @ CC Bg(0). Also, let 0 <n <1 be
a smooth function with compact support in Bag(0) and 7 = 1 on Br(0). Then the function ¢ = (1—)n €

Wi’ql (RM) N L>®(RYN) with compact support in Bag(0) \ V. Now

T T T
/ / vd(t, ) H2 [(XBr(oldrdt < / / 03 (t, 2)H [y]dadt + / / 03 (t, ) H2 [1 — ]dadt
0 JRN ' 0 JRN o JRN

IN

T T
q 24’ q 24’
/0 /R () [yt + /0 /R () B [t < oo,

where the first integral in the last inequality is finite by assumption and the second integral is finite by
Lemma 6.1. Thus since Br(0) is abstract, we have that u A O, is a moderate solution.

By quasi-Lindelof property there exists a non decreasing sequence of T,- open set {O,} such that
Q ~7 UO,, and (by the above arguments) the solution u A Up, is moderate for any n € N. Now, by
Lemma 2.8 (b)(i)-(ii), for any n € N, there exists an increasing sequence {4, ;} of T,-open set such that
Avmj c1 An7j+1 c? E,, and U;il An,j ~1 E,. Put

Qn = U Ak;7ja
k+j=n
but B B ~
Qn C U Ak,j - U AICJ-H = Qny1-
k+j=n k+j=n
Hence,
Qo == UQ, ~1 Q.

Now we will prove that v, = u A Ug, — u A Ug. By Lemma 5.24(ii) we have
uNUg <uAUqg, +ulUggq,-
Since Q \ @, | F with C% o (F) =0, we have by Lemma 5.24(iii) that
uNUgq, — 0.

The opposite inequality is obvious and the result follows in this assertion. By Lemma 5.24(ii) v, =
[Vn+k]Q,, Vk € N. Therefore

pn(Qn) = pnsk(Qn) = pQ(Qn)- (6.4)

2
(ii) First we assume that the function n € W4'? (Q) has compact support in Q. Then by Lemma 4.3 there
exists a function 7, such that To-supp () C Qk

I =mll 2.0 < 7 (6.5)
and |ng| < |n|. Also, by Lebesgue’s dominated theorem, we can assume that 7, satisfies
r : 1
|ttt et =y da <
0 RN k

Also in view of your notes we have

T
lim [ u(z, )7 (z)de < Ol gnlInll? 2, + ul(t, ) (Hly))* dadt,
-0 Jq BTy~ Jo Jry
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But by (6.4) and Lemma 6.2 we have

</Q nzq/(x)d”Q>2%/ = lim (/Q u(x,t)nzq/(x)dx>2_zl < lim (/Q w(z, O (@ )dx)Q_;/

a a
< lim (/ u(z,t) (n — np)>? (ﬂ:)dﬂ:) B + lim (/ u(m,t)niq,(x)dx> B
t—0 Q t—0 Q
2 7
< (i @)+l = el =il
1/
+ </ / wi(t, ) (Hn — ni))?C dmdt)
RN
< ([ @a ) e+ ()
< z + C—=InlZ oy + ()
an HQ \/E mir, (RN) 2

The result follows in this case sending k to infinite.
For the general case, by theorem 10.1.1 in [2], there exists a function 7 with compact support in @ such
that

1
=l 2.0 < o (6.6)

and |nx| < |n|. The result follows as above. O

Remark. By Lemma 6.2 and (6.3), we have that the definition of the regular points in the elliptic case
(see [23]) coincides with our definition of the regular points.

Lemma 6.5 Let the assumptions of Lemma 6.4 be satisfied. Then

a)
ug = sup{[ulp : F C?Q, F g—closed}.

b) For every T,-open set O C O % Q such that [u]o is a moderate solution we have
paxg = t'[ulo) = tr([uglo). (6.7)

Finally, pg is T4-locally finite on Q and o-finite on Q' := UQy,.
c) If {w,} C U4 (Qr) be a nondecreasing sequence of moderate solutions such that wy, T ug and Tq-supp(wy,) C9
Q then tr(wy,) = vy T po-

Proof. a) By Proposition 3.4 there exists a nondecreasing sequence {[u]g,} such that [u]r, T u*. We
consider the function [u]g, of Lemma 6.4. Then by Proposition 5.24 we have

[u]r, < [UlFn@m + [UFA\Q .-

Now we note that F;,\ Q, is a T4-closed set and NJ°_, F,\ @y, = A with Cz2 q,(A) = 0. Thus by Proposition
q?

5.19 we have that lim, o Up,\@,, = 0 which implies lim,, o0[u]f,\@,, = 0. Thus [u]r, <lim[u]g,, = ug-
Letting n — oo we have u* < ug. By definition of u* we have that ug < u*, thus v* = ug.

b) Put po = tr([ulo). If F'is a T,-closed set such that F' C? O , by Proposition 5.24-(ii) we have

tr([ulr) = tr({[ulolr) = poxr- (6.8)
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In particular the compatibility condition holds: if O" C O c4 Q is T4-open set such that [u]os is moderate
solution

HONO" = HOXGng = HO'XFn:- (6.9)
With the notation of (6.4), [vn+k]g, = vk and hence Hn+kXG, = Hk for every k € N.
Since [u]r is moderate, we have by (6.9)

[onlF = [u]prg, T lulr (6.10)
In addition, [ug|r > lim[v,]r = [u]F and ug < u lead to,
[ulp = [ug]r (6.11)
By (6.8) and (6.10), if F' is a T4-closed subset of R, (u) and [u]p is moderate,
tr([u]) = T tr(fon] ) = ln pn X = i, X (6.12)

which implies (6.7).

Since Q' = UQ, ~? Q, pg is o-finite on @'. The assertion that pg is Ty-locally finite on @ is a
consequence of the fact that every point in () is contained in a T -open set O C? OcC @ such that [u]p is
moderate solution (see (6.3)).

c) If w is a moderate solution and w < ug and Tg-supp (w) C? Q then 7 := tr(w) < pg. Indeed

[w]g, < ulg, =vn, [Wg, Tw=tr(w]g,) T ™ <limtr(v,) = pg.

Now, let {w,} be an increasing sequence of moderate solutions such that F), := T -supp (wy,) C? Q
and wy, T ug. We must show that, if v, := tr(w,), then

v = limy, = uq. (6.13)

By the previous argument v < ug. The opposite inequality is obtained as follows. Let D be a T;-open
set such that [u]p is moderate. Also, let K be a compact subset of D such that C2 ,(K) > 0.
q b

wy, < [wp]p + [wp]pe = ug = limw,, < lim[w,]p + Upe.

The sequence {[w,]p} is dominated by the moderate solution [ug]p. In addition tr([w,|p) = vnX 5 T VX 5-
Hence, vxp is a Radon measure which vanishes on sets with C'2 ,-capacity zero. Also, [wy]p T Uy -
q b

where Uyy ;IS & moderate solution with initial trace vy 5. Consequently
ug = limw, < Upy s + Upe.

This in turn implies
([uQ]K — ul,x5>+ <inf(Upe, Uk),

the function on the left being a subsolution and the one on the right a supersolution. Therefore

(lealx — ) | < [Ulprlic = 0.
Thus, [uglkx < Upy 5 and hence pgxkx < vxp- Further, if O is a Tj-open set such that OciD then, in
view of the fact that

sup{puoxk : K C O, K compact} = ugxo,
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we obtain,
HQXO < VX j5- (6.14)
Applying this inequality to the sets Q.,, Qmi1 we finally obtain
HQXQm S VX3, o S VXQmya:

Letting m — oo we conclude that pg, < v. This completes the proof of (6.13). U

6.2 T, -perfect measures.

Definition 6.6 Let ;1 be a positive Borel measure on RY.
(i) We say that p is essentially absolutely continuous relative to C: ¢ if the following condition
q7

holds:
If Q is a Ty-open set and A is a Borel set such that Cz ,(A) =0 then
q7

@\ A) = (@)

This relation be denoted by
p <<y C q-
q7

(i1) p is regular relative to T,-topology if, for every Borel set E,

w(E) = inf{u(D): EC D, D g—open}
= inf{u(K): K C E, K compact}. (6.15)

p is outer regular relative to T,-topology if the first equality in (6.15) holds.
(111) A positive Borel measure is called T,-perfect if it is essentially absolutely continuous relative to C2 ¢
q b

and outer regular relative to T,-topology. The space of T,-perfect Borel measures is denoted by S)ﬁq(RN ).

Proposition 6.7 If u € M (RY) and A be a non-empty Borel set such that C- o (A) =0 then
q7

B { oo if u(@Q\ A) = o0 V@ g— open neighborhood of A, (6.16)

0 otherwise.

If po is an essentially absolutely continuous positive measure on RN and Q is Tq4-open set such that
po(Q) < oo then polg is absolutely continuous with respect to C: ¢ in the strong sense, i.c., if
q7

{A,} is a sequence of Borel subset of RN

037 g (An) = 0= po(@NA,) — 0.

Let pg is an essentially absolutely continuous positive Borel measure on RY.

Put
p(E) =inf{uo(D) : E C D, D g—open}, (6.17)
for every Borel set E. Then
(@)  po<p po(Q) = (@) VQ g—open,
(b) ulg =polg for every Ty-open set Q such that j1p(Q) < oo. (6.18)

Finally p is T,-perfect; thus p is the smallest measure in My (RY) which dominates pyo.
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Proof. The first assertion follows immediately from the definition 2, (R™). We turn to the second asser-
tion. If g is an essentially absolutely continuous positive Borel measure on RV, and Q is a T 4-open set such
that po(Q) < oo then poxg is a bounded Borel measure which vanishes on sets of C2 o — capacity zero.

q
If {A,} is a sequence of Borel sets such that C2 ,(A,) — 0 and py, = X@na,, then by Lemma 2.8-[19],
q?

there exist a unique moderate solution w,,, . Also in view of Lemma 2.8-[19] we can prove that the sequence
{uy, } is decreasing. Also by Proposition 5.17, we have u,,, < Ugna, — 0, since Cz ,(QNA;) — 0. Thus
q )

we have that w,, — 0 locally uniformly and p, — 0 weakly wit respect to Co(RY). Hence u(QNA,) — 0.
Thus polg is absolutely continuous with respect to C2 g 0 the strong sense.

Assertion (6.18)(a) follows from (6.17). It is clear that w, as defined by (6.17), is a measure. Now if @
is T4-open set such that 10(Q) < oo then p(Q) < oo and both po|g and p|g are regular. Since they agree
on open sets, the regularity implies (6.18) (b).

If A is a Borel set such that C' Z, q,(A) = 0 and @ is a T,-open set then Q\ A is T;-open and consequently

Q) = po(Q) = no(Q\ A) = u(Q\ A).

Thus p is essentially absolutely continuous. By (6.18) (a) and the definition of u, we have that p is outer
regular with respect to Cz . Thus p € M, (RY). O
q7

6.3 The initial trace on the regular set

Proposition 6.8 Let u € U (Q7). N
(1) There exists an increasing sequence of T,-open set {Qy} with the properties Qn C Rq(u), Qn C? Qni1
and Ryo(u) := ;2 Qn ~? R(u), such that the solution

v = u A Q,, is modarate v T VR, tr(vn) — pR,- (6.19)
(it)
VR, = sup{[ulr : F C?Ry(u), F g—closed}. (6.20)

Thus vg, is o-moderate.

(111) If [u]F is moderate and F' C? Ry(u), there exists a Tq4-open set Q such that F' C?Q), [u]g is moderate
solution and Q C Ry(u)

(iv) For every T -open set Q, such that [u]g is a moderate solution, we have

1R, Xg = tr([ulg) = tr(vr,lq)- (6.21)

Finally, pr, is Ty-locally finite on Rq(u) and o-finite on Rqo(u) := UQy.
(v) If {wn} is a sequence of moderate solutions such that wy, T ur, then,

pRr, = limtr(wy,) = lim v,. (6.22)
(vi) The regularized measure AR, given by
Agr,(E) =inf{ur,(Q): ECQ, Q Fg4-open, E Borel}, (6.23)
is Tq-perfect.
(vii)
u %’Rq(u) VR,
(viii) For every T,-closed set F' C9 Ry(u) :

[ulr = [ur,]F. (6.24)
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If, in addition, pr,(F N K) < oo for any compact K C RY, then [u]p is moderate and

tr([ulr) = pr, XF- (6.25)

(ix) If F is a T4-closed set and C%’q,(F) > 0 then

pr,(FNK) < oo for any compact K C RY < [u]p is moderate. (6.26)

Proof. (i) For any z € R4(u) there exist a bounded T,-open set @) C R, (u) such that

T
/ / wd(t, ) H? [xQldzdt < oo.
0 RN

The result follows by similar arguments as in Lemma 6.4. Also, we recall that for any z € R,(u) there
exists a T,-open set O, C Ry(u) such that

[u]o. (6.27)

is moderate.
Also we recall that v, = [vp4£]Q,, Vk € N and

n(Qn) = pntk(Qn) = HR,(Qn)- (6.28)

(ii) The proof is same as the proof of Lemma 6.5-a)

(iii) First we assume that F' is bounded. By definition and (6.27), every point in R4(u) possesses a T4-open
neighborhood A such that [u]4 is moderate. Then by Proposition 2.9, for any € > 0 there exists a T,-open
set Q¢ such that C%’ o (F'\ Qc) < e and [u]g. is moderate. Let O, be an open set containing F'\ Q. such

that Cz ,(O:) < 2e. Put
q7
F. .= F\O.. (6.29)
Then F; is a T4-closed set, F. C F, C: (F\ F.) < 2¢ and F. C Q.. Note that since F' is bounded, we
q7

have that ). is bounded.
Assertion 1. Let E be a Ty-closed set, D a T,-open set such that [u]p is moderate and E C? D. Then
there exists a decreasing sequence of Ty-open sets {Gp} such that

E C9Gpi1 C Gnyr C1 G, C9 D, (6.30)

and
[ulg, = [ulp in L9(K) for any compact K C Q. (6.31)

By Lemma 2.8 and Proposition 5.24-(iii), there exists a decreasing sequence of T -open sets {G,}
satisfying (6.30) and, in addition, such that [u]g, | [u]z locally uniformly in RY. Since [u]g, < [u]p and
the latter is a moderate solution we obtain (6.31).

Now we assume that F' is T ,-closed set (possibly unbounded). Let « € F and B,, = By (x); n € N. Set

E,=U,_(FnN Bn)%m,

where (F'N By,) 1 is the set in (6.29), if we replace F' by F'N B, and ¢ by 5. Also we assume without
2m

loss of generality that {E,} is an increasing sequence. Also set

Qn = U?n:lQnL7
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where Q" = (F'N By,) 1. Also we may assume that the sequence of set {Q,,} is increasing. Therefore, we
have tha‘rann C E, Qy is T4-open, [u]g, is moderate and E, C? Q,, and UE,, = E’' ~9 F, since

n (o]
C2 o (F\ U Ey) < > Cz y (FNBy) \UZiEy) + > Cz  (F N By)\ Er)
k=1 k=n+1
1 1
< ot > o5 "neN.
k=n+1
Thus by Assertion 1, it is possible to choose a sequence of T4-open sets {V,} such that
E, clV, C ‘7n C? Qn, ||[U]Vn - [U]EnHLq(Bn(O))X(O,T] <27 (6'32)

We note here that since E,, @, are bounded sets, the function [u]y;,, [u]g, have compact support
with respect to variable "z” in R, thus we can take the norm in (6.32) in whole space RY x (0, 7T7.

Now since [u]p is moderate, there exists a Radon measure pp where pp = tr([u|p). Also, since F' ~4 E'|
we have [u]p = [u]g/. Finally, we have by (5.35) and the fact that E, C? F,

[ulE, = [ulE.nr = [[ulE,]F-

Using the above equality and the fact that [u]r is moderate, we have that tr([u|g,) = x g, ptr. Now since
E, 1t E' ~%F, we have that

[ulg, T [ulp, in LYK x [0,T]),  for each bounded K C R".
Hence, by (6.32) we have that
[y, — [ulp, in LYK x [0,T]),  for each bounded K C R".

Let {V,, } be sequence such that

1 2
(/ / \[ulv,,, — [u]p|qudt> <27k (6.33)
0 JB(0)

Let K be a compact set, then there exist a ko € N such that K C By(0), Vk > ko. Also set W = [Jp2; Vi,

and note that ~
< Z[u] Vny, -
k=1

Thus we have

ko

</ / e 'qdf““f < Z( / / [ |qda:dt>

k=1

q
5 ([ o)
k=ko+1 By, (0)
</ / | anC F|qd$dt> + Z Q_k < 0Q.

k=ko+1

+

IN
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We recall that ' C?¢ W and W is a T,-open set. Using the facts that [u]p is moderate, K is an abstract
compact domain and the above inequality, we obtain that [u]y is moderate. Thus by Lemma 6.2 we have
that W C Rg4(u).

(iv) Let @ be a T,-open set and [u]g be a moderate solution, put pg = tr([ulg). If F is a T;-closed set
such that F' C? @ then, by Proposition 5.24-(ii)

trlulr = tr([[ulq]r) = noxr (6.34)
In particular the compatibility condition holds: if @, @’ are T,-open regular sets then
HQNQ" = HQXGnG = HQ'XEn0! (6.35)

With the notation of (a), [v,+k]Q, = vk and hence HntkX 3, = Mk for every k € N.
Let F' be an arbitrary ¥,-closed regular subset of R,(u). Since [u]p is moderate, we have by (6.35)

[nlr = [u]png, T lulF (6.36)
In addition, [vg,]r > lim[v,]F = [u]F and vg, < u lead to,
[ulr = [vR,]F. (6.37)
By (6.34) and (6.36), if F' is a T -closed subset of R,(u) and [u]p is moderate,
tr(fu]p) = lim tr([vy]p) = lim pnx P = pr,XF, (6.38)

which implies (6.21).

Since Ry 0(u) has a regular decomposition, ur, is o-finite on Ry o(u). The assertion that ug, is T4-
locally finite on R4(u) is a consequence of the fact that every point £ € R4(u) is contained in a T,-open
set O¢ C Ry(u) such that [u]o, is moderate and thus ugr,xo, < oo .

(v) If w is a moderate solution and w < vg, and Tg-supp (w) C? Ry(u) then 7 := tr(w) < pg,. Indeed

wlg, < [or,] = var [wlg, 1w = tr(fwlg,) 17 < limtr(v,) = pr,-

Now, let {wy,} be an increasing sequence of moderate solutions such that F, := T,-supp (wy,) C? R4(u)
and wy, T vR,. We must show that, if v,, := tr(wy),

vi=limv, = pr,. (6.39)

By the previous argument v < pg,. The opposite inequality is obtained as follows. Let D be a Ty-open
set, [u]p be moderate and let K be a compact subset of D such that Cz ,(K) > 0.
q?

wy, < [wp]p + [wa]pe = vr, = limw, < limwy,]p + Upe.

The sequence {[w,]|p} is dominated by the moderate function [vg,]p. In addition tr([w,|p) = vnX 5 T VX 5-
Hence, vxp is a Radon measure which vanishes on sets with C'z _g-capacity zero. Also, [wy]p T Upy 55

q
where the function on the right is the moderate solution with initial trace vy 5. Consequently
vR, = limw, < Upy s + Upe.
This in turn implies

<[qu]K — qu5)+ < inf(Upe, Uk),
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the function on the left being a subsolution and the one on the right a supersolution. Therefore
([qu]K - qu;j>+ < [[U]pe]lk =0.

Thus, [vr,]x < Upy 5 and hence prxx < vxp. Further, if @ is a T -open set such that @ C? D then, in
view of the fact that

sup{ur, XK : K C Q, K compact} = ugr,xqQ
we obtain,
HRXQ < VX - (6.40)
Applying this inequality to the sets Q.,, Qm+1 we finally obtain

IU’RqXQm S I/X@de S VXQm+2’

Letting m — oo we conclude that pr, < v. This completes the proof of (6.39) and of assertion (v).
(vi) The measure i, is essentially absolutely continuous relative to Cz . Therefore this assertion follows
q k)

by Proposition 6.7.
(vii) By (5.34)
u < [ulQ, + [ulgg -

Now since Qy, is Ty-closed and Qf, | R z(u), we have by Proposition 5.24-(iii) that

[ulqs 4 [ulre  (u)-
Hence
lim (v — [u]g,) = v —vr, < [ulre W),

so that u © vg, ®r, () 0. Since vg, < u this is equivalent to the statement u ~g_ () VR,
(viii) (6.24) follows by the previous statement. Now we assume that pug, (F)xx < oo for any compact
K C RY. Now set F,, = FNQ,. By (5.34).

[ulr < [ulr, + [Wlp\p, = [u]r, +[ulpg, <[l +ulpg,

Now since F'\ @y, is a T¢-closed set and NF\ @, = G with C:2 ,(G) = 0, we have by Proposition 5.24-(iii)
q7

that [u]m o, — [ul¢ = 0. Hence [u]r = lim[u]g,, and tr([u]r,) = pr,XF, T 4R, XF) = HR,XF- Since prXF
is a Radon measure essentially absolutely continuous relative to C2 ,, [u]r is moderate and (6.25) holds.
q ’

(ix) If pr, (F)xx < oo for any compact K C RY then, by (viii), [u]p is moderate. Conversely, if [u]p is
moderate, by (6.21), g, (F)xk < oo for any compact K C RY.

O Now, We will give an example in which we see that there exists a u € Uy (Qr) with R,(uw)RY but u is
not a moderate solution.

Example. Let n : [0,00) — [0,00) be a smooth function such that n(r) > 0 for any » > 0 and
1
lim, 0+ n(r) = 0, (n goes to the origin very fast, for example n(r) = e ). Let K be the close set

K ={(2,z,) e RN : |2'| < n(zp), z, > 0}.

Then K is thin at the origin 0.
Set f(z) %n) if z € K and f = 0 otherwise. We define the measure

—
w= fdx.
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Then this measure has the properties

1.pis Ty-locally finite

2. (@) < oo where Q,, = Bo,(0) \ B1(0) and UQ,, ~7 RY

3. u(F) =0 for any F such that C’g,q/ELF) = 0.

4. There exists a non decreasing sqequence of bounded Radon measures u, absolutely continuous with
C: ., such that

2
q’
(a) Tg-supp (un) C Qn, pn(A) = pnsr(A) for any A C Q, and any n, k € N.

(b) lim [in =

5. We can Construct a solution u € U4 (Qr) with respect this measure.

As we see later this solution is unique since it is o-moderate (see Proposition 6.12).

Lemma 6.9 Let pu be as in 1-4 above. Then there exists an open set Ry ~4 RN such that the measure
is a Radon measure in R,.

Proof. We consider the ball Br(0) with R > 1. Then by Lemma 2.5 in ”precise.....” there exists a sequence
of open sets {O1 }7_ | and n(m) € N such that C2 ,(01) < L and
m q’ m

Br(0)\O1 C |J @i (6.41)
Now since O is open we have
C: (01)=0C2 ,(01U(01Neg(0)) <C2 (01) <cCa (1(01) =0,
q’ m q’ q m m q’ q m q’ q m

where e4(0) is the set of thin points of O.
Thus if 2 € Br(0) \ (r._; O 1 there exist 7 > 0 small enough and N € N such that

N
B( CBR ﬂ %

Thus by the properties of 1 and (6.41) we have
u(Br(z)) < oc.

We define
Ry = {z € R : 37 > 0such that u(B,(z)) < oo}

Then the set R, is open and by the above argument (if we sent R to infinity) we have that R, ~4 RN,
Also by definition of R, we can easily prove that p(K) < oo for any compact K C R, and by properties
of 1t we can prove that ;4 is Radon measure in R,. O

6.4 The precise initial trace.

Definition 6.10 Let ¢ > 1+ % and u € U (Qr).

a: The solution vg, defined by (6.20) is called regular component of u and will be denoted by Uregy.

b: Let {vn} be an increasing sequence of moderate solutions satisfying condition (6.19) and put pr, =
PR, (u) := limtr(vy,). Then, the reqularized measure AR, defined by (6.23), is called the regular initial
trace of u. It will be denoted by trg,(u).
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c: The couple (trg,(u),Sy(w)) is called the precise initial trace of u and will be denoted by tr(u).
d: Let v be the Borel measure on RY given by

_ { (trr, (W)(E) if E C Ry(u),

v(E) =00 if ENS,(u) #0, (6.42)

for every Borel set E. Then v is the measure representation of the precise trace of u, to be denoted by

tr(u).
Note that, by Proposition 6.8-(v), the measure pp, is independent of the choice of the sequence {vy, }.

Theorem 6.11 Assume that uw € U (Qr) is a o-moderate solution, i.e., there exists an increasing se-

quence {u,} of positive moderate solutions such that u, 1 u. Let p, = limtr(u,), po := limu, and
put

p(E) =inf{u(Q): ECQ, Q T,-open, E Borel}. (6.43)
Then:

(i) p is the precise initial trace of w and p is T4-perfect. In particular p is independent of the sequence
{un} which appears in its definition.

(i) If A is a Borel set such that p(A) < oo then pu(A) = po(A).

(iii) A solution u € Uy (Qr) is o-moderate if and only if

u = sup{v € Uy (Qr) : v moderate, v < u}, (6.44)
which is equivalent to
u=sup{u, eU+(Qr): T € ng’q(RN) NS (RY), 7 < tr(u)}. (6.45)
(iv) If u, w are o-moderate solutions,

tr(w) < tr(u) © w < u. (6.46)

Proof. The proof is an adaptation of the one in [23].
(i) Let @ be a Tg-open set and A a Borel set such that C2 ,(A) = 0. Then p,(A) = 0 so that po(A) = 0.

Thus p is essentially absolutely continuous and, by Proposition 6.7, u is T4-perfect.
Let {D,} be the family of T -open sets as in Proposition 6.8-(i). Put D] = R,(u) \ D, and observe
that D, | E where C: ,(E) = 0. Therefore
q )

Upnxp + 0,  where the limit is with respect to m.

Thus there exist a subsequence, say {D/,}, such that

T .
/ / [Uppx py |ddt | <277
0 n(0) "

Mn(Rq (u)) = UnXD, t+ Hn XD,

Since,

it follows that

lim ‘uuanq(u) — uunXDn‘ <lim Upinxpy = 0.
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Now
Un < Upnxp, + [U]s,()-
Hence

U= [U]Sq(u) <w:i= nh—>n<;o u,unXRq(u) = nh—>ncj>lo Upirn X Dy, < Ureg-

This implies u © [u]s,(u) < Ureg- For the opposite inequality, by Proposition 6.8-(iv) we have that
[U]Dn ) Ureg-

But by (5.46) and using the facts that D,, C% Dy 41 C Dyqq CY Rq(u), C2 <5n+1 N Sq(u)> =0,

q7
[ulp, <luls,w)Dpir + v O [Uls,w)]Duy = [UO [U]s,w)]Dayy < U [uls,w),

sending n — oo we have ueq < u © [u]s, (). Therefore limuy,, ., = Ureg. thus the sequence {u,\p, }
satisfies condition (6.19) and consequently, by Proposition 6.8-(iv) and Definition 6.10,

im ppXp, = bRy trr,(u) =Tig,- (6.47)

Now we assert that If £ € S;(u) then, for every T,-open bounded neighborhood @ of € p1,,(Q) — 0. Indeed
2 /

let n € WaT (RV) 0 L®(RY) with T,-support in Q. Put h = H[n] and ¢(r) = riq . Then by Proposition

5.7, Lemma 5.3 and in view of the proof of Lemma 5.2 we have

ATAJ”M@WM+AMMN+%mmmw+/’

RN

wnd(0)(T)do = [ o dp
Q

Also In view of Lemma 5.2, we can prove

T /
[ [ totiazar < c ([ @ dun+ 1y, + il )
0 JRN Q wa

2 7
By Lemma 4.2 there exists n € Wa'? (RV)NL>®(RY) and D C Q T,-open set such that n=1on D, n =0
outside of () and 0 < n < 1. Letting n — oo we have

T
i [ [ s pldadr < €0 <hm / 772qd#n+||77||2q2q/+||77||L<>°>,
0 JRN Q wWa

the assertion follows by Lemma 5.4.

In conclusion, if £ € S;(u) then ,uo(@) = oo for every T, -open neighborhood of . Consequently
p(€) = oo. This fact and (6.47) imply that p is the precise trace of w.
(ii) If u(A) < oo then A is contained in a T,-open set D such that p9(D) < oo and, by Proposition 6.7,
1(A) = po(A).
(iii) Let uw € U+ (Qr) be o-moderate and put

u* :=sup{v : v moderate, v < u}. (6.48)

By its definition u* < u. On the other hand, since there exists an increasing sequence of moderate solutions
{un} converging to u, it follows that v < u*. Thus u = u*.

Conversely, if u € U4 (Qr) and v = u* then By proposition 3.4, there exists an increasing sequence of
moderate solutions {u,} converging to u. Therefore u is o-moderate.

46



Since u is o-moderate there exist an increasing sequence of moderate solutions {u,} converging to u.
In view of the discussion at the beginning of subsection 5.1, for any u,, there exist an increasing sequence

of {wy,} such that wy, 1 u, and tr(w,,) € ng’q(RN) N MG (RY). Thus

up <sup{u,: 7€ ng’q(]RN) NI (RY), 7 <tr(u)} =: ub.

Sending n — oo, we have u < u?.

On the other hand, if u is o-moderate, T € ng’q(RN) N MY (RY) and 7 < tr(u) then (with p, and
uy, as in the statement of the Proposition), tr(u, ©u,) = (7 — pn)+ 4 0. Hence, u; ©u,, | 0, which implies,
u; < u. Therefore u* < u. Thus (6.44) implies (6.45) and each of them that u is o-moderate. Therefore
the two are equivalent.

(iv) The assertion = is a consequence of (6.45). To verify the assertion < it is sufficient to show that if
w is moderate, u is o-moderate and w < w then tr(w) < u. Let {u,} be an increasing sequence of positive
moderate solutions converging to uw. Then w, V w < u and consequently u, < u, V w T u. Therefore
tr(un, Vw) T ' < tr(u) so that tr(w) < tr(u). O

Theorem 6.12 Let u € U (Qr) and put v = tr(u).
(i) Ureg is o-moderate and tr(urey) = trr, (u).

(ii) If v € Uy (Qr)
v <u=tr(v) <tr(u). (6.49)

If F is a T4-closed set then
tr([ulr) < vxp. (6.50)

(iii) A singular point can be characterized in terms of the measure v as follows:
feS,w) e (@ =00 VQ: £€Q, QT -open. (6.51)
() If Q is a T4-open set then:

[u]g is moderate < 3 Borel set A : 037 g (A) =0, V(KN Q\ A) < oo, (6.52)

for any compact K C RV,
(v) The singular set of ureq may not be empty. In fact

S4(1) \ by(S3(w) © S4(ttreg) © Sy(u) N Ry(w), (6.53)
where bg(Sg(u)) is the set of C2 ,-thick points of Sq(u).
(vi) Put
Sgo(u) :={¢ € RV . v(Q\Sy(u) =00 VQ: £€Q, QF, -open}. (6.54)
Then
Sy(treg) \ bg(Sg(u)) C Sgo(u) C Sg(ureg) U bg(Sy(u)). (6.55)

Remark. This results complements Proposition 6.8 which deals with the regular initial trace.

Proof. (i) By proposition 6.8-(ii) u,eq is o-moderate. The second part of the statement follows from
Definition 6.10 and Proposition 6.11-(i).
(ii) If v < w then Ry(u) C Ry(v) and by definition vyeg < Upeg. By Proposition 6.11-(iv) tr(vyeg) < tr(tureg)
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and consequently tr(v) < tr(u). (6.50) is an immediate consequence of (6.49).
(iii) If £ € Ry(u) there exists a T -open neighborhood @ of £ such that [u]g is moderate. Hence v(Q) =
trr, (u)(Q) < oo. If § € S;(u), it follows immediately from the definition of precise trace that v(Q) = oo
for every ¥,-open neighborhood @ of .
(iv) If [u]g is moderate then @@ C R,(u). Proposition 6.8-(ix) implies (6.52) in the direction = . On the
other hand,

V(KNQ\ A) < oo, Vcompact K ¢ RN = Q c? Ry(u),

and pg, (K N Q) = PR, (KN Q\ A) < co. Hence, by Proposition 6.8-(ix), [u]q is moderate.
(v) Since Tg-supp (treg) C Rq(u) and Ry(u) C Ry(urey) we have

e~ —

Sq(Ureg) C Sq(u) NRy(u).

Next we show that Sg(u) \ bg(Sy(u)) C Sy(treg)-

If £ € Sg(u) \ by(Sg(u)) then Ry(u) U {£} is a Ty-open neighborhood of £&. By (i) uyeq is o-moderate
and consequently (by Proposition 6.11-(i)) its trace is T4-perfect. Therefore, if Qg is a bounded ¥,-open
neighborhood of { and Q@ = Qo N ({£} URy(u)) then

tr(ureg)(Q) = tr(ureg)(Q \{¢&}) = tr(u)(Q \ {&}),

where in the last equality we have used the fact that @ \ {{} C R4(u). Let D be a Tj-open set such that
¢eDcDcQ. If tr(u)(D\ {€}) < oo then, by (iv), [u]p is moderate and & € R,(u), contrary to our
assumption. Therefore tr(u)(D \ {£}) = oo so that tr(treg)(Qo \ {£}) = oo for every T, -open bounded
neighborhood Qg of &, which implies £ € Sy(ureq). This completes the proof of (6.53).

(vi) If € ¢ bg(Sy(u)), there exists a Ty-open neighborhood D of € such that (D \ {¢{}) N Sy(u) = 0 and

consequently
tr(treg) (D \ {€}) = tr(ureg) (D \ Sg(u)) = tr(u)(D \ Sg(u)). (6.56)
If, in addition & € S;(u) then

() (D \ 8,(u)) = tr{treg) (D \ S,(w) = oc.

If Q is an arbitrary T,-open neighborhood of ¢ then the same holds if D is replaced by ) N D. Therefore
tr(treg)(Q \ {€}) = oo for any such Q. Consequently & € S;(ureq), which proves that Sgo(u) \ bg(Se(u)) C
Sq(treg)-

On the other hand, if £ € S;(ureg) \ bg(Sy(u)) then there exists a T,-open neighborhood D such that
(6.56) holds and tr(uyeg)(D) = 00. Since ey is o-moderate, tr(uyey) is To-perfect so that tr(ureq)(D) =
tr(treg) (D \{€}) = 0o. Consequently, by (6.56), tr(u)(D\S,(u)) = oco. If Q) is any T,4-open neighborhood of
{¢} then D can be replaced by DN Q. Consequently tru(Q\S,;(u)) = oo and we conclude that & € Sy o(u).
This completes the proof of (6.55). O

Proposition 6.13 Let F' be a T-closed set. Then Sy(Ur) = by(F').

Proof. Let &€ € RY such that F is C2 q,—thin at {. Let @@ be a T -open neighborhood of ¢ such that
~ q,
Q@ C? F¢. Then [Ur|q = Upng = 0. Therefore § € Rq(Ur).
Conversely, assume that £ € F'NR,(Ur), thus there exists a T,-open neighborhood @ of £ such that
[Urlq is moderate. But [Up|q = Upng which implies C2 ,(FNQ) =0 and @ C R(M). Now, note that
q?
C: /(F)<C: (FNQ)+C:z ,(Q°). Thus F is Ty-thin at . O
q’ q’

qu
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6.5 The initial value problem.

Notation 6.14 a: Denote by M, (RN) the space of positive outer regular Borel measure on RY.

b: Denote by Cy(RN) the space of couples (1, F) such that F is T,-closed, T € M (RN), T,-supp (1) C Fe
and TxFe 15 Ty-locally finite.

c¢: Denote by T : Cy(RN) — M, (RY) the mapping given by v = T(r, F) where v is defined as in (6.42)
with Ry(u), Sq(u) replaced by F, F° respectively. v is the measure representation of the couple (1, F').

d: If (1, F) € Cy(RY) the set

F.={¢cRY: 71(Q\F) = V@ T4-open neighborhood of &} (6.57)
s called the set of explosion points of T.

Remark. Note that F, C F (because Txpe is T4-locally finite) and F, C Fe (because 7 vanishes outside
this set). Thus
Fr Cby(F)NF. (6.58)

Proposition 6.15 Let v be a positive Borel measure on RY.
(i) The initial value problem

du—Au+ulTlu=0, u>0in Qo =RY x (0,T), tr(u) =vin RY x {0}. (6.59)

possesses a solution if and only if v € M (RY).
(ii) Let (1, F) € Co(RN) and put v := T(r, F). Then v € M (RY) if and only if

e MRY), F=0b,(F)UF,. (6.60)
(iii) Let v € My(RY) and denote
&, = {E: E%,quasi-closed, v(ENK) < oo, ¥ compact K C RV}
D, = {D: D% -open, D ~* E for some E € &,}. (6.61)

Then a solution of (6.59) is given by u = v @ U where
G := LJD7 F:=G° wv:=sup{uyxpg: E€é&}. (6.62)
Dy

Note that if E € &, then vxg is locally bounded Borel measure which does not charge sets of C 7"
q7

capacity zero. Recall that if ju is a positive measure possessing these properties then u,, denotes the moderate
solution with boundary trace L.

(iv) The solution u = v & Ur is o-moderate and it is the unique solution of problem (6.59) in the class of
o-moderate solutions. Furthermore, u is the largest solution of the problem.

Proof. The proof is same as in [23].

(A) If uw el (Qr)
tr(u) = v = v € My(RY). (6.63)

By Proposition 6.8, ey is o-moderate and u AR, () Ureg- Therefore
tr(u)X’Rq(u) = tr(ureg)X’Rq(u)-
By Proposition 6.11, fig, = tr(urey) € M, (RY). If v is defined as in (6.62) then

v =sup{lulr : F g—closed and F' C? Ry(u)} = Upegq, (6.64)
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where the second equality holds by definition. Indeed, by Proposition 6.12, for every T, -open set Q, [u]g
is moderate if and only if v(K NQ\ A) < oo for some set A capacity zero and for any compact K subset
of RY. This means that [u]g is moderate if and only if there exists E € &, such that Q ~¢ E. When this
is the case,

tr(fulQ) = ur,(W)xg = pr,(W)XxE = VXE-

Thus v > tyeg. On the other hand, if F € &,, then E 4 Ry(u) and pg, (uW)(KNE) = PR, (u)(KNE) < oo

for any compact K subset of RY. Therefore by Proposition 6.8-(ix), E is regular, i.e, there exist a T -open
regular set @ such that £ C? Q. Hence u,,, < [u]g and we conclude that v < uycy. This proves (6.64).
In addition, if ENSy(u) # 0 then, by Definition 6.10 v(E) = co. Therefore v is outer regular with respect
to T,-topology.

Next we must show that v is essentially absolutely continuous. Let @) be a Tj-open set and A a non-
empty T,-closed subset of () such that Cg’ o (4) = 0. Either v(Q \ A) = oo in which case v(Q \ 4) = v(Q)

or v(Q \ A) < co. In this case Q \ A C R4(u) and
v(Q\ A) =Tg, (Q\A) =Tg, (Q) < oco.

Let £ € Alet D be a Tj-open subset of @ such that £ € D C D ci Q. Let By, be a T4-open neighborhood
of AN D such that Cz ,(By) <27" and B, C? D. Then
q7

[ulp < [ulg, + [ulp,,  Ea=D\ By

Since lim[u]p, = 0 it follows that [u]p = [u]g,. Now since E, C R4(u), v(E,) < v(Q \ A) < oo, we have
by definition of v and Proposition 6.8-(ix) that [u]g, is moderate. Also in view of Lemma 2.8 and Lemma
2.7(ii)-[19], we have for some positive constant C

T
/ / [u]f, dxdt < Cv(E,) < Cv(Q\ A) < oo,
0 JK
for any compact K C R™. Therefore

T
/ / [u]t,dzdt < o, VY compact K ¢ RV
0 K

which implies that [u]p is moderate and thus D C R4(u). Since every point A has a neighborhood D as
above we conclude that A C Ry(u) and hence v(A) = trg(u)(A) = 0. If A is any a non-empty Borel subset

of @ such that C: ,(A) = 0, by inequality C2 ,(A4) C cC2 ,(A), we have that v is absolutely continuous
q’ q’ q’

and v € M, (RY).

Secondly we prove:
(B) Suppose that (1, F) € Cy(RN) satisfies (6.60) and put v = T(r,F). Then the solution u = v ® Up,
with v as in (6.62), satisfies tr(u) = v.

By (6.63), this also implies that v € M, (RY).

Clearly v is a o-moderate solution. The fact that 7 is T;-locally finite in F'° and essentially absolutely
continuous relative to C 2 implies that

G :=F°CRy(v), tr(v)xe=r"ac. (6.65)
It follows from the definition of v that F. C S,(v). Hence, by Proposition ?? and (5.61) we have

F =0by(F)UF; C S(v)US;(Ur) C Sy(u) C F. (6.66)
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Thus, Sg(u) = F, v = Uypeg and 7 = tr(tyey). Thus tré(u) = (7, F') which is equivalent to tr(u) = v.
Next we show: (C) Suppose that (7, F) € Co(RY) and that there exists a solution u such that tr¢(u) =
(1, F). Then
T =trr,(u) = tr(ureg), F = Sy(u). (6.67)

If U := tyeg ® Up then tr(U) = tr(u) and v < U. U is the unique o-moderate solution of (6.59) and (7, F)
satisfies condition (5.61). Assertion (6.67) follows by Proposition 6.8-(i) and Definition 6.10. Since tyeq
is o-moderate, it follows, by Proposition 6.11, that 7 € 91, (RM).
By Proposition 6.8 (vi), u RR4(u) Ureg- Therefore w := u © uyey vanishes on Ry(u) so that w < Up.
Note that u — u,y < w and therefore
U < Upeg ®w < UL (6.68)

By their definitions S;(u) = Fr and by Proposition 6.12 (vi) and Proposition ?7,

Sg(U) = Sylureg) USg(Ur) = Sy(ureg) U by(Ur)
= Syo(u) Uby(Up) = Fr Uby(Up). (6.69)

On the other hand, R, (U) D Ry(ur,) = Rq(u) and, as u < U, Ry(U) C Rq(u). Hence Ry(U) = Ry(u)
and S;(U) = S;(u). Therefore, by (6.67) and (6.69), F' = S;(U) = FrUby(Ur). Thus (7, F') satisfies (6.60)
and tr¢(U) = (7, F'). The fact that U is the maximal solution with this trace follows from (6.68).

The solution U is o-moderate because both u,.q, and Ur are o-moderate solutions. This fact, with
respect to Ur, see Proposition 5.21.

The uniqueness of the solution in the class of o-moderate solutions follows from Proposition 6.11-(iv).

Finally we prove:

(D) If v € M,(RY) then the couple (1, F) defined by
vi=sup{uyxe: B €&}, 17:=tr(v), F=Rg(v), (6.70)

satisfies (6.60). This is the unique couple in Cy(RY) satisfying v = T(r, F). The solution v is o-moderate
so that 7 € M, (RVY).

We claim that u := v @ Up is a solution with boundary trace tr®(u) = (7, F'). Indeed u > v so that
Ry(u) C Rq(v). On the other hand since 7 is Ty-locally finite in Ry(v) = F*, it follows that S;(u) C F.
Thus R4(v) C Rq(u) and we conclude that Ry(u) = Ry(v) and F' = Sy(u). This also implies that v = tyeg.

Finally

Sq(u) = Sq(v) U by(Sq(Ur)) = by(F) U Fr,

so that F satisfies (6.60).

The fact that, for v € 90, (RY), the couple (7, F) defined by (6.70) is the only one in Cy(RY) satisfying
v = T(r, F) follows immediately from the definition of these spaces.

Statements A-D imply (i)-(iv). O

Remark. If v € 9, (RY) then G and v as defined by (6.62) have the following alternative represen-
tation:

¢=UE=UJQ v=suwluxe: QeF}, (6.71)
& Fu
&, ={Q: E T, open, v(QNK) < oo, Vcompact K C RN}, (6.72)

To verify this remark we first observe that Lemma 2.8 implies that if A is a T,-open set then there
exists an increasing sequence of T,-quasi closed sets {E,} such that A = UP° | E,. In fact, in the notation

of Lemma 2.8 (b)(i)-(ii), we may choose E,, = F,, \ L where L = A"\ A, is a set of capacity zero.
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Therefore

UpclJeclyE=H
D, F g

On the other hand, if £ € £, then ug,(u)(K N E) = pr,(u)(KNE) =v(KNE) < oo, for any compact
K c RY. By Proposition 6.8-(ix), Eis regular, i.e., there exists a T,-open regular set ) such that £/ C? Q).
Thus H = Jp, D.

If D is a T,-open regular set then D = U2 E,,, where {E,} is an increasing sequence of T, -quasi
closed sets. Consequently,

Upyp = MUy,

Therefore
sup{uVXQ :QeD,} < sup{uVXQ Qe F,}< sup{uVXQ :Qe&}.

On the other hand, if E/ € &, then there exists a T-open regular set ) such that £ C? ). Consequently
we have equality.

7 The equation d,u — Au+ Vu =0

Let C > 0and V : RY x (0,00) — [0,00) be a potential such that

V(z,t) € RY x (0, 00).

7.1 Preliminaries

We denote by MM(RY) =the set of Radon measure on RY and 9, (RY) =the set of positive Radon
measure on R,

Definition 7.1 Let yu € M(RY). We say that u is a weak solution of the above problem, if u € L} (Qr),
Vu € LE (Qr) and satisfies

loc

_//T u(gy + Ad)dadt +//T Vupdrdt = /RN o(x,0)dp — /RN é(z, T)u(z,T)dz, Vo € X(Qr),
(7.1)

where

X(QT) = {¢ € Cc(@T)7 ¢t +Ag € L%}c(@oo)}
Lemma 7.2 Let u be a positive weak solution of problem (7.1) with u € M (RN). Also let Q be a smooth

bounded domain. Then there exist a unique positive weak solution v of problem
ov—Av+Vv = 0, in QF =0 x (0,77,
v(z,t) 0 on 9QE =0Q x (0,T)
v(x,0) Xl in Q, (7.2)

where x is the characteristic function on ).

Proof. Let {tj}]o'i1 be a decreasing sequence to the origin, such that ¢; < T'V j € N. We consider the
following problem
Oov—Av+Vv = 0, in Q x (t;,T],
v(z,t) = 0 on 900 x (t;,T]
v(z,t;) u(x,t;) in Qx {t;}.
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Since 0 <u € LY(Q x (¢;,T]) and 0 <V € L®(Q x (t;,T]), there exists a positive weak solution v; of the
above problem. Also by maximum principle we have v; < u, V j € N. By standard parabolic estimates,
we may assume that the sequence v; converges locally uniformly in  x (0,77 to a function v < u. Also

for some ¢ € C 1,1;1(Q—¥) which vanishes on 9,Q% and satisfies ¢(x,T) = 0, v; satisfies

T T
_/tj /ij(qﬁhtAQS)dxdtJr/tj /Qijgbdxdt—F/Q¢($,T—tj)u(x,T—tj)dx:/ng(x’())u(x,tj)dx’

where in the above equality we have take as test function ¢(x,t—t;). By dominated convergence theorem,
v is a weak solution of problem (7.2). O

Lemma 7.3 Let u be a positive weak solution of problem (7.1) with u € MMy (RN). Then for any (z,t) €
RN x (0,T], we have

lim ugp = u
R—o0 ’

where {ur} is the increasing sequence of the weak solutions of the problem (7.2) with Q = Br(0). Moreover,
the convergence is uniform in any compact subset of RY x (0,T).

Proof. By the maximum principle (see remark 2.5-[19]), we have ur < u, YR > 0 and ugr < v, for any
R < R'. Thus ug — w < u. Also by standard parabolic estimates, this convergence is locally uniformly.
Now by dominated convergence theorem, we have that w is a weak solution of problem (7.1) with initial
data pu. Now we set w = u —w > 0. Then w satisfies in the weak sense

W —Aw+Vw = 0, in  RYx(0,1],
w(z,t) > 0, in RY x (0,77,
w(z,0) = 0 in RY,

But then w satisfies in the weak sense

w—Aw < 0, in RN x (0,77,
w(z,t) > 0, in RY x (0,77,
w(z,0) = 0 in RY,
which implies w = 0. O

Lemma 7.4 Let u € C*Y(RYN x (0,T)) be a positive solution of
Ou — Au+ Vu =0, in RY x (0,7).

Assume that, for any x € RN, there exists an open bounded neighborhood U of = such that

/OT /Uu(y’t)v(y,t)dxdt < o0

Then v € LY(U x (0,T)) and there exists a unique positive Radon measure p such that

lim [ u(y,t)¢(z)ds = (x)du, Vo € CFRY).
t—0 RN RN
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Proof. Since Vu € LY (U x (0,T)) the following problem has a weak solution v (see [19]).
ov—Av = Vu, in U x (0,77,
v(z,t) = 0 on OU x (0,7
v(xz,0) = 0 in U.

Thus the function w = u + v satisfies the heat equation. Thus, we have that, there exists a unique Radon
measure p such that

t—0

lim [ w(y,t)p(x)dx :/ o(z)dp, Yo e Co(U).
U U

But the initial data of v is zero, thus result follows by a partition of unity and Lemma 7.3. O

7.2 Representation formula for the positive solutions.

Let C > 0 and V(z,t) : RN x (0,00) — [0,00) be a potential such that
OSVS% Y(z,t) € RY x (0, 00).
Let u be a positive solution of the problem
Ou — Au+Vu =0, in RY x (0,77

We set u(z,t) = e?@Dy(z,t), where ¢» € C>L(RYN x (0,T]). Then by straightforward calculations we have
that
O — Av — 2VpVu — [V 2o — 2800 + (P + A +V)v =0 in  RY x (0,7]. (7.3)

We choose v such that it satisfies the problem

—hy =AY =V, in RN x(0,7]
Yz, T) = 0, in RV,

Then
T 1 _le=yf?
w(t,x):/ / ————— e -0V (z,s)dxds.
t JRN (4m(s—1))2

By straightforward calculations we have
L.y <Chni,

2. V| < C1(T) + Co(In D).

Thus (7.3) becomes

n

O — Av — Z (2¢z,0),. — |Vip|2v = 0,

=1
Now since fol |Int|Pdt < 0o,V p > 1 we have by 1 and 2,
T
/ sup |¢|%ds < My < oo, Vg >1
0 zeRN

and .
/ sup |V|lds < My < 0o, Vg > 1.
0

zCRN
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For A; j = 0i5, A; = 29, B; =0 and C = ]Vz/J\Q we have that the above operator satisfies the condition
H in Aronson’s paper [3] for Ry = oo and p = co. Thus there exists a heat kernel I'(z, ¢;y, s) such that

1 o le=yl? 1 _Apla—ul?
e M < T(x,t:y,5) < Co(T,n, My) ———¢ 209, (7:4)

Ci(T,n,My)——
1 2) (4n(t — )% (4n(t — 5))

MIS

where Ay, As > 0 depend on T, n, Ms. Furthermore we have the representation formula for the positive
solution v

oant) = [ TGty 0)d

and

lim/RN/RN (z,t;y,0)¢(x)du(y dgc—/ o(x)dy, Vo € CRY).

t—0

where p is a unique positive Radon measure on RV,
Also if e~y € L2 (RN) for some vy > 0, then if ug is continuous at &

lim [z, t;y,0)ug(z)dr = up(§). (7.5)
t—0 RN
Finally we have
u(z,t) = ew/ I(x,t;y,0)dp. (7.6)
RN

8 o-moderate solutions.

8.1 preliminaries

Proposition 8.1 Let u € U (Qr). Then

max(unq, [u]sq(u)) S U< Upeg + [u]sq(u). (8.1)

Proof. The proof is same as in [16].

By Proposition 6.8-(vii), the function v = u & u,¢4 vanishes on R4(u) i.e., Tj-supp (v) C Sy(u). Thus v
is a solution dominated by u and supported in S;(u), which implies by Definition 5.27 that v < [u]s, (u)-
Since u — ureq < v this implies the inequality on the right hand side of (8.1). The inequality on the left
hand side is obvious. O

Proposition 8.2 Let u € U (Qr) and let A, B be two disjoint T,-closed subsets of RN. If T,-supp (u) C
AU B and [u]a, [u]p are o-moderate then u is o-moderate. Furthermore

w=[u]a® [ulp = [ula V [u]. (8.2)

Proof. The proof is same as in [16].
By Proposition 6.11-(iii) there exist two increasing sequence {7,}, {7} C W_%’Q(RN ) NG (RY) such
that

ur, T[ula,  ug 1 [ulB.

By proposition 5.26, we have T -supp (73,) C? A and T,-supp (75,) C? B. Thus C’z (Sq—supp(Tn) N Zy-supp(T,

n) =

0, and
Ur, V Uy = Ut, DUy = Up 477 .
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By (5.34) and Definition 5.27,
max([u]a, [u]p) < u < [ula + [u]p. (8.3)
Therefore,

!/

max(tr, , Uy,

) < U= Upy g < U

On the other hand
U — Uy, 41/, < [U]A —Ug, + [U]B - Url 1 0.

Thus
lim wr, 7 = u, (8.4)

so that u is o- moderate.
The assertion (8.2) is equivalent to the statements: (a) w is the largest solution dominated by [u]4 + [u]p
and (b) w is the smallest solution dominating max([u]4, [u]g). Let

u<w:=[ula®[ulp <lula+[up.
Thus we have [u]4 < [w]a. But [w]a <w < [u]a + [u]p & [w]a— < [u]a < [u]p. By Notation 3.3 we have
v=[([wla —[ula)+]y < [ulp, v <[w]a,

that is
Tg-supp (v) C A and Tg-supp (v) C B,

but AN B = (), which implies v = 0 and [w]4 < [u]4. Similarly, we have [w]g < [u]p. Thus
[w]a = [u]a, [wlp < [u]p.

By (8.3) and the fact that for any Borel £ [u]p < [u]z- 4 + [u] we have that

ENnB’
Sq(u) = Sq(w).

Let @ be a T,-open regular set in R, (w), then @ € R,(u). By (5.34), (5.35) and the fact that T,-supp (w) C
AN B, we have

wlg < gy + [0l png = [wlalg + [wlslg = lgns + lulgns-

Since [w]g, [u]g are moderate solutions and A N B = (), we have [u] ona @ [ulgnp < [ulg, which implies
[w]q = [u]q. Thus by Proposition 6.8-(ii) wg, = ur,, and since u is o-moderate by Proposition 6.15 and
the remark below we have

u<w<ug, ®Up,

and by the uniqueness of o- moderate solutions (Proposition 6.11-(iv)), we have w = w. This proves (a).
For the statement (b), we note that

Uy +71], = Ur, \ Urs < [U]A \ [U]Bv

since ur, < [u]a and u,s < [u]p. Thus the result follows by (8.4) and (8.3), if we send n to infinite. O
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8.2 Characterization of positive solutions of 0,u — Au + u? = 0.

The following notation is used throughout the subsection.
Let w € U (Qr). Set

V=ull,
then
1\t
V< <—> t1.
qg—1
Thus v € C*Y(RY x (0,T] and satisfies
ou — Au+Vu =0, in RN x (0,1]. (8.5)

Hence, by representation formula (7.6), u satisfies

uet) = [ Tty Oduly).  VE<T.
]RN

where p is Radon measure (see subsection 7.2).
For any Borel set E set

WE = UXE and (u)E:ew/ [(z,t;y,0)dug, Vi<T.
RN

Lemma 8.3 Let F be a compact subset of RN. Then

(u)r < [u]F, vt <T.

Proof. The proof is similar as in [16].
Let A be a Borel subset of RY. Let 0 < 8 < % and let v‘g be the positive solution of

ov—Av+Vov = 0, in Qr =RY x (8,71, (8.6)
v(z, ) = u(x,B)xalx) in RY x {a}.
Also let wgl be the positive solution of
ow — Aw + |w|ilw = 0, in RY x (8,7
w(z,B) = xa(@u(z,f) mRY x {8},

Then by maximum principle, we have wg < u which implies

dw? dw?
0= —7% — Awf + (w)? < —F — Awf + V.

Thus wgl is a supersolution of (8.6), thus by maximum principle (see [3] or Lemma 7.3), we have
v? < wg < u.

For any sequence {8} decreasing to zero one can extract a subsequence {fj,} such that {wé‘lc } and
{vg‘k } converge locally uniformly; we denote the limits w? and v® respectively (the limits may depend

on the sequence). Then w” € U, (Qr) while v4 is a solution of (8.5), and

v <wd < [u]é, V@ open, A C Q. (8.7)
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The second inequality follows from the fact that T -supp (wg‘) C @ for any .
Now we set vé‘k = ¥, where v is the function in subsection 7.2. Then v, is the solution of

O — Av — 2VpVo — |Vp[2o — 2A¢w + (¥ + A +V)v =0 in RY x (B, T].
v(m,ﬁ) = XA(:U) /RN F(Cﬂ,ﬁkn,y,o)dﬂ(y), in RN X {/Bkn}

Now by representation formula (see [3]), we have for any open @ D A
= [ a0 ([ 0d) ) de
RN RN

= /RN (/RN xa(@)(z,t — ﬁkn;y,O)F(w,ﬁkn;y,O)d:ﬂ> dzdp(y)

IN

/RN (/RN XQ(@)L (st = Br,; 9, 0L (@, B, 3, 0)dx> dadu(y).

Thus by 7.5, estimates (7.4) and by the fact that I'(x,t — s;y,0) is a continuous function for any s < ¢
(see [3]), we can take the limit in the above equality

lim’ﬁng/ F(ﬂ:,t;y,O)du@.
RN

Hence
v < (u) o
We apply the same procedure to the set A° extracting a further subsequence of {f,} in order to
obtain the limits v4° and wA°. thus

A" < < [u

< o VQ' open, A° C Q'.

Note that

Therefore

v =u — v > (u) (8.8)

@)
Now, given F' compact, let A be a closed set and O an open set such that £/ C O C A. Note that
A°NF = (. By 8.8 with Q' = A°

v > (u)o.
By (8.7)
v <w? < [U]Q’ Y@ open, A C Q.
and consequently
(u)r < (wo < [ulg. (8.9)

By Lemma 2.8, we can choose a sequence of open sets {Q,, } such that ﬂ@j = E’ ~4 F, thus by Proposition
5.24-(iii) [u]q, | [u]r. The result follows by (8.9). O

Lemma 8.4 If E is a Borel set and C2 ,(E) =0 then u(E) = 0.
q7
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Proof. The proof is same as in [16].
If ' is a compact subset of E. C2 (F) = 0 and therefore by Proposition 5.17, Up = 0. But [u]p =

u A Up = 0. Therefore, by Lemma %.3 (u)p = 0. Consequently p(F') = 0. As this holds for every compact
subset of £ we conclude that pu(E) = 0. O

We recall here that, If v € ng’q(RN) N 9E (RN), then V T' > 0, there exists a constant C' > 0
independent on v(see Lemma 2.11-[22])

ol ) < [P lza@n < ClIvIL,,-2 (8.10)

VHW—%,II(RN qﬂI(RN)’

where H[v] is the solution of the heat equation in Qo with v as initial data.

Lemma 8.5 Let v € ng’q(RN) N MG (RY). Suppose that there exists no positive solution of (3.1)
dominated by the supersolution v = inf(u, H[v]). Then p L v.

proof I use your idea and Marcus’ idea.
Set V/ = v9~! then v is a supersolution of

ow—Aw+V'w=0 in R x(0,7). (8.11)

Assertion 1. There exists no positive solution of the above problem, dominated by v. Suppose that there
exist a positive solution w < v of (8.11). Then w is a subsolution of (3.1):

Ow — Aw + w? < Ow — Aw + V'w = 0.

Thus by Proposition 3.1 there exists a positive solution of (3.1) dominated by v, contrary to assumption.
Now for any ¢t < T, we have by representation formula (7.6),

inf(u,Hp]) = inf(e” / b5y, 0)d(y), HIv)) > inf( / D(. 1, 0)du(y) H[V))

N

t

> Cimf(H) (o), H(2)) > Cinf () (o) B o )

Where in the above inequalities we have used (7.4) and the constants C' > 0, As > 0 therein.

m, x), H[y](m, x)) is a supersolution of dyw — mAw = 0, we have

that there exists a Radon measure v such that
t t
li inf(H{p](———— Hy|(——— dr = dv ©(RM).
i [ 0 nd () e ) B gy e = [ @), Vo e OF(RY)

t—0 JrN

Now since inf (H[,u](

Thus in view of Lemmas 7.3 and 7.4, there exists a weak positive solution v < v of the problem
ow —Aw+V'w = 0, in  RY x(0,7].
w(z,0) = 7, in RN x {0}.
Thus by Assertion 1 we have that v = 0.

Set h(t,z,y) the heat kernel. By Lebesgue-Radon-Nikodym Theorem we can write dv = ¢du + do,
where 0 < ¢ € L} (RY, 1) and o L p. Thus we have

t t

0 = lim . (95)inf(H[M](ma$)7H[V](m7x))d$
> i [ 0@ ) min(f D) du(y)de = lim | 6(0) min(7,1)()duy) =0
Hence f =0 and v L pu. (]
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2
Lemma 8.6 Suppose that for every positive measure v € W~ ¢?(RV) N mti (RN), there exists no positive
solution of (3.1) dominated by v = inf(u, H[v]). Then u = 0.

Proof. The proof is same as in [16].
By Lemma 8.5,

2
plv,  YveWw 2YRN)nmE (RY).
Suppose that p # 0. By Lemma 8.4, p vanishes on sets of C'2 g Zero. Thus, there exists an increasing
q7
2
sequence {v} C W~ (RV)N9E (RY) which converge to p. For every k there exists a Borel set 4, ¢ RY

such that
n(Ax) =0, vp(Af) =0.

Therefore, if A = UAj then
w(A) =0, vp(A°) =0, Vk.
Since v < p we have vi(A) = 0 and therefore v, = 0. Contradiction. U

Lemma 8.7 [u]s, () is o-moderate.

Proof. To simplify notation, we put u = [u]s, (), and denote I := Ty-supp (u). (Incidentally, F' C Sy(u).

Since if Sg(u) is thin at & then Sg(u)® U {{} is Tg-open and Sy (u)® U {€} ~ Sy(u)¢. Thus by definition of

F, we see that F' consists precisely of the Cz ,-thick points of Sy(u). The set Sq(u) \ F' is contained in
q7

the singular set of ug,.)
2
For v € W~ o /(RY) N9t (RY) we denote by u, the solution of (3.1) with initial trace v. Put

u* :==sup{u,: v € ng’q(RN) NI (RY), u, < u}. (8.12)

By Lemma 8.6 the family over which the supremum is taken is not empty. Therefore u* is a positive
solution of (3.1) and by Proposition 6.11, it is o-moderate. By its definition, u* < u.
Let F* = T-supp (u*). Then F* is Tj-closed and F* C F. Suppose that

C§7q/(F\F*) > O

Then there exists a compact set E' C F'\ F* such that C: (E) > 0 and (F*)° =: Q" is a Tg-open set
q7
containing E. Furthermore by Lemma 2.7 there exists a T-open set @’ such that E C? Q C Q' C? Q*.
Since Q' C9 Ty-supp (u), [u]gr > 0 and therefore by Lemma 8.6, there exists a positive measure 7 €
2 —
W™ {(RN) NG (RY) supported in @’ such that u, < u. As th2e Tg-supp (1) is T4-closed set disjoint from
F* it follows that u* # u,. On the other hand, since 7 € W~ a/(RV) N SJT?F(RN) and u, < u, it follows
that u, < u*. This contradiction shows that

C: (F\F*)=0. (8.13)

Further v* is o-moderate and therefore there exists a T -closed set Fj C F* such that S;(u*) = F
and Ry (u) = (F{)°. Suppose that

Let @ be a T4-open subset of Ry(u*) such that [u]¢g is a moderate solution, then Q' 1 Ry(u*) and [u*]
is a moderate solution of 3.1, i.e.,

Q

T . v
/0 /]RN [u ],Qv/¢(x)dacdt < 00, Vo € Co(RY).
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On the other hand @’ is a T -open subset of F = T -supp (u); therefore [u*] ol is a purely singular solution
of (3.1),ie.,

T
/0 /]RN [u]gj’(b(x)dxdt = 00, Vo € Co(RY), Sq([ulz) = Tg-supp ([ul g

It follows that v := [[u] - [u*]~] is a purely singular solution of (3.1).

Q Q]

Let v* be defined as in (8.12) with u replaced by v. Then v* is a singular o-moderate solution of (3.1).
Since v* < u anc/iv it is o-moderate it follows that v* < w*. On the other hand, since v* is singular and
T,-supp (v*) C1 Q' C? Ry(u*) it follows that u* % v*, i.e. (v* —u*)1 is not identically zero. Since both

2
u* and v* are o-moderate, it follows that there exists 7 € W~ «'/(RY) N 9t (RY) such that u, < v* but
(ur —u*) is not identically zero. Therefore u* < max(u*,u,). The function max(u*,u;) is a subsolution of
(3.1) and the smallest solution above it, which denote by Z is strictly larger than w*. However u, < v* < u*
and consequently Z = u*.
This contradiction proves that Cz q,(Q’ ) = 0, for any set Q' C R,(u*) such that [u]g is moderate

q
solution, that is C% ¢ (Rq(u*)) = 0 which implies
Cz o (F\ F§)=0. (8.14)

In conclusion, u* is o-moderate, To-supp (u*) C F' and Fjf = S;(u*) ~4 F. Therefore, by Proposition 6.15
and the remark below, u* = Up. Since by definition u* < u < Up, it follows u* = w. U

Theorem 8.8 FEvery positive solution of (3.1) is o-moderate.

Proof. The proof is similar to the one in [16].
By Proposition 6.8 R4(u) has regular decomposition {@Q,} (see Proposition 6.8-(i)). Also we have that

vn = [u]g, T ur,.
Thus the solution ug, is o-moderate and
u S ur, < [uls,(u)-

Put
Up, = Uy D [u]sq(u).

By Lemma 8.7 we have that [u] S,(u) 18 o-moderate solution, thus by Proposition 8.2, as @n NS, (u) =0,
it follows that wu, is o-moderate. As {u,} is increasing it follows that w = lim u,, is a moderate solution
of (3.1). In addition

vy V [u]Sq(u) = Uy = vy @ [u]s, (u) = max(ug,, [U]sq(u)) <u<ug, + [U]sq(u)-
This further implies that S,(u) = S;(@). By construction we have
Letting n — oo we have by Proposition 6.8
uR, < UR, = UR, = UR,,

thus tr(u) = tr(u) and since @ < u, we have by Proposition 6.15 and the uniqueness of o-moderate
solutions that u = . g
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