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Université François-Rabelais, Tours, France

Abstract

Let q ≥ 1 + 2

N
. We prove that any positive solution of (E) ∂tu − ∆u + uq = 0 in RN × (0,∞)

admits an initial trace which is a nonnegative Borel measure, outer regular with respect to the fine
topology associated to the Bessel capacity C 2

q
,q′ in RN (q′ = q/q − 1)) and absolutely continuous with

respect to this capacity. If ν is a nonnegative Borel measure in RN with the above properties we
construct a positive solution u of (E) with initial trace ν and we prove that this solution is the unique
σ-moderate solution of (E) with such an initial trace. Finally we prove that every positive solution of
(E) is σ-moderate.
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1 Introduction

Let q > 1, QT = RN × (0, T ) with T > 0 and Q = RN × (0,∞). It is proved by Marcus and Véron [19]
that for any positive function u ∈ C2,1(QT ) solution of

∂tu−∆u+ uq = 0 (1.1)

there exists a unique couple (S, µ) where S is a closed subset of RN and µ a positive Radon measure on
R := RN \ S such that

lim
t→0

∫

O
u(x, t)dx = ∞ (1.2)

for all open set O of RN such that S ∩O 6= ∅, and

lim
t→0

∫

RN

u(x, t)ζ(x)dx =

∫

RN

ζ(x)dµ(x) ∀ζ ∈ C∞
0 (R). (1.3)

To this couple (S, µ) we associate a unique outer Borel measure ν called the initial trace of u and denoted
by tr(u). The set S is the singular set of ν and the measure µ is the regular set of ν. Conversely, to any
outer Borel measure ν we can associate its singular part S(ν) which is a closed subset of RN and its regular
part µν which is a positive Radon measure on R(ν). We denote ν ≈ (S, µ). When 1 < q < qc :=

N+2
N

Marcus and Véron [19] proved that there the trace operator tr defines a one to one correspondence between
the set U+(QT ) of positive solutions of (1.1) in QT and the set Breg(RN ) of positive outer Borel measures
in RN . This no longer the case if q ≥ qc since not any closed subset of RN (resp. any positive Radon
measure) is eligible for being the singular set (resp. the regular part) of the the initial trace of some
positive solution of (1.1). It is proved in [4] that the initial value problem

∂tu−∆u+ |u|q−1u = 0 in Q
u(., 0) = µ in RN

(1.4)

where µ is a positive bounded Radon measure admits a solution if and only if µ satisfies

C 2
q
,q′(E) = 0 =⇒ µ(E) = 0 ∀E ⊂ RN , E Borel, (1.5)

where C 2
q
,q′ stands for the Bessel capacity in RN (q′ = q/(q− 1)). It is shown in [19] that this result holds

even if µ is unbounded; this solution is unique and denoted uµ. If G is a Borel subset of RN we denote
by Mq(G) the set of Borel measures µ in G with the property that

C 2
q
,q′(E) = 0 =⇒ µ(E) = 0 ∀E ⊂ G,E Borel, (1.6)

In the same article it is proved that a a necessary and sufficient condition in order ν ≈ (S, µ) to be the
initial trace of a positive solution of (1.1) is

µ ∈ Mq(R) (1.7)

and
S = ∂µS ∪ S∗ (1.8)

where
∂µS = {z ∈ S : µ(Br(z) ∩ S) = ∞ , ∀r > 0} (1.9)

and
S∗ = {z ∈ S : C 2

q
,q′((Br(z) ∩ S) > 0 , ∀r > 0}. (1.10)
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A striking result due to Le Gall [15] shows that if q = 2 and N ≥ 2, a positive solution of (1.1) is not
uniquely determinef by its initial trace ν ≈ (S, µ) if S 6= ∅. The results is actually extended to any q ≥ qc
in [19].

A similar approach has been carried out if one consider the boundary trace problem for the positive
solutions of the elliptic equation

−∆u+ |u|q−1u = 0 in Ω (1.11)

where Ω is a bounded C2 domain in RN (N ≥ 2) and q > 1. The boundary trace is defined in a
way somewhat similar to the initial trace by considering the limit in the weak sense of measures, of the
restriction of u to the set Σǫ := {x ∈ Ω : dist (x,Ωc = ǫ)}, when ǫ → 0. The boundary trace tr∂Ω(u)
is a uniquely determined outer regular Borel measure on ∂Ω, with singular part S, a closed subset of
∂Ω and regular part µ, a positive Radon measure on R = ∂Ω \ S. This equation possesses a critical
exponent qe = (N +1)/(N −1). The main contributions which lead to a complete picture of the boundary
trace problem over a period of twenty years are due to Gmira and Véron [11], Le Gall [13], [14], Dynkin
and Kuznetsov [5],[6], [7] [8], [9],[12], Marcus and Véron [17],[18],[20],[21],[23], [22], [16], and Mselati [24].
These contributions can be summarized as follows:

(i) If 1 < q < qe the boundary trace operator establishes a one to one correspondence between the set
U+(Ω) of positive solutions of (1.11) and the set of positive outer regular Borel measures on ∂Ω.

(ii) If q ≥ qe the boundary value problem

−∆u+ |u|q−1u = 0 in Ω
u = µ in ∂Ω

(1.12)

where µ is a positive Radon measure on ∂Ω admits a solution (always unique) if and only if

C 2
q
,q′(E) = 0 =⇒ µ(E) = 0 ∀E ⊂ ∂Ω, E Borel, (1.13)

where C 2
q
,q′ is the Bessel capacity in RN−1.

(iii) If q ≥ qe, a outer regular Borel measure ν ≈ (S, µ) on ∂Ω is the boundary trace of a positive solution
of (1.11) if and only if

C 2
q
,q′(E) = 0 =⇒ µ(E) = 0 ∀E ⊂ S, E Borel,

and (1.8) holds with (1.9) and (1.10) where the capacity is relative to dimension N -1.

(iv) If q ≥ qe a solution is not uniquely determined by its boundary trace whenever S 6= ∅.
However in [23] Marcus and Véron have defined a notion of precise trace for the case q ≥ qe with the

following properties,

(v) If we denote by Tq the fine topology of ∂Ω associated with the C 2
q
,q′-capacity, there exists a Tq-closed

subset Sq of ∂Ω such that for every z ∈ Sq

lim
ǫ→0

∫

Ξ
u(ǫ, σ)dS = ∞ (1.14)

for every Tq-open neighborhood Ξ of z where (r, σ) ∈ [0, ǫ0] × ∂Ω are the flow coordinates near ∂Ω, and
for every z ∈ Rq := ∂Ω \ Sq, there exists a Tq-open neighborhood Ξ of z such that

lim
ǫ→0

∫

Ξ
u(ǫ, σ)dS <∞. (1.15)
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(vi) There exists a nonnegative Borel measure µ on Rq, outer regular for the Tq-topology, such that

lim
ǫ→0

uΞǫ = uχ
Ξ
µ locally uniformly in Ω, (1.16)

where uΞǫ is the solution of

−∆v + |v|q−1v = 0 in Ωǫ := {x ∈ Ω : dist (x, ∂Ω) > ǫ}
v = u(ǫ, .)χ

Ξ
in Σǫ = ∂Ωǫ.

(1.17)

The couple (Sq, µ) is uniquely determined and it is called the precise boundary trace of u. It can also be
represented by a Borel measure with the Tq-outer regularity. It is denoted by trq∂Ω(u).

Concerning uniqueness Dynkin and Kuznetsov introduced in [9] the notion of σ-moderate solutions,
which are elements u of U+(Ω) such that there exists an increasing sequence {µn} of nonnegative Radon
measures on ∂Ω such that uµn → u when n → ∞. In [23] Marcus and Véron proved that a σ-moderate
positive solution of (1.11) is uniquely determined by its precise boundary trace. This precise trace is
essentially the same, up to a set of zero C 2

c
,q′-capacity, as the fine trace that Dynkin and Kuznetsov

introduced in [9] using probabilistic the Brownian motion; however their construction is only valid when
q ≤ 2. Finally, in [16], Marcus proved that any positive solution is σ-moderate. Notice that this result
was already obtained by Mselati [24] in the case q = 2 and then by Dynkin [6] for qe ≤ q ≤ 2 by using a
combination of analytic and probabilistic techniques.

In this article we define a notion of precise initial trace for positive solutions of (1.1) associated to
Tq-topology, which denotes the C 2

q
,q′ fine topology of RN . We denote by H[.] is the heat operator in Q

defined by

H[ξ](x, t) =
1

(4πt)
N
2

∫

RN

e−
|x−y|2

4t ξ(y)dy, (1.18)

for all ξ ∈ L1(RN ). We define the singular set of u ∈ U+(QT ) as the set of z ∈ RN such that for any
Tq-open neighborhood O ⊂ RN of z, there holds

∫ ∫

QT

H[χ
O
]uqdxdt = ∞ (1.19)

The singular set, denoted by Sq = Sq(u), is Tq-closed. The regular set is Rq := RN \ Sq; it is Tq-open. If
z ∈ Sq and O ⊂ RN is a Tq-open neighborhood of z such that

∫ ∫

QT

H[χ
O
]uqdxdt <∞, (1.20)

then for any η ∈ L∞ ∩W
2
q
,q′
(RN ) with Tq-support contained in O there exists

limt→0

∫

RN

u(x, t)(η(x))2q
′
dx := ℓO(η). (1.21)

There exists a positive Borel measure µ on Rq, outer regular for the Tq-topology, such that for Tq-open
subset Ξ ⊂ Rq there holds

limǫ→0 uǫ,χΞ
(., t) = uχ

Ξ
µ (1.22)

where uǫ,χΞ
is the solution of

∂tv −∆v + |v|q−1 v = 0 in Qǫ := RN × (ǫ,∞)

v(., ǫ) = χΞ in RN .
(1.23)
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The set (Sq, µ) is called the precise initial trace of u and denoted by trp(u). To this set we can associate
a Borel measure ν on RN . It is absolutely continuous with respect to the C 2

q
,q′-capacity in the following

sense
∀Q ⊂ RN ,Tq - open ,∀A ⊂ RN , A Borel , C 2

q
,q′(A) = 0 =⇒ µ(Q \ A) = µ(Q). (1.24)

It is also outer regular with respect to the Tq-topology in the sense that for every Borel set E ⊂ RN

µ(E) = inf{µ(Q) : Q ⊃ E, Q Tq - open } = sup{µ(K) : K ⊂ E, K compact }. (1.25)

A measure with the above properties is called Tq-perfect. Similarly to Dynkin, we say that a positive
solution u of (1.1) is σ-moderate if the exists an increasing sequence {µn} of nonnegative Radon measures
in RN such that uµn → u when n→ ∞. It is proved in [22] that if F ⊂ RN is a closed subset, the maximal
solution UF with initial trace (F, 0) coincides with the maximal σ-moderate solution VF with the same
trace and which is defined by

VF = sup{uµ : µ ∈ Mq(RN ), µ(F c) = 0} (1.26)

and is indeed σ-moderate. Following Dynkin we define an addition among the elements of U+(QT ) by

∀(u, v) ∈ U+(QT )× U+(QT ), u⊕ v is the largest element of U+(QT ) dominated by u+ v. (1.27)

The main results of this article are the following

Theorem A. If ν is a Tq-perfect measure with singular part Sq and regular part µ on Rq then uµ ⊕ USq

is the only σ-moderate element of U+(Q) with precise trace ν.

In order to extend Marcus’s result we need a parabolic counterpart of Ancona characterization of
positive solutions of Schrödinger equation with singular potential [1]. We prove a representation theorem
for any positive solution of

∂tu−∆u+ V (x, t)u = 0 in Q, (1.28)

where V is a Borel function which satisfies

0 ≤ V (x, t) ≤ c

t
for almost all (x, t) ∈ Q. (1.29)

Let T be fixed and let ψ be defined by

ψ(x, t) =

∫ T

t

∫

RN

1

(4π(s − t))
N
2

e
−

|x−y|2

4(s−t) V (y, s)dyds in QT .

Theorem B.There exists a kernel Γ defined in QT ×QT satisfying

c1
e
−a1

|x−y|2

s−t

(t−s)
N
2

≤ Γ(x, t, y, s) ≤ c2
e
−a2

|x−y|2

s−t

(t−s)
N
2

∀(x, t), (y, s) ∈ QT ×QT with s ≤ t. (1.30)

where the aj and cj are positive contants depending on T and V , such that for any positive solution u of
(1.28), there exists a positive Radon measure µ in RN such that

u(x, t) = eψ(x,t)
∫

RN

Γ(x, t, y, 0)dµ(y) for almost all (x, t) ∈ QT . (1.31)

The next result, combined with Theorem A, shows that in the case q ≥ qc the precise trace operator
realizes a one to one correpondence between the set of positive solutions of (1.1) and the set of Tq-perfect
Borel measures in RN .

Theorem C Any positive solution of (1.1) is σ-moderate.

Several proofs in this work are transposition to the parabolic framework of the constructions performed
in [23] and [16]. However, for the sake of completeness and due to the technicalities involved, we kept
many of them.
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2 The Tq-fine topology

We assume that q ≥ 1+ 2
N
. We say that a domain E ⊂ IRN is Tq-open (resp Tq-closed) if it is open (resp.

closed) in the Tq-topology.

Notation 2.1 Let A, B ⊂ IRN .
a) A is Tq-essentially contained in B, denoted A ⊂q B, if

C 2
q
, q′(A \B) = 0.

b) The sets A, B are Tq-equivalent, denoted A ∼q B, if

C 2
q
, q′(A∆B) = 0.

c)The Tq-closure of a set A is denoted by Ã. The Tq-interior of A is denoted by A⋄.
d) Given ε > 0, Aε denotes the ε−neighbourhood of A.
e) The set of Tq-thick points of A is denoted by bq(A). The set of Tq-thin points of A is denoted by eq(A).

A is Tq -open ⇔ A ⊂ eq(A
c), B is Tq closed ⇔ bq(B) ⊂ B.

Consequently,
Ã = A ∪ bq(A), A⋄ = A ∩ eq(Ac).

The capacity C 2
q
, q′ possesses the Kellogg property (see [2, Cor. 6.3.17]), namely,

C 2
q
, q′(A \ bq(A)) = 0. (2.32)

Therefore
A ⊂q bq(A) ∼q Ã,

but, in general, bq(A) does not contain A.

Proposition 2.2 (i) If Q is a Tq-open, then eq(Q
c) is the largest Tq-open set that is Tq-equivalent to Q.

(ii) If F is a Tq-closed then bq(F ) is the smallest Tq-closed set that is Tq-equivalent to F.

The proof is [23, Prop. 2.1]. We collect below several facts concerning the Tq-topology that are used
throughout the paper.

Proposition 2.3 Let q ≥ 1 + 2
N
.

i) Every Tq-closed set is Tq-quasi closed ([2, Prop 6.4.13]).

ii)If E is Tq-quasi closed then E ∼q Ẽ ([2, Prop 6.4.12]).

iii)A set E is Tq-quasi closed if and only if there exists a sequence {Em} of closed subsets of E such that
C 2

q
, q′(E \Em) → 0 ([2, Prop. 6.4.9]).

iv) There exists a positive constant c such that, for every set E,

C 2
q
, q′(Ẽ) ≤ cC 2

q
, q′(E),

([2, Prop 6.4.11]).

v) If E is Tq-quasi closed and F ∼q E then F is Tq-quasi closed.

vi) If {Ei} is an increasing sequence of arbitrary Borel sets then

C 2
q
, q′(
⋃
Ei) = lim

i→∞
C 2

q
, q′(Ei).
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vii) If {Ki} is a decreasing sequence of compact sets then

C 2
q
, q′(
⋂
Ki) = lim

i→∞
C 2

q
, q′(Ki).

viii) Every Suslin set and, in particular, every Borel set E satisfies

C 2
q
, q′(E) = inf{C 2

q
, q′(G) : E ⊂ G, G open}

= sup{C 2
q
, q′(K) : K ⊂ E, K compact}.

For the last three statements see [2, Sec. 2.3]. Statement (v) is an easy consequence of [2, Prop. 6.4.9].
However note that this assertion is no longer valid if ”Tq-quasi closed” is replaced by ”Tq-closed.” Only
the following weaker statements holds:

If E is Tq -closed and A is a set such that C 2
q
, q′(A) = 0 then E ∪A is Tq -closed.

The next corollary is an easy consequence of (iii).

Corollary 2.4 A set E is Tq-quasi closed if and only if there exists a sequence {Em} of Tq-quasi closed
subsets of E such that C 2

q
, q′(E \Em) → 0.

Definition 2.5 Let E be a Tq-quasi closed set. An increasing sequence {Em} of closed subsets of E such
that C 2

q
, q′(E \ Em) → 0 is called a Tq-stratification of E.

(i) We say that Em is a proper Tq-stratification of E if

C 2
q
, q′(Em+1 \ Em) ≤

1

2m+1
.

(ii) If V is a Tq-open set such that C 2
q
, q′(E \ V ) = 0 we say that V is a Tq-quasi neighborhood of E.

The following result is valid in any locally compact metric space.

Lemma 2.6 Let K be a closed subset of an open set A. Then there exists an open set G such that

K ⊂ G ⊂ G ⊂ A.

Proof. Let x ∈ K. We set Bn = Bn(x); n ∈ N and Kn = Bn ∩ K. Since Kn is compact, we can easily
show that there exists a decreasing sequence {εn} to the origin such that Kεn

n ⊂ Kεn
n ⊂ A. Now we have

∞⋃

n=1

K
εn
2
n ⊂

∞⋃

n=1

K
εn
2
n ⊂

∞⋃

n=1

Kεn
n ⊂ A.

If we prove that the set
∞⋃

n=1

K
εn
2
n

is closed then the proof follows with G =
⋃∞
n=1K

εn
2
n . We will prove it by contradiction. We assume

that there exists a sequence xn ∈ ⋃∞
n=1K

εn
2
n such that xn → x and x /∈ ⋃∞

n=1K
εn
2
n . We have x1 = xn1

such that dist(xn1 ,K) = inf{|xn1 − y| : y ∈ K} ≤ ε1
2 . Also we assert that there exists xn2 such that

dist(xn2 ,K) ≤ ε2
2 . Indeed, If this is not valid then ∀n ∈ N we have ε2

2 < dist(xn,K) ≤ ε1
2 , which implies

x ∈ K1. Thus we have clearly a contradiction. Inductively, we can construct a subsequence {xnk
} such

that dist(xnk
,K) ≤ εk

2 , ∀k ∈ N. If we send k to infinite, we reach to a contradiction, since we would have
dist(x,K) = 0 and using the fact that K is closed, we would obtain that x ∈ K. �
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Lemma 2.7 Let E be a Tq-closed set. Then:
(i) Let D be an open set such that C 2

q
, q′(E \G) = 0. Then there exists an open set O such that

E ⊂q O ⊂ Õ ⊂q D. (2.33)

(ii) Let D be a Tq-open set such that E ⊂q D. Then there exists a Tq-open set such that (2.33) holds.

Proof. (i) Since E∩D ∼q E we have that E∩D is Tq-quasi closed, (see the discussion of the quasi topology
in [2, sec. 6.4]). Thus there exists a proper Tq-stratification of E ∩D, say {Em} and E ∼q E′ =

⋃∞
i=1Ei.

If E′ is closed the result follows by Lemma 2.6. We assume that E′ is not closed. Thus, we can assume
without loss of generality that

Em+1 \Em 6= ∅ ∀m ∈ N.

We set E′
m = G, where G is the open set of Lemma 2.6 with K = Em and A = D. Now since C 2

q
, q′(Em \

Em−1) <
1

2m+1 , there exists an open set Dm ⊃ Em \ Em−1 ;m ≥ 2, such that C 2
q
, q′(Dm) <

1
2m . Also we

set D1 = E′
1. Also we have by Lemma (2.6),

Dm ∩ Em ⊂ ˜Dm ∩ Em ⊂ Ẽm ⊂ D ∀m ∈ N.

Also, since E′ = E1 ∪
⋃∞
m=2(Em \Em−1) we have that

E′ ⊂
∞⋃

m=1

Dm ∩ E′
m ⊂

∞⋃

m=1

˜Dm ∩ E′
m ⊂ D.

Thus, it is enough to prove that the set
⋃∞
m=1

˜Dm ∩ E′
m is Tq-quasi closed. Indeed, for each n > 1, we

have

C 2
q
, q′

(
∞⋃

m=1

˜Dm ∩ E′
m \

n⋃

m=1

˜Dm ∩ E′
m

)
≤ C 2

q
, q′

(
∞⋃

m=n+1

˜Dm ∩E′
m

)
≤

∞∑

m=n+1

C 2
q
, q′(D̃m)

≤ c

∞∑

m=n+1

C 2
q
, q′(Dm) ≤ c

∞∑

m=n+1

2−m.

And the result follows by Corollary 2.4, since
⋃n
m=1

˜Dm ∩ E′
m is Tq-quasi closed.

The proof of (ii) is same as in [23, Lemma 2.4 (ii)]. �

Lemma 2.8 (a) Let E be a Tq-closed set and {Em} a proper Tq-stratification for E. Then there exists a
decreasing sequence of open sets {Qj} such that ∪Em := E′ ⊂ Qj for every j ∈ N and

(i) ∩jQj = E′, Q̃j+1 ⊂q Qj ,
(ii) limj→∞C 2

q
, q′(Qj) = C 2

q
, q′(E).

(b) If A is a Tq-open set, there exists a decreasing sequence of open sets {Am} such that

A ⊂ ∩mAm =: A′, C 2
q
, q′(Am \ A′) → 0 as m→ ∞, A ∼q A′.

Furthermore there exists an increasing sequence of closed sets {Fj} such that Fj ⊂ A′ and
(i) ∪Fj = A′, Fj ⊂q F ⋄

j+1

(ii) C 2
q
, q′(Fj) → C 2

q
, q′(A

′) as j → ∞.
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Proof. Let {Dj} be a decreasing sequence of open sets such that Dj ⊃ E, ∀j ∈ N and

lim
j→∞

C 2
q
, q′(Dj) = C 2

q
, q′(E

′) = C 2
q
, q′(E).

Case 1: E is closed (thus Em = E for any m ∈ N).
By Lemma 2.6 there exists a decreasing sequence {ε1,n} to the origin with ε1,1 < 1, such that

E ⊂ Q1 =

∞⋃

n=1

K
ε1,n
2

n ⊂ Q1 ⊂ D1,

where Kn = Bn(x) ∩ E x ∈ E. Also we have proven in Lemma 2.6 that the set
⋃∞
n=1K

ε1,n
2

n is closed.
Again by Lemma 2.6 there exists a decreasing sequence {ε2,n} to the origin with ε2,n ≤ ε1,n, ∀n and

E ⊂ Q2 =

∞⋃

n=1

K
ε2,n
4

n ⊂ Q2 ⊂ D2.

We note here that

Q2 ⊂
∞⋃

n=1

K
ε2,n
4

n ⊂
∞⋃

n=1

K
ε1,n
2

n ,

and since K
ε2,n
4

n is closed we have
Q2 ⊂ Q2 ⊂ Q1.

Inductively, there exists a decreasing sequence {εj,n} to the origin with respect to n such that we have
∀n ∈ N : εj,n ≤ εk,n, ∀j ≥ k.

E ⊂ Qj =

∞⋃

n=1

K

εj,n

2j+1
n ⊂ Qj ⊂ Dj ,

and
Qj ⊂ Qj ⊂ Qj−1.

Now note that
E ⊂ Qj ⊂ E

1

2j ,

thus E = ∩Qj. Finally,

C 2
q
, q′(E) ≤ limC 2

q
, q′(Qj) ≤ limC 2

q
, q′(Dj) = C 2

q
, q′(E),

and the result follows in this case.
Case 2: E is not closed.
There exists a proper Tq-stratification of E, say {Em} and E ∼q E′ =

⋃∞
i=1Ei. Also by the Case 1, we

can assume without loss of generality that

Em+1 \Em 6= ∅ ∀m ∈ N.

Set Qmj the sets in previous case replacing E by Em. Now since C 2
q
, q′(

˜Em \Em−1) ≤ cC 2
q
, q′(Em \E1), we

can choose an open set D1
m such that C 2

q
, q′(D

1
m) ≤ c

2m . Then in view of Lemma (2.7) the set

Q1 =
∞⋃

m=1

D1
m ∩Qm1 ,
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is an open set such that
E′ ⊂ Q1 ⊂ Q̃1 ⊂ D1.

Also the set
∞⋃

m=1

˜D1
m ∩Qm1

is Tq-quasi closed.
By Lemma 2.7 there exists an open set D2

m such that

D2
m ⊂ D̃2

m ⊂ D1
m.

By induction, there exists a sequence of open sets {Dj
m} such that

Dj
m ⊂ D̃j

m ⊂ Dj−1
m C 2

q
, q′(D

j
m) ≤

c

2m
.

Thus in view of Lemma 2.7 the set

Qj =

∞⋃

m=1

Dj
m ∩Qmj

is open and the set
∞⋃

m=1

˜
Dj
m ∩Qmj

is Tq-quasi closed.
For any m we have

Dj
m ∩Qmj ⊂ ˜

Dj
m ∩Qmj ⊂ D̃j

m ∩ Q̃mj ⊂ Dj−1
m ∩Qmj−1.

Thus

Qj ⊂ Q̃j ⊂
∞⋃

m=1

˜
Dj
m ∩Qmj ⊂

∞⋃

m=1

Dj−1
m ∩Qmj−1 ⊂ Dj .

Now since the set
⋃∞
m=1

˜
Dj
m ∩Qmj is Tq- quasi closed we have

Qj ⊂ Q̃j ⊂ Qj−1.

Finally we have

E′ ⊂ Qj ⊂ E′
1

2j ,

thus E′ = ∩Qj. And the result follows in this case since

C 2
q
, q′(E) ≤ limC 2

q
, q′(Qj) ≤ limC 2

q
, q′(Dj) = C 2

q
, q′(E).

(b) The proof is same as in [23, Lemma 2.6 (b)] and we omit it. �

The next results are respectively proved in [23, Lemma 2.5] and [23, Lemma 2.7].

Proposition 2.9 Let E be a bounded Tq-open set and let D be a cover of E consisting of Tq-open sets.
Then, for every ε > 0 there exists an open set Oε such that C 2

q
, q′(Oε) < ε and E \ Oε is covered by a

finite subfamily of D.

Proposition 2.10 Let Q be a Tq-open set. Then, for every ξ ∈ Q, there exists a Tq-open set Oξ such
that

ξ ∈ Qξ ⊂ Q̃ξ ⊂ Q

11



3 Lattice structure of U+(Q)

Consider the equation

∂tu−∆u+ |u|q−1u = 0, in Q∞ = RN × (0, T ], where q ≥ 1 +
2

N
. (3.1)

A function u ∈ Lqloc(QT ) is a subsolution (resp. supersolution) of the equation if ∂tu−∆u+ |u|q−1u ≤ 0
(resp. ≥ 0) holds in the sense of distributions.

If u ∈ Lqloc(QT ) is a subsolution of the equation then by Kato’s inequality (∂t−∆)|u|+ |u|q ≤ 0 in the
sense of distributions. Thus |u| is a subsolution of the heat equation and consequently u ∈ L∞

loc(QT ). If
u ∈ Lqloc(QT ) is a solution then u ∈ C2,1(QT ).

Proposition 3.1 Let u be a non-negative function in L∞
loc(QT ).

(i) If u is a subsolution of (3.1), there exists a minimal solution v dominating u,
i.e. u ≤ v ≤ U for any solution U ≥ u.
(ii) If u is a supersolution of (3.1), there exists a maximal solution w dominated by u,
i.e. V ≤ w ≤ u for any solution V ≤ u.
All the above inequalities hold almost everywhere .

Proof. (i) Jε be a mollifier in RN+1. If u is extended by zero outside of QT , then the function uε = Jε ∗ u
belong to C∞(RN+1) and limε→0 uε = ũ = u, a.e.. Also we have that uε → u in Lqloc(QT ). Also we note
that we can choose ε > 0 small enough such that the function uε is subsolution in BR(0) × (s,∞) where
R > 0 and 0 < s. Let vε be the positive solution of

∂tv −∆v + |v|q−1v = 0, in BR(0)× (s,∞),
v = uε, on ∂BR(0)× (s,∞),

v(., s) = uε(., s) in BR(0).
(3.2)

In view of the proof of Lemma 2.4 and Remark 2.5 in [19] we can prove that vε ≥ uε. Also since vε is a
subsolution of heat equation we have vε ≤ ||uε||L∞(BR(0)×(s,T ]) ≤ ||u||L∞(BR(0)×(s,T ]). Thus there exists a de-
creasing sequence εj to the origin such that vεj → v in Lq(BR(0)× (s, T ]), u ≤ v ≤ ||u||L∞(BR(0)×(s,T ]); 0 <
s < T <∞ and v is a positive solution of

∂tv −∆v + |v|q−1v = 0, in BR(0)× (s, T ],
v = u, on ∂BR(0) × (s, T ],

v(., s) = u(., s) in BR(0).
(3.3)

Let {Rj} be an increasing function to the infinite and sj be a decreasing function to the origin. Let vj be
the positive solution of the above problem with R = Rj and s = sj. Since vj ≥ u, we have by maximum
principle that vj+1 ≥ vj . Thus by Keller-Osserman inequality and standard parabolic arguments, there
exists a subsequence, say {vj}, such that vj → v locally uniformly in QT . And the results follows in this
case by the construction of v.
(ii) Since u ∈ Lq(BR(0)× (s, T ]) there exists a solution w of the problem

∂tw −∆w + |u|q = 0, in BR(0) × (s, T ]
w = 0, on ∂BR(0)× (s, T ]

w(., s) = 0 in BR(0).
(3.4)

Hence u+w is supersolution of the heat equation with boundary and initial data u. Consequently, u+w ≥ z
where z is the solution of the heat equation with boundary and initial data u. Also, the function z −w is
a subsolution, thus there exists a solution v ≤ u of the problem (3.3) with boundary and initial data u.

12



As before, let {Rj} be an increasing sequence tending to infinity and sj be a decreasing sequence tending
to 0. Let vj be the positive solution of the problem (3.3) with R = Rj and s = sj. Since vj ≤ u, we have
by maximum principle that vj+1 ≤ vj . Thus by standard parabolic arguments, there exists a subsequence,
say {vj}, such that vj → v locally uniformly in Q∞. And the result follows by the construction of v. �

Proposition 3.2 Let u and v be nonnegative, locally bounded functions in QT .
(i) If u and v are subsolutions (resp. supersolutions) then max(u, v) is a subsolution (resp. min(u, v) is a
supersolution).
(ii) If u and v are supersolutions then u+ v is a supersolution.
(iii) If u is a subsolution and v is a supersolution then (u− v)+ is a subsolution.

Proof. The first two statements are well known; they can be verified by an application of Kato’s inequality.
The third statement is verified in similar way:

(
d

dt
−∆)(u− v)+ ≤ sign+(u− v)(

d

dt
−∆)(u− v) ≤ −sign+(u− v)(uq − vq) ≤ −(u− v)q+.

�

Notation 3.3 Let u, v be nonnegative, locally bounded functions in QT .
(a) If u is a subsolution, [u]† denotes the smallest solution dominating u.
(b) If u is a supersolution, [u]† denotes the largest solution dominated by u.
(c) If u, v are subsolutions then u ∨ v := [max(u, v)]†.
(d) If u, v are supersolutions then u ∧ v := [inf(u, v)]† and u⊕ v = [u+ v]†.
(e) If u is a subsolution and v is a supersolution then u⊖ v := [(u− v)+]†.

Proposition 3.4 (i) Let {uk} be a sequence of positive, continuous subsolutions of (3.1). Then U :=
supuk is a subsolution. The statement remains valid if subsolution is replaced by supersolution and sup
by inf .
(ii) ([5]) Let T be a family of positive solutions of (3.1). Suppose that, for every pair u1, u2 ∈ T there
exists v ∈ T such that

max(u1, u2) ≤ v, resp. min(u1, u2) ≥ v.

Then there exists a monotone sequence {un} in T such that

un ↑ supT , resp. un ↓ inf T.

Thus supT (resp. inf T ) is a solution.

Proof. (a) We set vj = max (max(u1, u2),max(max(u1, u2), u3), ...,max(max(...), uj)) . By proposition 3.2
we have that vj is a subsolution. Also we have that vj+1 ≥ vj . Thus the positive solution [vj ]† is increas-
ing with respect to j. Also by Keller-Osserman inequality, we have that [vj ]† → ṽ, where ṽ is a positive
solution. Thus vj → v where v is a subsolution of (3.1). Now since ui ≤ v for each i ∈ N, we have that
U ≤ v. But vj ≤ U for each j ∈ N, which implies v ≤ U. And thus v = U. The proof for ”inf” is similar
and we omit it.
(b) The proof is same as in [5]. Let A = (xn, tn) be a countable dense subset of QT and let unm ∈ T satisfy
the condition supm um(xn, tn) = w(xn, tn). since T is closed with respect to ∨, there exists an increasing
sequence of vn ∈ T such that v = lim vn, coincides with w on A.We claim that v = w everywhere. Indeed,
v ≤ u. Suppose u ∈ T . Then u ≤ w and therefore u ≤ v on A. Since A is everywhere dense and u, v are
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continuous, u ≤ v everywhere in Q∞, which implies u ≥ w = supu. �

As a consequence we have the following result which extends to equation (1.1) what Dynkin proved
for (1.11) [5, Theorem 5.1].

Theorem 3.5 The set U+(QT ) is a complete lattice stable for the laws ⊕ and ⊖.

4 Partition of unity in Besov spaces

Lemma 4.1 Let U ⊂ RN be a Tq-open set and z ∈ U. Then there exists a function f ∈ W
2
q
,q′
(RN ) with

compact support in U such that f(z) > 0. In particular, there exists a bounded Tq-open set V such that
V ⊂ U.

Proof. We suppose that z is not interior point of U with respect to Euclidian topology, since otherwise
the result is obvious. Since U is Tq-open we have that U c is thin at z. Also by assumption on z, we have
that z ∈ U c \ U. By [2, p. 174], we can find an open set W ⊃ U c, z ∈W \W and W is thin at z.
We recall that for a set E with positive C 2

q
,q′-capacity, F

E := VµE = G 1
q
∗ (G 1

q
∗ µE)p−1 where µE is the

capacitary measure on E. Then, by [2, Proposition 6.3.14], there exists r > 0 small enough such that

Vµ(z) < 1

2
,

where µ is the capacitary measure of B(z, r) ∩ W and Vµ the corresponding Besov potential (see [2,
Theorems 2.2.7, 2.5.6 ]). Now by [2, Theorem 6.3.9], we have Vµ ≥ 1 quasi everywhere on B(z, r) ∩W,
and by [2, Proposition 2.6.7] Vµ ≥ 1 everywhere on B(z, r) ∩W. Thus

Vµ(z) < 1

2
< 1 ≤ Vµ(x), ∀x ∈ B(z, r) ∩W.

Thus we can find r0 > 0 small enough such that

Vµ(z) < 1

2
< 1 ≤ inf{Vµ(x) : x ∈ B(z, r0) \ U}.

Now let 0 ≤ H(t) be a smooth nondecreasing function such that H(t) = t for t ≥ 1
4 and H(t) = 0 for

t ≤ 0. Also let η ∈ C∞
0 (RN ) such that 0 ≤ η ≤ 1, supp η ⊂ B(z, r0) and η(z) = 1. Then the function

f(z) = ηH(1− Vµ),

belong toW
2
q
,q′(RN ). Now, since by definition Vµ is lower semicontinuous we have that the set {1−u ≥ 0}

is closed. Hence the support of f is compact and

suppf ⊂ suppη ∩ {1− u ≥ 0} ⊂ U.

�

Lemma 4.2 let U be a Tq-open set and z ∈ U. Then there exists a Tq-open set V, such that z ∈ V ⊂ U,

and a function ψ ∈W
2
q
,q′
(RN ) such that ψ = 1 q.e. on V and ψ = 0 outside U.
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Proof. As before, we assume that z is not interior point of U. Let Vµ be the Besov potential of the previous
lemma, with

Vµ(z) < 1

4
, Vµ = 1 on B(z, r0) \ U.

By [2, Proposition 6.3.10] Vµ is quasi continuous, that we can find a Tq-open set W which contains z such
that

Vµ(x) ≤ 1

4
, q. e. on W.

Let η ∈ C∞
0 (RN ) such that 0 ≤ η ≤ 1, supp η ⊂ B(z, r0) and η(x) = 1,∀ x ∈ B(z, r02 ). Set

f = 2ηH

(
1−H

(
1

2
− Vµ(x)

)
− Vµ(x)

)
.

Then f ∈W
2
q
,q′(RN ), 0 ≤ f ≤ 1 and f = 0 on B(z, r0)\U. Also, f = 1 on B(z, r02 )∩W and f = 0 outside

of B(z, r0) ∩ U. �

Lemma 4.3 Let 2
q
≤ 1, K be a compact set and U be a Tq-open set such that K ⊂ U. Also, let {Uj} be a

sequence of Tq-open subsets of U covering U up to a set of zero C 2
q
, q′-capacity Z. We assume that there

exists a nonnegative u ∈W
2
q
,q′(RN ) ∩ L∞(RN ) with Tq-supp u ⊂ K ⊂ U. Then there exist m(k) ∈ N and

nonnegative functions uk,j ∈ L∞(RN ) with Tq-supp uk,j ⊂ Uj , such that

m(k)∑

j=1

uk,j ≤ u (4.1)

and

lim
k→∞

||u−
m(k)∑

j=1

uk,j||
W

2
q ,q′

(RN )
= 0.

Remark. if u changes sign, the conclusion of Lemma remains valid without inequality (4.1).

Proof. Without loss of generality we can assume that U and the ∪jUj are bounded. For any j ≥ 0, there
exists open sets Gk,j such that C 2

q
, q′(Gk,j) ≤ 2−k−j, Z ⊂ Gk,0 and for j ≥ 1, the sets Uj ∪Gk,j are open.

Also the sets

Gk =
∞⋃

j=0

Gk,j,
∞⋃

j=1

Gk ∪ Uj

are open and C 2
q
, q′(Gk) → 0 when k → ∞.

Since Gk is open, its Besov potential FGk is larger or equal to 1 everywhere on Gk [2, Theorems 2.5.6,
2.6.7 ]). Also we have

||Vµk ||q′
W

2
q ,q′

(RN )
≤ AC 2

q
, q′(Gk),

where A is a positive constant which depends only on n, q. Now consider a smooth nondecreasing function

H such that H(t) = 1 for t ≥ 1 and H(t) = t for t ≤ 1
2 , then the function φk = H(Vµk) ∈ W

2
q
,q′(RN ),

0 ≤ φk ≤ 1, φk = 1 on Gk and there exists a constant A′(n, q) > 0 such that

||φk||q
′

W
2
q ,q′

(RN )
≤ A′C 2

q
, q′(Gk).

15



Set ψk = 1− φk. By Lebesgue’s dominated theorem we have that

||u− ψku||q
′

W
2
q ,q′

(RN )
→ 0. (4.2)

Thus it is enough to prove that

uψk =

m(k)∑

j=1

uk,j. (4.3)

Fix k ∈ N. Then there exist open balls Bk,j,i i, j = 1, 2... such that

Bk,j,i ⊂ Uj ∪Gk, and

∞⋃

j=1

Gk ∪ Uj =
∞⋃

i,j=1

Bk,j,i.

Since K is compact, there exists m(k) ∈ N such that

K ⊂
m(k)⋃

i,j=1

Bk,j,i.

Now consider wk,j,i ∈ C∞
0 (RN ) such that

{wk,j,i > 0} = Bk,j,i.

Then set

uk,j = uψk

∑m(k)
i=1 wk,j,i∑m(k)
i,j=1wk,j,i

.

Then uk,j ∈ L∞(RN ), satisfies 1 and

Tq-suppuk,j ⊂ (K \Gk) ∩Bk,j,i ⊂ Uj.

�

Remark. We conjecture that the result still holds in the case 2
q
> 1, but we have not been able to prove

(4.2).

5 The regular set and its properties

Let q > 1, T > 0. If QT = RN × (0, T ), we recall that U+(QT ) is the set of positive solutions u of

∂tu−∆u+ uq = 0 in QT . (5.1)

If a function ζ is defined in RN . We denote by Tq-supp(ζ) the Tq-closure of the set where |ζ| > 0.
Let U be a Borel subset of RN and χU be the characteristic function on U. We set

H(χU )(x, t) =
1

(4πt)
N
2

∫

RN

e−
|x−y|2

4t χUdy.

For any ξ ∈ RN the following dichotomy occurs:

(i) either there exists a Tq-open bounded neighborhood U = Uξ of ξ such that

∫ T

0

∫

RN

uqH[χU ]
2q′dxdt <∞, (5.2)
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where q′ = q
q−1 ,

(ii) or for any Tq-open neighborhood U of ξ

∫ T

0

∫

RN

uqH[χU ]
2q′dxdt = ∞. (5.3)

Definition 5.1 The set of ξ ∈ RN such that (i) occurs is Tq-open. It is denoted by Rq(u) and called the
regular set of u. Its complement Sq(u) = RN \ Rq(u) is Tq-closed and called the singular set of u.

Proposition 5.2 Let η ∈ W
2
q
,q′(RN ) ∩ L∞(RN ) with Tq-support in a Tq-open bounded set U. Also let

u ∈ U+(QT ) satisfy

MU =

∫ T

0

∫

RN

uqH[χU ]
2q′dxdt <∞.

Then there exists

l(η) := lim
t→0

∫

RN

uqH[η]2q
′

+ dx. (5.4)

Furthermore

|l(η)| ≤ C(MU , q)

(
||η||2q′

W
2
q ,q′

+ ||η||2q′
L∞(RN )

)
. (5.5)

Proof. Put h = H[η] and φ(r) = r2q
′

+ . Since |η| ≤ ||η||L∞χU , there holds

∣∣∣∣
∫ T

0

∫

RN

uqφ(h)dxdt

∣∣∣∣ ≤ ||η||2q′L∞

∫ T

0

∫

RN

uqH[χU ]
2q′dxdt := ||η||2q′L∞MU <∞. (5.6)

Moreover
∫ t

s

∫

RN

(−u(∂tφ(h) + ∆φ(h))) + uqφ(h)dxdτ =

∫

RN

uφ(h)(., s)dx −
∫

RN

uφ(h)(., t)dx. (5.7)

But
∂tφ(h) + ∆φ(h) = 2q′φ(h)h−2

+ (2h+∂th+ (2q′ − 1)|∇h|2).
By Hölder

∣∣∣∣
∫ t

s

∫

RN

u(∂tφ(h) + ∆φ(h))dxdτ

∣∣∣∣

≤
(∫ t

s

∫

RN

uqφ(h)dxdτ

) 1
q
(∫ t

s

∫

RN

φ(h)−
q′

q |(∂tφ(h) + ∆φ(h))|q′dxdτ
) 1

q′

≤ 4q′
(∫ t

s

∫

RN

uqφ(h)dxdτ

) 1
q
(∫ t

s

∫

RN

(h+|∂th|+ |∇h|2)q′dxdτ
) 1

q′

.

By interpolation ∫ t

s

∫

RN

|∂th|q
′
dxdτ ≤

∫ T

0

∫

RN

|∂th|q
′
dxdτ ≤ ||η||q′

W
2
q ,q′

,

and by Gagliardo-Nirenberg and the maximum principle

∫ t

s

∫

RN

|∇h|2q′dxdτ ≤
∫ T

0

∫

RN

|∇h|2q′dxdτ ≤ C||η||q′L∞ ||∆h||q′
Lq′

= C||η||q′L∞ ||∂th||q
′

Lq′
.
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Therefore,

∣∣∣∣
∫ t

s

∫

RN

u(∂tφ(h) + ∆φ(h))dxdτ

∣∣∣∣ ≤ C

(∫ t

s

∫

RN

uqφ(h)dxdτ

) 1
q

||η||q′L∞ ||η||q′
W

2
q ,q′

. (5.8)

This implies that the left-hand side of (5.7) tends to 0 when s, t→ 0, thus there exists

l(η) := lim
s→0

∫

RN

uqφ(h)(., s)dx.

It follows from (5.7)

∫ T

0

∫

RN

(−u(∂tφ(h) + ∆φ(h))) + uqφ(h)dxdτ +

∫

RN

uφ(h)(., T )dx = l(η). (5.9)

Since |uφ(h)(., T )| ≤ C(T )||η||2q′L∞ , we derive

|l(η)| ≤ C1||η||2q
′

L∞ +C||η||q′L∞ ||η||q′
W

2
q ,q′

≤ C
(
||η||L∞ + ||η||

W
2
q ,q′

)2q′
. (5.10)

Proposition 5.3 Let the assumptions of Lemma 5.2 be satisfied. Then

lim
t→0

∫

U

u(x, t)η2q
′

+ (x)dx = l(η). (5.11)

Proof. Using (5.6) with h replace by hs(x, t) := H[η](x, t− s), we get

∫ T

s

∫

RN

(−u(∂tφ(hs) + ∆φ(hs))) + uqφ(hs)dxdτ +

∫

RN

uφ(hs)(., T )dx =

∫

RN

uqφ(hs)(., s)dx. (5.12)

When s→ 0 ∫

RN

uφ(hs)(., T )dx →
∫

RN

uφ(h)(., T )dx,

and ∫ T

s

∫

RN

uqφ(hs)dxdτ →
∫ T

0

∫

RN

uqφ(h)dxdτ,

by the dominated convergence theorem. Furthermore,

∣∣∣∣
∫ T−s

0

∫

RN

(u(x, t+ s) − u(x, t))(∂tφ(h) + ∆φ(h))dxdt

∣∣∣∣

≤ C

(∫ T−s

0

∫

RN

|u(x, t+ s)− u(x, t)|qh2q′+ dxdt

) 1
q

||η||q′L∞ ||η||q′
W

2
q ,q′

,

which tends to zero. Finally, ∫ T

T−s

∫

RN

uqφ(h)dxdτ → 0.

Subtracting (5.7) to (5.12), we derive

lim
s→0

∫

RN

u(., s)(φ(h)(., s) − φ(η))dx = 0,

which implies the claim. �
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Proposition 5.4 Assume that U is a bounded Tq-open set and

lim
t→0

∫

U

u(x, t)η2q
′

+ (x)dx = ∞, (5.13)

for some 0 ≤ η ∈W
2
q
,q′
(RN ) ∩ L∞(RN ) with Tq-support in U, then

∫ T

0

∫

RN

uqH[η]2q
′
dxdt = ∞. (5.14)

Proof. We will prove it by contradiction. If the integral (5.14) is finite, then combination of Lemma 5.2
and Lemma 5.3 yields to a contradiction. �

Proposition 5.5 Let ξ ∈ Sq(u). Then for any Tq-open set G which contains ξ, there holds

lim
t→0

∫

G

u(x, t)dx = ∞. (5.15)

Proof. If ξ ∈ Sq(u) and if G is Tq-open and contains ξ, then by Lemma 4.2 there exist η ∈ W
2
q
,q′
(RN ) ∩

L∞(RN ) and a Tq-open set D ⊂ G such that η = 1 on D, η = 0 outside of G and 0 ≤ η ≤ 1. Thus

∞ =

∫ T

0

∫

RN

uqH[χD]
2q′dxdt ≤

∫ T

0

∫

RN

uqH[η]2q
′
dxdt,

which implies

lim
t→0

∫

RN

uH[η]2q
′
dx = ∞ ⇒

lim
t→0

∫

RN

uη2q
′
dx = ∞,

and the result follows by the properties of η. �

5.1 Moderate solutions

Firstly, let us recall some well known results. If u is a moderate solution of (3.1) then u ∈ Lq(K) for any
compact K ⊂ Q∞. and u satisfies

lim
t→0

∫

RN

u(x, t)ζ(x)dx =

∫

RN

ζ(x)dµ, ∀ζ ∈ C∞
0 (RN ). (5.16)

for a unique Radon measure µ. Also we have

−
∫ ∫

Q∞

u(φt +∆φ)dxdt+

∫ ∫

Q∞

uqφdxdt =

∫

RN

φ(x, 0)dµ,

∀φ ∈ C1,1;1(Q∞), with compact support.
The above measure has the property that vanishes on sets with C 2

q
, q′-capacity zero. Also there exists

an sequence {µn} ⊂W− 2
q
,q(RN ) of Radon measures such that µn ⇀ µ in the weak* topology.

Now we assume that the moderate solution is positive or equivalently the respective measure µ is

positive. Thus the previous sequence can be chosen, increasing and particularly {µn} ⊂ W
− 2

q
,q
(RN ) ∩

Mb
+(R

N ). Where Mb
+(R

N ) is the set of all positive bounded Radon measures in RN .
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If ν ∈ W
− 2

q
,q
(RN ) ∩Mb

+(R
N ), then we have for some constant C > 0 independent on ν(see Lemma

3.2-[22])
C−1||ν||

W
− 2

q ,q
(RN )

≤ ||H[ν]||Lq(QT ) ≤ C||ν||
W

−2
q ,q

(RN )
, (5.17)

where H[ν] is the solution of the heat equation in Q with ν as initial data.

Lemma 5.6 Let u be a moderate positive solution with initial data µ. Then for any T > 0 and bounded
Tq-open set we have ∫ T

0

∫

RN

uq(t, x)H2q′ [χO]dxdt <∞.

Proof. Let 0 ≤ η ∈ C∞
0 (RN ) and η = 1 on O and s < T. We define here h = H[η](x, t), hs = H[η](x, t− s)

and φ(r) = |r|2q′ . Then we have

∫ T

s

∫

RN

u(x, t) (∂tφ(hs) + ∆φ(hs)) + |u|qφ(hs)dxdt+
∫

RN

uφ(hs)(., T )dx =

∫

RN

u(x, s)φ(η)dx.

In view of (2.23) in your notes, there exist a constant C(q,n) such that

∫ T

s

∫

RN

|u|qφ(hs)dxdt+
∫

RN

uφ(hs)(., T )dx ≤ C

(∫

RN

u(x, s)φ(η)dx + ||η||2q′L∞ ||η||2q′
W

2
q ,q′

)

Now using Fatou’s lemma and the fact that

lim sup
s→0

∫

Ω
u(x, s)dx <∞, ∀ bounded Ω.

the result follows. �

Theorem 5.7 Let u be a positive moderate solution with µ as initial data, then
(i) µ is regular relative to the Tq-topology.
(ii) For each quasi continuous function φ ∈ L∞(RN ) with bounded Tq-support in RN , we have

lim
t→0

∫

RN

u(x, t)φ(x)dx =

∫

RN

φ(x)dµ.

Proof. The proof is similar to the one given [23].
(i) Every Radon measure on RN is regular in the usual sense:

µ(E) = inf{µ(D) : E ⊂ D, D open}
= inf{µ(K) : K ⊂ E, K compact},

for any Borel set E. But the set { E ⊂ D, D Tq-open} ⊂ { E ⊂ D, D qopen}, hence

µ(E) ≤ inf{µ(D) : E ⊂ D, D Tq-open} ≤ inf{µ(D) : E ⊂ D, D open} = µ(E),

and the result follows.
(ii) Since the measure µt = u(t, x)dx ⇀ µ in the weak* topology we have

lim sup
t→0

µt(E) ≤ µ(E), lim inf
t→0

µt(A) ≥ µ(A),
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for any compact set E, respectively, open set A. This extends to any bounded Tq-closed set E (resp.
Tq-open set A).
Indeed, let E be a Tq-closed set and {Kn} be an increasing sequence of closed sets such that C 2

q
, q′(E \

Kn) → 0. Then for any m ∈ N and any open set E ⊂ O we have

lim sup
t→0

µt(E) ≤ lim sup
t→0

µt(Km) + lim sup
t→0

µt(E \Km) ≤ µ(O) + lim sup
t→0

µt(E \Km).

Now we assert that
lim
m→∞

lim sup
t→0

µt(E \Km) = 0.

We will prove it by contradiction. We assume that limm→∞ lim supt→0 µt(E \Km) = ε > 0.
Let {tn} be a deacreasing sequence tending to 0 and limn→∞ µtn(E \Km) = lim supt→0 µt(E \Km). Then
there exists subsequence of positive solutions {umk }∞k=1 with initial data µtnk

χE\Km
such that umk → um

for any m ∈ N. Since u is a moderate solution and umk ≤ u we have that um is a moderate solution.
Also by construction, the sequence {um} is nonincreasing and um ≤ UE\Km

. By proposition 5.17 we have
UE\Km

→ 0 which implies um → 0 and

lim
m→∞

lim
k→∞

µtnk
(E \Km) = 0.

The proof follows in the case where E is Tq-closed. The proof is similar in the other case.
If A is Tq-open and

µ(A) = µ(Ã),

then
limµt(A) = µ(A).

Without loss of generality we may assume that φ ≥ 0 (since otherwise we set φ = φ+−φ−) and φ ≤ 1.
Given k ∈ N and m = 0, ..., 2k − 1 choose a number am,k in the interval (m2−k, (m + 1)2−k) such that
µ(φ−1({am,k})) = 0. Put

Am,k = φ−1((am,k, (am+1,k]), m = 1, ..., 2k − 1, A0,k = φ−1((a0,k, (a1,k]),

then we note that since φ has compact support the above sets are bounded and

limµt(Am,k) = µ(Am,k),∀m ≥ 0, k ∈ N. (5.18)

Set the simple function fk =
∑2k−1

µ=0 m2−kχAm,k
, then φk ↑ φ uniformly and by (5.18),

lim
t→0

∫

RN

u(x, t)φkdx =

∫

RN

φkdµ, ∀ζ ∈ C∞
0 (RN ).

This completes the proof of (ii). �

5.2 Vanishing properties

Definition 5.8 A continuous function u ∈ U+(QT ) vanishes on a Tq-open subset G ⊂ RN , if for any

η ∈W
2
q
,q′
(RN ) ∩ L∞(RN ) with Tq-supp(ζ) ⊂q G, there holds

lim
t→0

∫

G

u(x, t)η2q
′

+ (x)dxdt = 0. (5.19)

When this is case we write u ≈G 0. We denote by UG(QT ) the set of u ∈ U+(QT ) which vanishes on G.
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We have the obvious result

Proposition 5.9 Let A be a Tq-open subset of RN and u1, u2 ∈ U+(QT ).
If u2 ≈A 0 and u1 ≤ u2 then u1 ≈A 0.

Proposition 5.10 Let G,G′ be Tq-open sets such that G ∼q G′. If u ∈ UG(QT ) then u ∈ UG′(QT )

Proof. If η ∈ W
2
q
,q′
(RN ) ∩ L∞(RN ) with Tq-supp(ζ) ⊂q G, then Tq-supp(ζ) ⊂q G′. Since |G \ G′| =

|G′ \G| = 0 the result follows. �

If G is an open subset, this notion coincides with the usual definition of vanishing, since we can take
test function ηC∞

0 (G). in that case u ∈ C(QT ∪ {G× {0}}).

Lemma 5.11 Assume u ∈ UG(QT ). Then for any η ∈W
2
q
,q′(RN )∩L∞(RN ) with Tq-supp(η) ⊂q G, there

holds ∫ T

0

∫

RN

uqH[η]2q
′

+ dxdt+

∫

RN

u(x, T )H[η]2q
′

+ (x, T )dx ≤ C1||η||q
′

L∞ ||η||q′
W

2
q ,q′

. (5.20)

Proof. If u ∈ UG(QT ) and η ∈ W
2
q
,q′
(RN ) ∩ L∞(RN ) with Tq-supp(η) ⊂q G, there holds, with h = H[η]

and φ(r) = r2q
′

+ .

∫ T

0

∫

RN

(−u(∂tφ(h) + ∆φ(h))) + uqφ(h)dxdτ +

∫

RN

uφ(h)(., T )dx = 0. (5.21)

Therefore (5.20) follows from (5.8). �

Lemma 5.12 Let G ⊂ RN be a Tq-open set. Then there exists an nondecreasing sequence {un} ⊂ UG(QT )
which converges to supUG(QT ). Furthermore supUG(QT ) ∈ UG(QT ).

Proof. If u1 and u2 belongs to UG(QT ), then u1 + u2 is a supersolution and it satisfies (5.19). Therefore
u1∨u2 is a solution which is smaller than u1+u2, thus u1 ∨u2 ∈ UG(QT ). By Proposition 3.4 there exists
a increasing sequence {un} ⊂ UG(QT ) which converges to u := supUG(QT ). By (5.21),

∫ T

0

∫

RN

(−un(∂tφ(h) + ∆φ(h))) + uqnφ(h)dxdτ +

∫

RN

unφ(h)(., T )dx = 0. (5.22)

Now, uqnφ(h) ↑ uqφ(h) in L1(QT ) and unφ(h)(., T ) ↑ uφ(h)(., T ) in L1(RN ). If E is any Borel subset of
QT , there holds by Hölder, as in (5.8)

∣∣∣∣
∫ T

0

∫

E

un(∂tφ(h) + ∆φ(h))dxdτ

∣∣∣∣ ≤ C

(∫ T

0

∫

E

uqnφ(h)dxdτ

) 1
q

||η||q′L∞ ||η||q′
W

2
q ,q′

(5.23)

The right-hand side tends to zero when |E| → 0, thus by Vitali’s convergence theorem, we derive

∫ T

0

∫

RN

(−u(∂tφ(h) + ∆φ(h))) + uqφ(h)dxdτ +

∫

RN

uφ(h)(., T )dx = 0, (5.24)

from (5.22). Thus u ∈ UG(QT ). �

Definition 5.13 (a) Let u ∈ U+(QT ) and let A denote the union of all Tq-open sets on which u vanishes.
Then Ac is called the fine initial support of u, to be denoted by Tq-supp (u).
(b) Let F be a Borel subset of RN . We denote by UF the maximal element of U

F̃ c(QT ).
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5.3 Maximal solutions

Definition 5.14 Let Mb
+(R

N ) be the set of all positive bounded Radon measures in RN . Also let uµ ∈
U+(QT ) be the moderate solution with initial data µ.
For any Borel set E ⊂ RN of positive C 2

q
, q′-capacity put

Vmod(E) = {uµ : µ ∈W
− 2

q
,q′
(RN ) ∩M

b
+(R

N ), µ(Ec) = 0}.

VE = supVmod(E).

The following result due to Marcus and Véron [22] shows that the maximal solution which vanishes
on a an open set is indeed σ-moderate. This is obtained by proving a capacitary quasi-representation of
the solution via a Wiener type test.

Proposition 5.15 Let F be a closed subset of RN . Then

UF = VF .

Furthermore, for any q ≥ 1 + 2
N

there exist two positive constants C1, C2 > 0, depending only on n and
Tq such that

C1t
− 1

q−1

∞∑

k=0

(k + 1)
N
2 e−

k
4C 2

q
, q′

(
F ∩ Fk(x, t)√

(k + 1)t

)
≤ UF

≤ C2t
− 1

q−1

∞∑

k=0

(k + 1)
N
2 e−

k
4C 2

q
, q′

(
F ∩ Fk(x, t)√

(k + 1)t

)
, ∀(x, t) ∈ Q,

(5.25)

where Fk(x, t) = {y ∈ RN :
√
kt ≤ |x− y| ≤

√
(k + 1)t}.

Remark. We recall that the main argument for proving uniqueness is the fact that

UF ≤ C2

C1
VF in Q. (5.26)

This argument introduced in [17] for elliptic equations has been extended to parabolic equations in [19],
[22].

Definition 5.16 Let F be a Borel subset of RN . We denote by UF the maximal element of U
F̃ c(QT ).

Proposition 5.17 If {An} is a sequence of Borel sets such that C 2
q
, q′(An) → 0, then UAn → 0.

Proof. Let On be an open set such that An ⊂ On and C 2
q
, q′(On) ≤ C 2

q
, q′(An) +

1
n
. Now since On is open,

C 2
q
, q′ is an outer measure, by (2.32) and (iv)-Proposition 2.3, we have

C 2
q
, q′(On) = C 2

q
, q′

(
(On ∩ bq(On)) ∪ (On ∩ eq(On))

)
≤ C 2

q
, q′(Õn) ≤ cC 2

q
, q′(On).

Thus C 2
q
, q′(On) → 0. The result follows by

UAn ≤ UOn

and by Proposition 5.25. �
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Corollary 5.18 Let E be a Borel set such that C 2
q
, q′(E) = 0. If u ∈ U

Ẽc(QT ) then u = 0. In particular

UE ≡ 0.

Proposition 5.19 Let E, F be Borel sets.
(i) If E, F are q-closed then UE ∧ UF = UE∩F .
(ii) If E, F are Tq-closed then

UE < UF ⇔ [E ⊂q F and C 2
q
, q′(F \ E) > 0],

UE = UF ⇔ E ∼q F. (5.27)

(iii) If Fn is a decreasing sequence of Tq-closed sets then

limUFn = UF where F = ∩Fn.

(iv) Let A be a Tq-open set and u ∈ U+(QT ). Suppose that u vanishes Tq-locally in A, i.e. for every point
σ ∈ A there exists a Tq-open set Aσ such that

σ ∈ A ⊂ A, u ≈Aσ 0.

Then u vanishes on A. In particular any u ∈ U+(QT ) vanishes on the complement of Tq-supp (u).

Proof. The proof is similar to the one in [23] dealing with elliptic equations.
(i) UE ∧UF is the largest solution under inf(UE , UF ) and therefore, by definition, it is the largest solution
which vanishes outside E ∩ F.
(ii) By (5.25) UE and UF satisfies the same capacitary quasi-representation up to universal constants. By
the Remark and (5.26),

E ∼q F ⇒ C1

C2
UE ≤ uF ≤ C1

C2
UE ⇒ UE = UF .

The proof of
E ⊂q F ⇒ UE ≤ UF .

follows from Proposition 5.15the fact that UE = VE and UF = VF and VE ≤ VF . In addition,

C 2
q
, q′(F \ E) > 0 ⇒ UE 6= UF .

Indeed, if K is a compact subset of F \E of positive capacity, then UK > 0 and UK ≤ UF but UK � UE.
Therefore UE = UF implies E ∼q F and UE ≤ UF implies E ⊂q F.
(iii) If V := limUFn then UF ≤ V. But Tq-supp (V ) ⊂ Fn for each n ∈ N and consequently V ≤ UF .
(iv) First assume that A is a countable union of Tq-open sets {An} such that u ≈An 0 for each n. Then u
vanishes on ∪ki=1Ak for each k. Therefore we can assume that the sequence Ak is increasing. Put Fn = Acn.
Then u ⊂ UFn and by (iii), UFn ↓ UF where F = Ac. Thus u ≤ UF , i.e.,which is equivalent to u ≈A 0.

We turn to the general case. It is known that the (α, p)-fine topology possesses the quasi-Lindelöf
property (see Sec. 6.5.11-[2]). Therefore A is covered, up to a set of capacity zero, by a countable
subcover of {Aσ : σ ∈ A}. Therefore the previous argument implies that u ≈A 0. �

Proposition 5.20 (a) Let E be a Tq-closed set. Then

UE = inf{UD : E ⊂ D, D open}
= sup{UK : K ⊂ E, K closed}. (5.28)
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(b) If E, F are two Borel sets then
UE = UF∩E ⊕ UE\F .

(c) Let E, Fn, n = 1, 2, ... be Borel sets and let u be a positive solution of (3.1). If either C 2
q
, q′(E△Fn) → 0

or F̃n ↓ Ẽ then
UFn → UE.

Proof. (a) Let {Qj} be the decreasing sequence of open sets of Lemma 2.8-(a) such that ∩Qj = ∩Q̃j =
E′ ∼q E. Thus by Proposition 5.19 (iii) we have that UQj

→ UE , this implies the first equality in (a).
Let {Fn} be a nondecreasing sequence of closed subset of E such that C 2

q
, q′(E \ Fn) → 0. Let D1, D2

be open sets such that Fn ⊂ D1 and E \ Fn ⊂ D2. Also set D3 = (D̃1 ∪ D̃2)
c. Let u

(i)
β be the positive

solution of

∂tu−∆u+ uq = 0, in RN × (β, T ]

u(x, β) = χ
D̃i
UE on RN × {β}, (5.29)

where 0 < β < T.
For any (x, t) ∈ RN × (β, T ] we have

UE ≤ u
(1)
β + u

(2)
β + u

(3)
β .

Letting β → 0 (taking an subsequence if it is necessary) we have u
(i)
β → u(i) and

UE ≤ u(1) + u(2) + u(3) in QT ,

But u(i) ≤ UDi
thus

UE ≤ UD1 + UD2 + u(3).

Now u(3) ≤ UD3 and u(3) ≤ UE thus by Proposition 5.20-(a) u(3) ≤ UD3∩E. But D1 ∪D2 is an open set
and thus C 2

q
, q′(D3 ∩E) = 0, which implies by Corollary 5.18 that u(3) = 0. Finally we have that

UE ≤ UD1 + UD2 .

Since Di is arbitrary, we have by the first assertion of this Proposition

UE ≤ UFn + UE\Fn
. (5.30)

But C 2
q
, q′(E \ Fn) → 0, thus by Proposition 5.17, we have

UE ≤ lim
n→∞

UFn ⇒ UE = lim
n→∞

UFn ,

since UFn ≤ UE for any n ∈ N.
(b) By similar argument as in the proof of (5.30) we can prove that

UE ≤ UF∩E + UE\F ⇒ UE ≤ UF∩E ⊕ UE\F .

On the other hand, both UF∩E, UE\F vanishes outside of Ẽ. Consequently UF∩E ⊕UE\F vanishes outside

Ẽ so that
UE ≥ UF∩E ⊕ UE\F ,
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and the result follows in this statement.
(c) The previous statement implies,

UE ≤ UFn∩E + UE\Fn
, UFn ≤ UFn∩E + UFn\E . (5.31)

If C 2
q
, q′(E △ Fn) → 0 then Proposition 5.17 implies UE△Fn

→ 0. And the result follows in this case by

(5.31).
If F̃n ↓ Ẽ the result follows in this case by Proposition 5.19(iii). �

Proposition 5.21 If E is a Tq-closed set, then

UE = VE .

Thus the maximal solution UE is σ-moderate. Furthermore UE satisfies the capacitary estimates (5.15).

Remark. Actually the estimates hold for any Borel set E. Indeed by definition, UE = U
Ẽ
and

C 2
q
, q′

(
E ∩ Fn(x, t)√

(n+ 1)t

)
∼ C 2

q
, q′

(
Ẽ ∩ Fn(x, t)√

(n+ 1)t

)
.

Proof. The proof is same as in [23].
Let {Ek} be a Tq-stratification of E. If u ∈ Vmod and µ = tru then uµ = supuµk where µk = µχEk

. Hence
VE = supVEk

. By proposition 5.25, UEk
= VEk

. These facts and Proposition 5.20(c) we have UE = VE. It
is known that UEk

satisfies the capacitary estimates (5.15). In addition

C 2
q
, q′

(
Ek ∩ Fn(x, t)√

(n+ 1)t

)
→ C 2

q
, q′

(
Ẽ ∩ Fn(x, t)√

(n+ 1)t

)
.

Therefore UE satisfies the capacitary estimates. �

5.4 Localization

Definition 5.22 Let A be a Borel subset of RN , we denote by [u]A the supremum of the v ∈ U+(QT )
which are dominates by u and vanishes on Ãc.

We note here that [u]A = u ∧ UA
Lemma 5.23 If G ⊂ RN is a Tq-open set and u ∈ UG(QT ), then

u = sup{v ∈ UG(QT ) : v ≤ u, v vanishes on an open neighborhood of G}.

Proof. Set A = Gc and let {An} be a sequence of closed subsets of A, such that C 2
q
, q′(A \ An) → 0. By

Proposition 5.20 we have
UA ≤ UAn + UA\An

,

thus
u = u ∧ UA ≤ u ∧ UAn + u ∧ (UA\An

).

By Proposition 5.17, we have
UA\An

→ 0.

Thus
u = lim

n→∞
u ∧ UAn ,

and the result follows. �
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Proposition 5.24 Let u ∈ U+(QT ).
(i) If E is Tq-closed then,

[u]E = inf{[u]D : E ⊂ D, D open}. (5.32)

= sup{[u]F : F ⊂ E, F closed}. (5.33)

(ii) If E, F are two Borel sets then
[u]E ≤ [u]F∩E + [u]E\F , (5.34)

and
[[u]E ]F = [[u]F ]E = [u]F∩E. (5.35)

(iii) Let E, Fn, n = 1, 2, ... be Borel sets and let u be a positive solution of (3.1). If either C 2
q
, q′(E△Fn) →

0 or F̃n ↓ Ẽ then
[u]Fn → [u]E .

Proof. The proof is similar as in [23].
(i) Let D = {D} be the family of sets in (5.32). By (5.28) (with respect to the family D)

inf(u,UE) = inf(u, inf
D∈D

UD) = inf
D∈D

inf(u,UD) ≥ inf
D∈D

[u]D. (5.36)

Obviously
[u]D1 ∧ [u]D2 ≥ [u]D1∩D2 ,

thus we can apply the Proposition 3.4 to obtain that the function v := infD∈D[u]D is a solution of (3.1).
Hence (5.36) implies [u]E ≥ v. The opposite inequality is obvious.

For the equality (5.33), Firstly, we note that the set {v ∈ U+(QT ) : u ≤ u, Tq-supp (v) ⊂q E} is
closed under ∨. Thus by Proposition 3.4, there exists an increasing sequence {vn} such that vn ≈Ec= 0
and lim vn = [u]E . Since vn is an increasing sequence by Proposition 5.23 we can construct an increasing
sequence {wn} such that each wn vanishes on an open neighborhood Bn of E, Bn ⊂ Bn+1 and limwn =
[u]E . Now set Kn = Bc

n, then
wn ≤ [u]Kn ≤ [u]E ,

sending n to infinity we have the desired result.

(ii) Let v ∈ U+(QT ), v ≤ u and Tq-supp (v) ⊂ E. Let D and D′ be open sets such that Ẽ ∩ F ⊂ D and

Ẽ \ F ⊂ D′. By Lemma 2.8-[19], there exists a unique solution v1j ;
1
[T ] < j ∈ N of the problem

∂tu−∆u+ |u|q−1u = 0, in RN × (
1

j
, T ]

u(x,
1

j
) = χD(x)v(x,

1

j
) in RN × {1

j
}.

Also we consider v2j and v3j the unique solutions of the above problem with initial data χD′(x)v(x, 1
j
) and

χ(D1∪D2)c . In view of proof of Proposition 5.20 we can prove that v ≤ v1j + v2j + v3j . By standard argument

there exist a subsequence, say vij ; i = 1, 2, 3 such that vij → vi and v ≤ v1 + v2 + v3. Now since v vanishes

outside of E, thus vanishes outside of (D1 ∪D2), consequently we have that v(x, 1
j
)χχ(D1∪D2)

c → 0, which

implies that v3j → 0. Thus we have

v ≤ v1 + v2 ≤ [u]D + [u]D′ .
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By (5.32) we have
v ≤ [u]F∩E + [u]E\F ,

since v ∈ {w ∈ U+(QT ) : w ≤ u, Tq-supp (w) ⊂q E} is arbitrary the result follows in the case where E is
closed. In general, the result follows by (5.33).

Put A = Ẽ and B = F̃ . It follows directly from definition that,

[[u]A]B ≤ inf(u,UA, UB).

The largest solution dominated by u and vanishing on Ac ∪Bc is [u]A∩B . Thus

[[u]A]B ≤ [u]A∩B .

On the other hand
[u]A∩B = [[u]A∩B ]B ≤ [[u]A]B ,

this proves (5.35). (iii) (By 5.34)

[u]E ≤ [u]Fn∩E + [u]E\Fn
, [u]Fn ≤ [u]Fn∩E + [u]Fn\E .

If C 2
q
, q′(E △ Fn) → 0, then by Proposition (5.17)(c) we have UE△Fn

→ 0, and since [u]E\Fn
, [u]Fn\E ≤

UE△Fn
, the result follows by the above inequalities, if we send n to infinite.

If F̃n ↓ Ẽ. By Proposition (5.17)(c) we have UEn → UE , thus

[u]E ≤ lim[u]Fn = lim u ∧ UFn ≤ lim inf(u,UFn) ≤ inf(u,UE).

And since [u]E is the largest solution under inf(u,UE) and the function v = lim[u]Fn is a solution of (3.1),
we have that UE ≤ v, and the proof of (5.34) is complete. �

Definition 5.25 Let µ be a positive Radon measure on RN which vanishes on compact sets of C 2
q
, q′-

capacity zero.
(a) The Tq-support of µ (denoted Tq-supp(µ)) is the intersection of all Tq-closed sets F such that µ(F c) =
0.
(b) We say that µ is concentrated on a Borel set E if µ(Ec) = 0.

Proposition 5.26 If µ is a measure as in the previous definition then,

Tq-supp (µ) ∼q
Tq-supp (uµ).

Proof. Put F = suppquµ. By Proposition 5.19(iv) uµ vanishes on F c and by Proposition 5.23(c) there
exists an increasing sequence of positive solutions un such than each function un vanishes outside a closed
subset F, say Fn, and un ↑ uµ. If Sn := Tq-supp (un) then Sn ⊂ Fn and {Sn} increases. Thus {Sn} is
an increasing sequence of closed subsets of F and, setting µn = µχSn

, we find un ≤ uµn ≤ uµ so that
uµn ↑ uµ. This,in turn, implies

µn ↑ µ, Tq-supp(µ) ⊂q
∞̃⋃

n=1

Sn ⊂ F.

If D is an open set and µ(D) = 0 it is clear that uµ vanishes on D. Therefore uµn vanishes outside of Sn,
thus outside Tq-supp (µ). Consequently uµ vanishes outside Tq-supp(µ), i.e., F ⊂q Tq-supp (µ).

Second proof The result follows by Proposition 5.7 and Definition 5.8 �
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Definition 5.27 Let u be a positive solution and A a Borel set. Put

[u]A := sup{[u]F : F ⊂q A, F q−closed}.

Definition 5.28 Let β > 0, u ∈ C(QT ). For any Borel set A we define uAβ the positive solution of

∂tv −∆v + |v|q−1v = 0, in RN × (β,∞)

v(x, β) = χA(x)u(x, β) in RN × {β}.

Proposition 5.29 Let u be a positive solution of (3.1) and put E = Tq-supp (u).
(i) If D is a Tq-open set such that E ⊂q D then

[u]D = lim
β→0

uDβ = [u]D = u. (5.37)

(ii) If A is a Tq-open set

u ≈A 0 ⇔ uQ = lim
β→0

uQβ = 0, ∀Q q−open : Q̃ ⊂q A. (5.38)

(iii) Finally,
u ≈A 0 ⇔ [u]A = 0. (5.39)

Proof. The proof is same as in [23]
Case 1: E is closed. Since u vanishes in Ec, it follows u ∈ C(Q∞ ∪ Ec) and u = 0 on Ec. If, in addition,
D is an open neighborhood of E we have

lim
t→0

∫

Ec

φ(x)u(x, t)dx = 0, ∀φ ∈ C0(E
c).

Thus,
limuD

c

β = 0.

Since
uDβ ≤ u ≤ uDβ + uD

c

β , ∀t ≥ β,

it follows
u = limuDβ . (5.40)

If we assume that D is Tq-open and E ⊂q D then, for every ε > 0, there exists an open set Oε such that
D ⊂ Oε, E ⊂ Oε and C 2

q
, q′(O

′
ε) < ε where O′

ε = Oε \D. It follows

uOε

β (x, t)− uDβ (x, t) ≤ UO′
ε
(x, t− β), ∀t ≥ β.

We note here that the limε→0 UO′
ε
(x, t− β) = 0 uniformly with respect to β. Since limβ→0 u

Oε

β (x, t) = u it

follows that u = lim uDβ . The same arguments shows that limuD
c

β = 0. Thus we have

u = lim uDβ ≤ [u]D ≤ u.

Hence u = [u]D. By Lemma 2.7, there exists a Tq-open set Q such that E ⊂q Q ⊂ Q̃ ⊂q D, then
u = [u]Q ≤ [u]D. Hence u = [u]D.
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In addition, in this case for (5.38), we have that E ⊂q Ac ⊂q Q̃c. Thus the direction ”⇒” follows by
the previous argument if we replace D by Q̃c. For the opposite direction, by Proposition 2.10, we have for

any ξ ∈ A, there exist a Tq-open set Oξ such that Õξ ⊂q A. Thus we have that by (i) that u = lim u
Õc

ξ

β .

Now since u
Õc

ξ

β ≈Qξ
0, ∀β > 0, by Proposition 5.17(i), we have that u ≈Oξ

0, and the result follows in this
case by Proposition 5.19(iv).

Case 2. E Tq-closed. Let {En} be a Tq-stratification of E such that C 2
q
, q′(E \ En) → 0. If D is a

Tq-open such that E ⊂q D then, by the first case we have,

lim
β→0

([u]En)
D
β = [u]En . (5.41)

By (5.34) and definition of uDβ , we have (since [u]E = u)

uDβ = ([u]E)
D
β ≤ ([u]E∩En)

D
β +

(
[u]E\En

)D
β
= ([u]En)

D
β +

(
[u]E\En

)D
β
. (5.42)

Let βk be a decreasing sequence to the origin, such that the following limits exist

w := lim
k→∞

uDβk , wn = lim
k→∞

(
[u]E\En

)D
βk
, n = 1, 2, ... .

Then by (5.41) and (5.42),
[u]En ≤ w ≤ [u]En + wn ≤ [u]En + UE\En

.

Further, by (5.33) and Proposition 5.20(c)

[u]En → [u]E = u, UE\En
→ 0.

Hence w = u. This implies (5.40) which in turn implies (5.37).
To verify (5.38) in the direction ⇒ we apply (5.42) with D replaced by Q. We obtain

([u]E)
Q
β ≤ ([u]En)

Q
β +

(
[u]E\En

)Q
β
.

By the first case we have
lim
β→0

([u]En)
Q
β = 0.

Let βk be a decreasing sequence to the origin, such that the following limits exist

lim
k→∞

uQβk , lim
k→∞

(
[u]E\En

)Q
βk
, n = 1, 2, ... .

Then
lim
k→∞

uQβk ≤ lim
k→∞

(
[u]E\En

)Q
βk

≤ UE\En
,

since UE\En
→ 0 we obtain (5.38) in the direction ⇒ . The assertion in the opposite direction is proved

as in Case 1. This complete the proofs of (i) and (ii).
Finally we prove (iii). First assume that u ≈A 0. If F is a Tq-closed set such that F ⊂q A, then by

Lemma 2.7 there exists a Tq-open set Tq such that F ⊂q Q ⊂ Q̃ ⊂q A. Therefore, applying (5.37) to
v := [u]F and using (5.38) we obtain

v = lim vQβ ≤ lim uQβ = 0.

By definition of [u]A, this implies [u]A = 0.
If [u]A = 0, Then for any Tq-open set Q ⊂ Q̃ ⊂q A we have [u]Q = 0.. Now since Tq-supp (u

Q
β ) ⊂q Q̃

we have for some subsequence βk ↓ 0, limk→∞ uQβk ≤ [u]Q = 0. Thus by (5.38) we have u ≈Q 0. Applying
once again Proposition 2.10 and Proposition 5.19(iv) we conclude u ≈A 0. �
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Definition 5.30 Let u, v ∈ U+(QT ) and let A be a Tq-open set. We say that u = v on A if u ⊖ v and
v ⊖ u vanishes on A. This relation is denoted by u ≈A v.

Proposition 5.31 Let u, v ∈ U+(QT ) and let A be a Tq-open set. Then,
(i)

u ≈A v ⇔ lim
β→0

|u− v|Qβ = 0. (5.43)

for every Tq-open set Q such that Q̃ ⊂q A.
(ii)

u ≈A v ⇔ [u]F = [v]F , (5.44)

for every Tq-closed set F such that F ⊂q A.

Proof. The proof is same as in [23].
By definition u ≈A v is equivalent to u ⊖ v ≈A= 0 and v ⊖ u ≈A= 0. Hence, by (5.38) we have wβ =

(u⊖ v)Qβ →β→0 0. Set fβ = ((u− v)+)
Q
β and consider the problem

∂tw −∆w + |w|q = 0, in Bj(0)× (β,∞)

w = 0, on ∂Bj(0)× (β,∞)

w(x, s) = µ, in µ× {β}.

Let wj and fj be solutions of the above problem, with initial data χQ(u⊖ v)(x, β) and χQ(u− v)+(x, β).
By Lemma 2.7-[19], the sequence {wj} and {fj} are increasing. Also, we recall that u⊖ v is the smallest
solution which dominates the subsolution (u−v)+, thus wj ≥ vj , ∀j ∈ N. Furthermore, in view of Lemma
2.8-[19], we have limwj = wβ and lim fj = fβ. Thus wβ ≥ fβ and sending β to the origin we have

((u− v)+)
Q
β → 0.

By the same argument we have
((v − u)+)

Q
β → 0,

this implies (5.43) in the direction ⇒ .
For the opposite direction, we consider the problem

∂tw −∆w + |w|q = 0, in Bj(0)× (β,∞)

w = h, on ∂Bj(0)× (β,∞)

w(x, s) = µ, in µ× {β}.

Let Q ⊂ Q̃ ⊂q A be a Tq-open set and wj be the solution of the above problem, with h = χQ(|u− v|) and
µ = χQ|u−v|dx. Also, let fj be the solution of the above problem with h = χQc |u−v| and µ = χQc|u−v|dx,
then

|u− v| ≤ wj + fj.

In view of Lemma 2.8-[19], there exist a subsequence, say wj and fj such that limwj = w and lim fj = f,
such that w, f solve the problem

∂tv −∆v + |v|q−1v = 0, in RN × (β,∞)

v(x, β) = µ in RN × {β},
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with initial data µ = χQ|u− v|dx and µ = χQc|u − v|dx respectively. By uniqueness of the problem (see

Lemma 2.8-[19]), we have w = |u− v|Qβ and f = |u− v|Qc

β . Let βk be a decreasing sequence such that the
following limit exist

lim
k→∞

|u− v|Qc

βk
.

Since lim |u− v|Qβ = 0, we have

|u− v| ≤ lim
k→∞

|u− v|Qc

βk
.

Now since |u − v|Qc

βk
≈Q 0, by Proposition 5.17(i) we have limk→∞ |u − v|Qc

βk
≈Q= 0. Now using the fact

that u ⊖ v is the smallest solution which dominates the subsolution (u − v)+, we have u ⊖ v, v ⊖ u ≤
limk→∞ |u− v|Qc

βk
and the result follows in this case by Propositions 5.23 and 5.19(iv).

(ii) We assume that u ≈A v.
For any two positive solutions u, v we have

u+ (v − u)+ ≤ v + (u− v)+ ≤ v + u⊖ v (5.45)

If F is a Tq-closed set and Q a Tq-open set such that F ⊂q Q, we assert that

[u]F ≤ [v]Q + [u⊖ v]Q. (5.46)

To verify this inequality, firstly we observe that (see (5.34))

u = [u]RN ≤ [u]Q + [u]Qc ,

thus by (5.45)
[u]F ≤ [u]RN ≤ v + u⊖ v ≤ [v]Q + [v]Qc + [u⊖ v]Q + [u⊖ v]Qc .

The subsolution w := ([u]F − ([v]Q + [u⊖ v]Q))+ is dominated by the supersolution [u⊖ v]Qc + [v]Qc . By
definition we have

w ≤ [w]† ≤ [u⊖ v]Qc ⊕ [v]Qc ≤ [u⊖ v]Qc + [v]Qc ,

thus [w]† ≈Q 0. But w ≤ [u]F which implies [w]† ≤ [u]F , that is Tq-supp ([w]†) ⊂q F ⊂q Q. Taking into
account that [w]† ≈Q 0 we have that w = [w]† = 0 and the proof of (5.46) is completed.

If we choose a Tq-open set Q such that F ⊂q Q ⊂ Q̃ ⊂q A (see Lemma 2.7), then using the fact that
u⊖ v ≈A= 0 ⇒ [u⊖ v]F = 0 (see (5.39)) and (5.46), we have

[u]F ≤ [v]Q.

Now by Lemma 2.8(a), we can construct a decreasing sequence {Qj} of open sets such that ∩Qj ∼q F,
thus by Proposition 5.24(iii) we have

[u]F ≤ lim[v]Qn = [v]F .

Similarly, [v]F ≤ [u]F and hence equality.
Next we assume that [u]F = [v]F for any Tq-closed set F ⊂q A. If Q is a Tq-open set such that

F ⊂q Q ⊂ Q̃ ⊂q A (see Lemma 2.7), we have

u⊖ v ≤ ([u]Q ⊕ [u]Qc)⊖ [v]Q,

where in the last inequality we have used the fact that

u = [u]RN ≤ [u]Q + [u]Qc ⇒ u ≤ [u]Q ⊕ [u]Qc ≤ [u]Q + [u]Qc .

32



Now since ([u]Q ⊕ [u]Qc)⊖ ([v]Q) is the smallest solution dominating (([u]Q ⊕ [u]Qc)− [v]Q)+ , we have

(([u]Q ⊕ [u]Qc)− [v]Q)+ ≤ (([u]Q + [u]Qc)− [v]Q)+ = [u]Q + [u]Qc − [v]Q = [u]Qc ,

since by assumption we have [u]Q = [v]Q. Thus we have

[u⊖ v]F ≤ u⊖ v ≤ [u]Qc ,

That is Tq-supp ([u⊖ v]F ) ⊂q F and [u⊖ v]F ≈Q 0, which implies [u⊖ v]F = 0, and by 5.39 u⊖ v ≈A= 0.
Similarly, v ⊖ u ≈A 0. �

Corollary 5.32 If A is a Tq-open set, the relation ≈A is an equivalence relation in U+(QT ).

Proof. This is an immediate consequence of (5.43). �

6 The precise initial trace

6.1 The regular initial set.

Lemma 6.1 Let u ∈ U+(QT ) and Q be a Tq-open set. Then for any η ∈ W
2
q
,q′(RN ) ∩ L∞(RN ) with

Tq-support in Q̃
c, we have ∫ T

0

∫

RN

(u ∧ UQ)q(t, x)H2q′ [η]+dxdt <∞.

Proof. By Proposition 5.9 and the properties of UQ, we have

lim
t→0

∫

Q

u ∧ UQ(x, t)η2q
′

+ (x)dx = 0,

and the result follows by the estimates in Lemma 5.11. �

Proposition 6.2 Let u ∈ U+(QT ) and Q be a Tq-open set. We assume that u∧UQ is a moderate solution
with initial data µ. Then for any ξ ∈ Q there exists a Tq-open set Oξ ⊂ Q such that

∫ T

0

∫

RN

uq(t, x)H2q′ [χOξ
]+dxdt <∞.

Furthermore, for any η ∈W
2
q
,q′(RN ) ∩ L∞(RN ) with Tq-support in Q, we have

lim
t→0

∫

Q

u(x, t)η2q
′

+ (x)dx =

∫

Q

η2q
′
dµ

Proof. Let η ∈ W
2
q
,q′(RN ) ∩ L∞(RN ) with Tq-support in Q. Since η

2q′

+ is a quasi continuous function we
have by Lemma 5.7 that

lim
t→0

∫

Q

u ∧ UQ(x, t)η2q
′

+ (x)dx =

∫

Q

η2q
′
dµ.

By properties of UQc we have

lim
t→0

∫

Q

u ∧ UQc(x, t)η2q
′

+ (x)dx = 0.
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Combining all above and using the fact that u ≤ u ∧ UQ + u ∧ UQc we have

∫

Q

η2q
′
dµ = lim

t→0

∫

Q

u ∧ UQ(x, t)η2q
′

+ (x)dx ≤ lim
t→0

∫

Q

u(x, t)η2q
′

+ (x)dx

≤ lim
t→0

∫

Q

u ∧ UQ(x, t)η2q
′

+ (x)dx + lim
t→0

∫

Q

u ∧ UQc(x, t)η2q
′

+ (x)dx

=

∫

Q

η2q
′
dµ+ 0.

In view of the proof of Lemma 5.2 and by 5.3 we have

∫ T

0

∫

RN

(u ∧ UQ)q(t, x)H2q′ [η]+dxdt <∞, (6.1)

for any η ∈ W
2
q
,q′(RN ) ∩ L∞(RN ) with Tq-support in Q. By Lemma 4.2, there exists η ∈ W

2
q
,q′(RN ) ∩

L∞(RN ) such that 0 ≤ η ≤ 1, η = 1 on Oξ ⊂ Q and Tq-supp (η) ⊂ Q. Thus we have by (6.1) and the
properties of η ∫ T

0

∫

RN

(u ∧ UQc)q(t, x)H2q′ [χOξ
]dxdt <∞. (6.2)

�

Definition 6.3 (Section 10.1-[2]) Let Q be a Borel set. We denote W
2
q
,q′
(Ec) the closure of the space of

C∞ functions (with respect the norm || · ||
W

2
q ,q′ ) with compact support in Ec

Proposition 6.4 Let u be a positive solution of (3.1) and Q be a bounded Tq-open set such that

∫ T

0

∫

RN

uq(t, x)H2q′ [χQ]dxdt <∞.

(i) Then, there exists an increasing sequence of Tq-open set {Qn} with the properties Qn ⊂ Q, Q̃n ⊂q Qn+1

and Q0 :=
⋃∞
n=1Qn ∼q Q, such that the solution

vn = u ∧Qn is moderate vn ↑ uQ, tr(vn) → µQ

(ii) For any η ∈W
2
q
,q′
(Q) we have

lim
t→0

∫

Q

u(x, t)η2q
′

+ (x)dx =

∫

Q

η2q
′

+ (x)dµQ.

Proof. We Choose a point z ∈ Q. Then by Lemma 4.2 there exists a Tq-open set V, such that z ∈ V ⊂
Ṽ ⊂ Q, and a function ψ ∈W

2
q
,q′(RN ) such that ψ = 1 q.e. on V and ψ = 0 outside Q. By Lemma 2.10,

there exist a Tq-open set z ∈ Oz ⊂ Õz ⊂ V.
We assert that the solution

vz = u ∧ UOz (6.3)

is moderate.
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Indeed, let BR(0) be a ball with radius R large enough such that Q ⊂⊂ BR(0). Also, let 0 ≤ η ≤ 1 be
a smooth function with compact support in B2R(0) and η = 1 on BR(0). Then the function ζ = (1−ψ)η ∈
W

2
q
,q′(RN ) ∩ L∞(RN ) with compact support in B2R(0) \ Ṽ . Now
∫ T

0

∫

RN

vqz(t, x)H
2q′ [χBR(0)]dxdt ≤

∫ T

0

∫

RN

vqz(t, x)H
2q′ [ψ]dxdt+

∫ T

0

∫

RN

vqz(t, x)H
2q′ [1− ψ]dxdt

≤
∫ T

0

∫

RN

vqz(t, x)H
2q′ [ψ]dxdt+

∫ T

0

∫

RN

vqz(t, x)H
2q′ [ζ]dxdt <∞,

where the first integral in the last inequality is finite by assumption and the second integral is finite by
Lemma 6.1. Thus since BR(0) is abstract, we have that u ∧Oz is a moderate solution.

By quasi-Lindelof property there exists a non decreasing sequence of Tq- open set {On} such that
Q ∼q ∪On and (by the above arguments) the solution u ∧ UOn is moderate for any n ∈ N. Now, by
Lemma 2.8 (b)(i)-(ii), for any n ∈ N, there exists an increasing sequence {An,j} of Tq-open set such that

Ãn,j ⊂q An,j+1 ⊂q En and
⋃∞
j=1An,j ∼q En. Put

Qn =
⋃

k+j=n

Ak,j,

but
Q̃n ⊂

⋃

k+j=n

Ãk,j ⊂q
⋃

k+j=n

Ãk,j+1 = Qn+1.

Hence,
Q0 := ∪Qn ∼q Q.

Now we will prove that vn = u ∧ UQn → u ∧ UQ. By Lemma 5.24(ii) we have

u ∧ UQ ≤ u ∧ UQn + u ∧ UQ\Qn
.

Since Q \Qn ↓ F with C 2
q
, q′(F ) = 0, we have by Lemma 5.24(iii) that

u ∧ UQ\Qn
→ 0.

The opposite inequality is obvious and the result follows in this assertion. By Lemma 5.24(ii) vn =
[vn+k]Qn , ∀k ∈ N. Therefore

µn(Qn) = µn+k(Qn) = µQ(Qn). (6.4)

(ii) First we assume that the function η ∈W
2
q
,q′(Q) has compact support in Q. Then by Lemma 4.3 there

exists a function ηk such that Tq-supp (ηk) ⊂ Qk

||η − ηk||
W

2
q ,q′ ≤

1

k
, (6.5)

and |ηk| ≤ |η|. Also, by Lebesgue’s dominated theorem, we can assume that ηk satisfies

∫ T

0

∫

RN

uq(t, x)(H[η − ηk])
2q′dxdt <

1

k

Also in view of your notes we have

lim
t→0

∫

Q

u(x, t)η2q
′
(x)dx ≤ C||η||q′

L∞(RN )
||η||q′

W
2
q ,q′

+

∫ T

0

∫

RN

uq(t, x)(H[η])2q
′
dxdt,
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But by (6.4) and Lemma 6.2 we have

(∫

Q

η2q
′

k (x)dµQ

) 1
2q′

= lim
t→0

(∫

Q

u(x, t)η2q
′

k (x)dx

) 1
2q′

≤ lim
t→0

(∫

Q

u(x, t)η2q
′
(x)dx

) 1
2q′

≤ lim
t→0

(∫

Q

u(x, t) (η − ηk)
2q′ (x)dx

) 1
2q′

+ lim
t→0

(∫

Q

u(x, t)η2q
′

k (x)dx

) 1
2q′

≤
(∫

Q

η2q
′

k (x)dµQ

) 1
2q′

+C||η − ηk||
1
2

L∞(RN )
||η − ηk||

1
2

W
2
q ,q′

+

(∫ T

0

∫

RN

uq(t, x)(H[η − ηk])
2q′dxdt

) 1
2q′

≤
(∫

Q

η2q
′

k (x)dµQ

) 1
2q′

+C
1√
k
||η||

1
2

L∞(RN )
+

(
1

k

) 1
2q′

.

The result follows in this case sending k to infinite.
For the general case, by theorem 10.1.1 in [2], there exists a function ηk with compact support in Q such
that

||η − ηk||
W

2
q ,q′ ≤

1

k
, (6.6)

and |ηk| ≤ |η|. The result follows as above. �

Remark. By Lemma 6.2 and (6.3), we have that the definition of the regular points in the elliptic case
(see [23]) coincides with our definition of the regular points.

Lemma 6.5 Let the assumptions of Lemma 6.4 be satisfied. Then
a)

uQ = sup{[u]F : F ⊂q Q, F q−closed}.

b) For every Tq-open set O ⊂ Õ ⊂q Q such that [u]O is a moderate solution we have

µQχÕ = tr′[u]O) = tr([uQ]O). (6.7)

Finally, µQ is Tq-locally finite on Q and σ-finite on Q′ := ∪Qn.
c) If {wn} ⊂ U+(QT ) be a nondecreasing sequence of moderate solutions such that wn ↑ uQ and Tq-supp(wn) ⊂q

Q then tr(wn) = νn ↑ µQ.

Proof. a) By Proposition 3.4 there exists a nondecreasing sequence {[u]Fn} such that [u]Fn ↑ u∗. We
consider the function [u]Qn of Lemma 6.4. Then by Proposition 5.24 we have

[u]Fn ≤ [u]Fn∩Qm + [u]Fn\Qm
.

Now we note that Fn\Qm is a Tq-closed set and ∩∞
m=1Fn\Qm = A with C 2

q
, q′(A) = 0. Thus by Proposition

5.19 we have that limm→∞ UFn\Qm
= 0 which implies limm→∞[u]Fn\Qm

= 0. Thus [u]Fn ≤ lim[u]Qm = uQ.
Letting n→ ∞ we have u∗ ≤ uQ. By definition of u∗ we have that uQ ≤ u∗, thus u∗ = uQ.

b) Put µO = tr([u]O). If F is a Tq-closed set such that F ⊂q O , by Proposition 5.24-(ii) we have

tr([u]F ) = tr([[u]O]F ) = µOχF . (6.8)
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In particular the compatibility condition holds: if O′ ⊂ Õ′ ⊂q Q is Tq-open set such that [u]O′ is moderate
solution

µO∩O′ = µOχÕ∩Õ′ = µO′χ
Õ∩Õ′ . (6.9)

With the notation of (6.4), [vn+k]Qk
= vk and hence µn+kχQ̃k

= µk for every k ∈ N.
Since [u]F is moderate, we have by (6.9)

[vn]F = [u]
F∩Q̃n

↑ [u]F . (6.10)

In addition, [uQ]F ≥ lim[vn]F = [u]F and uQ ≤ u lead to,

[u]F = [uQ]F . (6.11)

By (6.8) and (6.10), if F is a Tq-closed subset of Rq(u) and [u]F is moderate,

tr([u]F ) = lim tr([vn]F ) = limµnχF = µRqχF , (6.12)

which implies (6.7).
Since Q′ := ∪Qn ∼q Q, µQ is σ-finite on Q′. The assertion that µQ is Tq-locally finite on Q is a

consequence of the fact that every point in Q is contained in a Tq-open set O ⊂q Õ ⊂ Q such that [u]O is
moderate solution (see (6.3)).

c) If w is a moderate solution and w ≤ uQ and Tq-supp (w) ⊂q Q then τ := tr(w) ≤ µQ. Indeed

[w]Qn ≤ [u]Qn = vn, [w]Qn ↑ w ⇒ tr([w]Qn) ↑ τ ≤ lim tr(vn) = µQ.

Now, let {wn} be an increasing sequence of moderate solutions such that Fn := Tq-supp (wn) ⊂q Q
and wn ↑ uQ. We must show that, if νn := tr(wn), then

ν := lim νn = µQ. (6.13)

By the previous argument ν ≤ µQ. The opposite inequality is obtained as follows. Let D be a Tq-open
set such that [u]D is moderate. Also, let K be a compact subset of D such that C 2

q
, q′(K) > 0.

wn ≤ [wn]D + [wn]Dc ⇒ uQ = limwn ≤ lim[wn]D + UDc .

The sequence {[wn]D} is dominated by the moderate solution [uQ]D. In addition tr([wn]D) = νnχD̃ ↑ νχ
D̃
.

Hence, νχ
D̃

is a Radon measure which vanishes on sets with C 2
q
, q′-capacity zero. Also, [wn]D ↑ uνχ

D̃
,

where uνχ
D̃
is a moderate solution with initial trace νχ

D̃
. Consequently

uQ = limwn ≤ uνχ
D̃
+ UDc .

This in turn implies (
[uQ]K − uνχ

D̃

)
+
≤ inf(UDc , UK),

the function on the left being a subsolution and the one on the right a supersolution. Therefore
(
[uQ]K − uνχ

D̃

)
+
≤ [[U ]Dc ]K = 0.

Thus, [uQ]K ≤ uνχ
D̃

and hence µQχK ≤ νχ
D̃
. Further, if O is a Tq-open set such that Õ ⊂q D then, in

view of the fact that
sup{µQχK : K ⊂ O, K compact} = µQχO,
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we obtain,
µQχO ≤ νχ

D̃
. (6.14)

Applying this inequality to the sets Qm, Qm+1 we finally obtain

µQχQm ≤ νχ
Q̃m+1

≤ νχQm+2 .

Letting m→ ∞ we conclude that µRq ≤ ν. This completes the proof of (6.13). �

6.2 Tq-perfect measures.

Definition 6.6 Let µ be a positive Borel measure on RN .
(i) We say that µ is essentially absolutely continuous relative to C 2

q
, q′ if the following condition

holds:
If Q is a Tq-open set and A is a Borel set such that C 2

q
, q′(A) = 0 then

µ(Q \ A) = µ(Q).

This relation be denoted by
µ ≺≺f C 2

q
, q′ .

(ii) µ is regular relative to Tq-topology if, for every Borel set E,

µ(E) = inf{µ(D) : E ⊂ D, D q−open}
= inf{µ(K) : K ⊂ E, K compact}. (6.15)

µ is outer regular relative to Tq-topology if the first equality in (6.15) holds.
(iii) A positive Borel measure is called Tq-perfect if it is essentially absolutely continuous relative to C 2

q
, q′

and outer regular relative to Tq-topology. The space of Tq-perfect Borel measures is denoted by Mq(RN ).

Proposition 6.7 If µ ∈ Mq(RN ) and A be a non-empty Borel set such that C 2
q
, q′(A) = 0 then

µ =

{
∞ if µ(Q \ A) = ∞ ∀Q q− open neighborhood of A,

0 otherwise.
(6.16)

If µ0 is an essentially absolutely continuous positive measure on RN and Q is Tq-open set such that
µ0(Q) < ∞ then µ0|Q is absolutely continuous with respect to C 2

q
, q′ in the strong sense, i.e., if

{An} is a sequence of Borel subset of RN

C 2
q
, q′(An) → 0 ⇒ µ0(Q ∩An) → 0.

Let µ0 is an essentially absolutely continuous positive Borel measure on RN .
Put

µ(E) = inf{µ0(D) : E ⊂ D, D q−open}, (6.17)

for every Borel set E. Then

(a) µ0 ≤ µ µ0(Q) = µ(Q) ∀Q q−open,

(b) µ|Q = µ0|Q for every Tq-open set Q such that µ0(Q) <∞. (6.18)

Finally µ is Tq-perfect; thus µ is the smallest measure in Mq(RN ) which dominates µ0.
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Proof. The first assertion follows immediately from the definition Mq(RN ). We turn to the second asser-
tion. If µ0 is an essentially absolutely continuous positive Borel measure on RN , and Q is a Tq-open set such
that µ0(Q) < ∞ then µ0χQ is a bounded Borel measure which vanishes on sets of C 2

q
, q′− capacity zero.

If {An} is a sequence of Borel sets such that C 2
q
, q′(An) → 0 and µn = χQ∩An , then by Lemma 2.8-[19],

there exist a unique moderate solution uµn . Also in view of Lemma 2.8-[19] we can prove that the sequence
{uµn} is decreasing. Also by Proposition 5.17, we have uµn ≤ UQ∩An → 0, since C 2

q
, q′(Q∩An) → 0. Thus

we have that uµn → 0 locally uniformly and µn ⇀ 0 weakly wit respect to C0(RN ). Hence µ(Q∩An) → 0.
Thus µ0|Q is absolutely continuous with respect to C 2

q
, q′ in the strong sense.

Assertion (6.18)(a) follows from (6.17). It is clear that µ, as defined by (6.17), is a measure. Now if Q
is Tq-open set such that µ0(Q) <∞ then µ(Q) <∞ and both µ0|Q and µ|Q are regular. Since they agree
on open sets, the regularity implies (6.18) (b).

If A is a Borel set such that C 2
q
, q′(A) = 0 and Q is a Tq-open set then Q\A is Tq-open and consequently

µ(Q) = µ0(Q) = µ0(Q \ A) = µ(Q \A).

Thus µ is essentially absolutely continuous. By (6.18) (a) and the definition of µ, we have that µ is outer
regular with respect to C 2

q
, q′ . Thus µ ∈ Mq(RN ). �

6.3 The initial trace on the regular set

Proposition 6.8 Let u ∈ U+(QT ).
(i) There exists an increasing sequence of Tq-open set {Qn} with the properties Qn ⊂ Rq(u), Q̃n ⊂q Qn+1

and Rq,0(u) :=
⋃∞
n=1Qn ∼q R(u), such that the solution

vn = u ∧Qn is modarate vn ↑ vRq , tr(vn) → µRq . (6.19)

(ii)
vRq := sup{[u]F : F ⊂q Rq(u), F q−closed}. (6.20)

Thus vRq is σ-moderate.
(iii) If [u]F is moderate and F ⊂q Rq(u), there exists a Tq-open set Q such that F ⊂q Q, [u]Q is moderate
solution and Q ⊂ Rq(u)
(iv) For every Tq-open set Q, such that [u]Q is a moderate solution, we have

µRqχQ̃ = tr([u]Q) = tr([vRq ]Q). (6.21)

Finally, µRq is Tq-locally finite on Rq(u) and σ-finite on Rq,0(u) := ∪Qn.
(v) If {wn} is a sequence of moderate solutions such that wn ↑ uRq then,

µRq = lim tr(wn) := lim νn. (6.22)

(vi) The regularized measure µRq
given by

µRq
(E) = inf{µRq (Q) : E ⊂ Q, Q Tq-open, E Borel}, (6.23)

is Tq-perfect.
(vii)

u ≈Rq(u) vRq .

(viii) For every Tq-closed set F ⊂q Rq(u) :

[u]F = [vRq ]F . (6.24)
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If, in addition, µRq(F ∩K) <∞ for any compact K ⊂ RN , then [u]F is moderate and

tr([u]F ) = µRqχF . (6.25)

(ix) If F is a Tq-closed set and C 2
q
, q′(F ) > 0 then

µRq (F ∩K) <∞ for any compact K ⊂ RN ⇔ [u]F is moderate. (6.26)

Proof. (i) For any z ∈ Rq(u) there exist a bounded Tq-open set Q ⊂ Rq(u) such that

∫ T

0

∫

RN

uq(t, x)H2q′ [χQ]dxdt <∞.

The result follows by similar arguments as in Lemma 6.4. Also, we recall that for any z ∈ Rq(u) there
exists a Tq-open set Oz ⊂ Rq(u) such that

[u]Oz , (6.27)

is moderate.
Also we recall that vn = [vn+k]Qn , ∀k ∈ N and

µn(Qn) = µn+k(Qn) = µRq(Qn). (6.28)

(ii) The proof is same as the proof of Lemma 6.5-a)
(iii) First we assume that F is bounded. By definition and (6.27), every point in Rq(u) possesses a Tq-open
neighborhood A such that [u]A is moderate. Then by Proposition 2.9, for any ε > 0 there exists a Tq-open
set Qε such that C 2

q
, q′(F \Qε) < ε and [u]Qε is moderate. Let Oε be an open set containing F \Qε such

that C 2
q
, q′(Oε) < 2ε. Put

Fε := F \Oε. (6.29)

Then Fε is a Tq-closed set, Fε ⊂ F, C 2
q
, q′(F \ Fε) < 2ε and Fε ⊂ Qε. Note that since F is bounded, we

have that Qε is bounded.
Assertion 1. Let E be a Tq-closed set, D a Tq-open set such that [u]D is moderate and E ⊂q D. Then
there exists a decreasing sequence of Tq-open sets {Gn} such that

E ⊂q Gn+1 ⊂ G̃n+1 ⊂q Gn ⊂q D, (6.30)

and
[u]Gn → [u]E in Lq(K) for any compact K ⊂ QT . (6.31)

By Lemma 2.8 and Proposition 5.24-(iii), there exists a decreasing sequence of Tq-open sets {Gn}
satisfying (6.30) and, in addition, such that [u]Gn ↓ [u]E locally uniformly in RN . Since [u]Gn ≤ [u]D and
the latter is a moderate solution we obtain (6.31).

Now we assume that F is Tq-closed set (possibly unbounded). Let x ∈ F and Bn = Bn(x); n ∈ N. Set

En = ∪nm=1(F ∩Bn) 1
2m
,

where (F ∩ Bn) 1
2m

is the set in (6.29), if we replace F by F ∩ Bn and ε by 1
2m . Also we assume without

loss of generality that {En} is an increasing sequence. Also set

Qn = ∪nm=1Q
n
1
m

,
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where Qn1
m

= (F ∩Bn) 1
m
. Also we may assume that the sequence of set {Qn} is increasing. Therefore, we

have that En ⊂ E, Qn is Tq-open, [u]Qn is moderate and En ⊂q Qn and ∪En = E′ ∼q F, since

C 2
q
, q′(F \ ∪∞

n=1En) ≤
n∑

k=1

C 2
q
, q′

(
(F ∩Bk) \ ∪∞

j=1Ej
)

+
∞∑

k=n+1

C 2
q
, q′ ((F ∩Bk) \ Ek)

≤ 1

2n
+

∞∑

k=n+1

1

2k
, ∀n ∈ N.

Thus by Assertion 1, it is possible to choose a sequence of Tq-open sets {Vn} such that

En ⊂q Vn ⊂ Ṽn ⊂q Qn, ||[u]Vn − [u]En ||Lq(Bn(0))×(0,T ] ≤ 2−n. (6.32)

We note here that since En, Qn are bounded sets, the function [u]Vn , [u]En have compact support
with respect to variable ”x” in RN , thus we can take the norm in (6.32) in whole space RN × (0, T ].

Now since [u]F is moderate, there exists a Radon measure µF where µF = tr([u]F ). Also, since F ∼q E′,
we have [u]F = [u]E′ . Finally, we have by (5.35) and the fact that En ⊂q F,

[u]En = [u]En∩F = [[u]En ]F .

Using the above equality and the fact that [u]F is moderate, we have that tr([u]En) = χEnµF . Now since
En ↑ E′ ∼q F, we have that

[u]En ↑ [u]F , in Lq(K × [0, T ]), for each bounded K ⊂ RN .

Hence, by (6.32) we have that

[u]Vn → [u]F , in Lq(K × [0, T ]), for each bounded K ⊂ RN .

Let {Vnk
} be sequence such that

(∫ 1

0

∫

Bk(0)
|[u]Vnk

− [u]F |qdxdt
) 1

q

≤ 2−k. (6.33)

Let K be a compact set, then there exist a k0 ∈ N such that K ⊂ Bk(0), ∀k ≥ k0. Also set W =
⋃∞
k=1 Vnk

and note that

[u]W ≤
∞∑

k=1

[u]Vnk
.

Thus we have

(∫ T

0

∫

K

|[u]W − [u]F |qdxdt
) 1

q

≤
k0∑

k=1

(∫ T

0

∫

K

|[u]Vnk
− [u]F |qdxdt

)

+

∞∑

k=k0+1

(∫ T

0

∫

Bk(0)
|[u]Vnk

− [u]F |qdxdt
) 1

q

≤
k0∑

k=1

(∫ T

0

∫

K

|[u]Vnk
− [u]F |qdxdt

)
+

∞∑

k=k0+1

2−k <∞.
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We recall that F ⊂q W and W is a Tq-open set. Using the facts that [u]F is moderate, K is an abstract
compact domain and the above inequality, we obtain that [u]W is moderate. Thus by Lemma 6.2 we have
that W ⊂ Rq(u).
(iv) Let Q be a Tq-open set and [u]Q be a moderate solution, put µQ = tr([u]Q). If F is a Tq-closed set
such that F ⊂q Q then, by Proposition 5.24-(ii)

tr[u]F = tr([[u]Q]F ) = µQχF . (6.34)

In particular the compatibility condition holds: if Q, Q′ are Tq-open regular sets then

µQ∩Q′ = µQχQ̃∩Q̃′ = µQ′χ
Q̃∩Q̃′ . (6.35)

With the notation of (a), [vn+k]Qk
= vk and hence µn+kχQ̃k

= µk for every k ∈ N.
Let F be an arbitrary Tq-closed regular subset of Rq(u). Since [u]F is moderate, we have by (6.35)

[vn]F = [u]
F∩Q̃n

↑ [u]F . (6.36)

In addition, [vRq ]F ≥ lim[vn]F = [u]F and vRq ≤ u lead to,

[u]F = [vRq ]F . (6.37)

By (6.34) and (6.36), if F is a Tq-closed subset of Rq(u) and [u]F is moderate,

tr([u]F ) = lim tr([vn]F ) = limµnχF = µRqχF , (6.38)

which implies (6.21).
Since Rq,0(u) has a regular decomposition, µRq is σ-finite on Rq,0(u). The assertion that µRq is Tq-

locally finite on Rq(u) is a consequence of the fact that every point ξ ∈ Rq(u) is contained in a Tq-open
set Oξ ⊂ Rq(u) such that [u]Oξ

is moderate and thus µRqχOξ
<∞ .

(v) If w is a moderate solution and w ≤ vRq and Tq-supp (w) ⊂q Rq(u) then τ := tr(w) ≤ µRq . Indeed

[w]Qn ≤ [vRq ] = vn, [w]Qn ↑ w ⇒ tr([w]Qn) ↑ τ ≤ lim tr(vn) = µRq .

Now, let {wn} be an increasing sequence of moderate solutions such that Fn := Tq-supp (wn) ⊂q Rq(u)
and wn ↑ vRq . We must show that, if νn := tr(wn),

ν := lim νn = µRq . (6.39)

By the previous argument ν ≤ µRq . The opposite inequality is obtained as follows. Let D be a Tq-open
set, [u]D be moderate and let K be a compact subset of D such that C 2

q
, q′(K) > 0.

wn ≤ [wn]D + [wn]Dc ⇒ vRq = limwn ≤ lim[wn]D + UDc .

The sequence {[wn]D} is dominated by the moderate function [vRq ]D. In addition tr([wn]D) = νnχD̃ ↑ νχ
D̃
.

Hence, νχ
D̃

is a Radon measure which vanishes on sets with C 2
q
, q′-capacity zero. Also, [wn]D ↑ uνχ

D̃
,

where the function on the right is the moderate solution with initial trace νχ
D̃
. Consequently

vRq = limwn ≤ uνχ
D̃
+ UDc .

This in turn implies (
[vRq ]K − uνχ

D̃

)
+
≤ inf(UDc , UK),
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the function on the left being a subsolution and the one on the right a supersolution. Therefore

(
[vRq ]K − uνχ

D̃

)
+
≤ [[U ]Dc ]K = 0.

Thus, [vRq ]K ≤ uνχ
D̃

and hence µRχK ≤ νχ
D̃
. Further, if Q is a Tq-open set such that Q̃ ⊂q D then, in

view of the fact that
sup{µRqχK : K ⊂ Q, K compact} = µRqχQ,

we obtain,
µRqχQ ≤ νχ

D̃
. (6.40)

Applying this inequality to the sets Qm, Qm+1 we finally obtain

µRqχQm ≤ νχ
Q̃m+1

≤ νχQm+2.

Letting m→ ∞ we conclude that µRq ≤ ν. This completes the proof of (6.39) and of assertion (v).
(vi) The measure µRq is essentially absolutely continuous relative to C 2

q
, q′ . Therefore this assertion follows

by Proposition 6.7.
(vii) By (5.34)

u ≤ [u]Qn + [u]Qc
n
.

Now since Qcn is Tq-closed and Qcn ↓ Rc
q,0(u), we have by Proposition 5.24-(iii) that

[u]Qc
n
↓ [u]Rc

q,0(u)
.

Hence
lim (u− [u]Qn) = u− vRq ≤ [u]Rc

q,0(u)
,

so that u⊖ vRq ≈Rq,0(u) 0. Since vRq ≤ u this is equivalent to the statement u ≈Rq,0(u) vRq .
(viii) (6.24) follows by the previous statement. Now we assume that µRq (F )χK < ∞ for any compact

K ⊂ RN . Now set Fn = F ∩ Q̃n. By (5.34).

[u]F ≤ [u]Fn + [u]F\Fn
= [u]Fn + [u]

F\Q̃n
≤ [u]Fn + [u]F\Qn

.

Now since F \Qn is a Tq-closed set and ∩F \Qn = G with C 2
q
, q′(G) = 0, we have by Proposition 5.24-(iii)

that [u]F\Qn
→ [u]G = 0. Hence [u]F = lim[u]Fn , and tr([u]Fn) = µRqχFn ↑ µRqχF0 = µRqχF . Since µRχF

is a Radon measure essentially absolutely continuous relative to C 2
q
, q′ , [u]F is moderate and (6.25) holds.

(ix) If µRq (F )χK < ∞ for any compact K ⊂ RN then, by (viii), [u]F is moderate. Conversely, if [u]F is
moderate, by (6.21), µRq(F )χK <∞ for any compact K ⊂ RN .
� Now, We will give an example in which we see that there exists a u ∈ U+(QT ) with Rq(u)RN but u is
not a moderate solution.

Example. Let η : [0,∞) → [0,∞) be a smooth function such that η(r) > 0 for any r > 0 and

limr→0+ η(r) = 0, (η goes to the origin very fast, for example η(r) = e−
1
r2 ). Let K be the close set

K = {(x′, xn) ∈ RN : |x′| ≤ η(xn), xn ≥ 0}.

Then K is thin at the origin 0.
Set f(x) = 1

ηn(xn)
if x ∈ K and f = 0 otherwise. We define the measure

µ = fdx.
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Then this measure has the properties
1.µ is Tq-locally finite
2. µ(Qn) <∞ where Qn = B2n(0) \B 1

n
(0) and ∪Qn ∼q RN

3. µ(F ) = 0 for any F such that C 2
q
, q′(F ) = 0.

4. There exists a non decreasing sequence of bounded Radon measures µn absolutely continuous with
C 2

q
, q′ such that

(a) Tq-supp (µn) ⊂ Q̃n, µn(A) = µn+k(A) for any A ⊂ Q̃n and any n, k ∈ N.
(b) limµn = µ
5. We can construct a solution u ∈ U+(QT ) with respect this measure.
As we see later this solution is unique since it is σ-moderate (see Proposition 6.12).

Lemma 6.9 Let µ be as in 1-4 above. Then there exists an open set Rq ∼q RN such that the measure µ
is a Radon measure in Rq.

Proof. We consider the ball BR(0) with R > 1. Then by Lemma 2.5 in ”precise.....” there exists a sequence
of open sets {O 1

m
}∞m=1 and n(m) ∈ N such that C 2

q
, q′(O 1

m
) < 1

m
, and

BR(0) \O 1
m

⊂
n(m)⋃

i=i

Qi. (6.41)

Now since O 1
m

is open we have

C 2
q
, q′(O 1

m
) = C 2

q
, q′(Õ 1

m
∪ (O 1

m
∩ eq(O))) ≤ C 2

q
, q′(Õ 1

m
) ≤ cC 2

q
, q′(O 1

m
) → 0,

where eq(O) is the set of thin points of O.
Thus if x ∈ BR(0) \

⋂∞
m=1O 1

m
there exist r > 0 small enough and N ∈ N such that

Br(x) ⊂ BR(0) \
N⋂

m=1

O 1
m
.

Thus by the properties of µ and (6.41) we have

µ(Br(x)) <∞.

We define
Rq := {x ∈ RN : ∃ r > 0 such that µ(Br(x)) <∞}.

Then the set Rq is open and by the above argument (if we sent R to infinity) we have that Rq ∼q RN .
Also by definition of Rq, we can easily prove that µ(K) <∞ for any compact K ⊂ Rq and by properties
of µ we can prove that µ is Radon measure in Rq. �

6.4 The precise initial trace.

Definition 6.10 Let q ≥ 1 + 2
N

and u ∈ U+(QT ).
a: The solution vRq defined by (6.20) is called regular component of u and will be denoted by ureg.
b: Let {vn} be an increasing sequence of moderate solutions satisfying condition (6.19) and put µRq =
µRq(u) := lim tr(vn). Then, the regularized measure µRq

, defined by (6.23), is called the regular initial

trace of u. It will be denoted by trRq (u).
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c: The couple (trRq (u),Sq(u)) is called the precise initial trace of u and will be denoted by trc(u).
d: Let ν be the Borel measure on RN given by

ν =

{
(trRq (u))(E) if E ⊂ Rq(u),

ν(E) = ∞ if E ∩ Sq(u) 6= ∅, (6.42)

for every Borel set E. Then ν is the measure representation of the precise trace of u, to be denoted by
tr(u).

Note that, by Proposition 6.8-(v), the measure µRq is independent of the choice of the sequence {vn}.

Theorem 6.11 Assume that u ∈ U+(QT ) is a σ-moderate solution, i.e., there exists an increasing se-
quence {un} of positive moderate solutions such that un ↑ u. Let µn = lim tr(un), µ0 := limµn and
put

µ(E) = inf{µ0(Q) : E ⊂ Q, Q Tq-open, E Borel}. (6.43)

Then:
(i) µ is the precise initial trace of u and µ is Tq-perfect. In particular µ is independent of the sequence
{un} which appears in its definition.
(ii) If A is a Borel set such that µ(A) <∞ then µ(A) = µ0(A).
(iii) A solution u ∈ U+(QT ) is σ-moderate if and only if

u = sup{v ∈ U+(QT ) : v moderate, v ≤ u}, (6.44)

which is equivalent to

u = sup{uτ ∈ U+(QT ) : τ ∈W− 2
q
,q(RN ) ∩M

b
+(R

N ), τ ≤ tr(u)}. (6.45)

(iv) If u, w are σ-moderate solutions,

tr(w) ≤ tr(u) ⇔ w ≤ u. (6.46)

Proof. The proof is an adaptation of the one in [23].
(i) Let Q be a Tq-open set and A a Borel set such that C 2

q
, q′(A) = 0. Then µn(A) = 0 so that µ0(A) = 0.

Thus µ0 is essentially absolutely continuous and, by Proposition 6.7, µ is Tq-perfect.
Let {Dn} be the family of Tq-open sets as in Proposition 6.8-(i). Put D′

n = Rq(u) \Dn and observe
that D′

n ↓ E where C 2
q
, q′(E) = 0. Therefore

uµnχD′
m

↓ 0, where the limit is with respect to m.

Thus there exist a subsequence, say {D′
n}, such that

(∫ T

0

∫

Bn(0)
|uµnχD′

n
|qdxdt

) 1
q

≤ 2−n.

Since,
µn(Rq(u)) = µnχDn + µnχD′

n
,

it follows that
lim
∣∣∣uµnχRq(u)

− uµnχDn

∣∣∣ ≤ limuµnχD′
n
= 0.
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Now
un ≤ uµnχDn

+ [u]Sq(u).

Hence
u− [u]Sq(u) ≤ w := lim

n→∞
uµnχRq(u)

= lim
n→∞

uµnχDn
≤ ureg.

This implies u⊖ [u]Sq(u) ≤ ureg. For the opposite inequality, by Proposition 6.8-(iv) we have that

[u]Dn ↑ ureg.

But by (5.46) and using the facts that D̃n ⊂q Dn+1 ⊂ D̃n+1 ⊂q Rq(u), C 2
q
, q′

(
D̃n+1 ∩ Sq(u)

)
= 0,

[u]Dn ≤ [[u]Sq(u)]Dn+1 + [u⊖ [u]Sq(u)]Dn+1 = [u⊖ [u]Sq(u)]Dn+1 ≤ u⊖ [u]Sq(u),

sending n → ∞ we have ureg ≤ u ⊖ [u]Sq(u). Therefore lim uµnχDn
= ureg. thus the sequence {uµnχDn

}
satisfies condition (6.19) and consequently, by Proposition 6.8-(iv) and Definition 6.10,

limµnχDn = µRq , trRq(u) = µRq
. (6.47)

Now we assert that If ξ ∈ Sq(u) then, for every Tq-open bounded neighborhood Q of ξ µn(Q̃) → ∞. Indeed

let η ∈ W
2
q
,q′
(RN ) ∩ L∞(RN ) with Tq-support in Q. Put h = H[η] and φ(r) = r2q

′

+ . Then by Proposition
5.7, Lemma 5.3 and in view of the proof of Lemma 5.2 we have

∫ T

0

∫

RN

(−un(∂tφ(h) + ∆φ(h))) + uqnφ(h)dxdτ +

∫

RN

unφ(h)(., T )dx =

∫

Q

η2q
′
dµn

Also In view of Lemma 5.2, we can prove

∫ T

0

∫

RN

uqnφ(h)dxdτ ≤ C(q)

(∫

Q

η2q
′
dµn + ||η||2q′

W
2
q ,q′

+ ||η||L∞

)

By Lemma 4.2 there exists η ∈W
2
q
,q′
(RN )∩L∞(RN ) and D ⊂ Q Tq-open set such that η = 1 on D, η = 0

outside of Q and 0 ≤ η ≤ 1. Letting n→ ∞ we have

lim

∫ T

0

∫

RN

uqnH
2q′ [χD]dxdτ ≤ C(q)

(
lim

∫

Q

η2q
′
dµn + ||η||2q′

W
2
q ,q′

+ ||η||L∞

)
,

the assertion follows by Lemma 5.4.
In conclusion, if ξ ∈ Sq(u) then µ0(Q̃) = ∞ for every Tq-open neighborhood of ξ. Consequently

µ(ξ) = ∞. This fact and (6.47) imply that µ is the precise trace of u.
(ii) If µ(A) < ∞ then A is contained in a Tq-open set D such that µ0(D) < ∞ and, by Proposition 6.7,
µ(A) = µ0(A).
(iii) Let u ∈ U+(QT ) be σ-moderate and put

u∗ := sup{v : v moderate, v ≤ u}. (6.48)

By its definition u∗ ≤ u. On the other hand, since there exists an increasing sequence of moderate solutions
{un} converging to u, it follows that u ≤ u∗. Thus u = u∗.

Conversely, if u ∈ U+(QT ) and u = u∗ then By proposition 3.4, there exists an increasing sequence of
moderate solutions {un} converging to u. Therefore u is σ-moderate.
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Since u is σ-moderate there exist an increasing sequence of moderate solutions {un} converging to u.
In view of the discussion at the beginning of subsection 5.1, for any un there exist an increasing sequence

of {wm} such that wm ↑ un and tr(wm) ∈W− 2
q
,q(RN ) ∩Mb

+(R
N ). Thus

un ≤ sup{uτ : τ ∈W
− 2

q
,q
(RN ) ∩M

b
+(R

N ), τ ≤ tr(u)} =: u‡.

Sending n→ ∞, we have u ≤ u‡.

On the other hand, if u is σ-moderate, τ ∈ W− 2
q
,q(RN ) ∩Mb

+(R
N ) and τ ≤ tr(u) then (with µn and

un as in the statement of the Proposition), tr(uτ ⊖un) = (τ −µn)+ ↓ 0. Hence, uτ ⊖un ↓ 0, which implies,
uτ ≤ u. Therefore u‡ ≤ u. Thus (6.44) implies (6.45) and each of them that u is σ-moderate. Therefore
the two are equivalent.
(iv) The assertion ⇒ is a consequence of (6.45). To verify the assertion ⇐ it is sufficient to show that if
w is moderate, u is σ-moderate and w ≤ u then tr(w) ≤ u. Let {un} be an increasing sequence of positive
moderate solutions converging to u. Then un ∨ w ≤ u and consequently un ≤ un ∨ w ↑ u. Therefore
tr(un ∨ w) ↑ µ′ ≤ tr(u) so that tr(w) ≤ tr(u). �

Theorem 6.12 Let u ∈ U+(QT ) and put ν = tr(u).

(i) ureg is σ-moderate and tr(ureg) = trRq (u).

(ii) If v ∈ U+(QT )
v ≤ u⇒ tr(v) ≤ tr(u). (6.49)

If F is a Tq-closed set then
tr([u]F ) ≤ νχF . (6.50)

(iii) A singular point can be characterized in terms of the measure ν as follows:

ξ ∈ Sq(u) ⇔ ν(Q) = ∞ ∀Q : ξ ∈ Q, Q Tq-open. (6.51)

(iv) If Q is a Tq-open set then:

[u]Q is moderate ⇔ ∃ Borel set A : C 2
q
, q′(A) = 0, ν(K ∩ Q̃ \A) <∞, (6.52)

for any compact K ⊂ RN .

(v) The singular set of ureg may not be empty. In fact

Sq(u) \ bq(Sq(u)) ⊂ Sq(ureg) ⊂ Sq(u) ∩ R̃q(u), (6.53)

where bq(Sq(u)) is the set of C 2
q
, q′-thick points of Sq(u).

(vi) Put
Sq,0(u) := {ξ ∈ RN : ν(Q \ Sq(u)) = ∞ ∀Q : ξ ∈ Q, Q Tq-open}. (6.54)

Then
Sq(ureg) \ bq(Sq(u)) ⊂ Sq,0(u) ⊂ Sq(ureg) ∪ bq(Sq(u)). (6.55)

Remark. This results complements Proposition 6.8 which deals with the regular initial trace.

Proof. (i) By proposition 6.8-(ii) ureg is σ-moderate. The second part of the statement follows from
Definition 6.10 and Proposition 6.11-(i).
(ii) If v ≤ u then Rq(u) ⊂ Rq(v) and by definition vreg ≤ ureg. By Proposition 6.11-(iv) tr(vreg) ≤ tr(ureg)
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and consequently tr(v) ≤ tr(u). (6.50) is an immediate consequence of (6.49).
(iii) If ξ ∈ Rq(u) there exists a Tq-open neighborhood Q of ξ such that [u]Q is moderate. Hence ν(Q) =
trRq(u)(Q) < ∞. If ξ ∈ Sq(u), it follows immediately from the definition of precise trace that ν(Q) = ∞
for every Tq-open neighborhood Q of ξ.
(iv) If [u]Q is moderate then Q ⊂ Rq(u). Proposition 6.8-(ix) implies (6.52) in the direction ⇒ . On the
other hand,

ν(K ∩ Q̃ \A) <∞, ∀ compact K ⊂ RN ⇒ Q̃ ⊂q Rq(u),

and µRq (K ∩ Q̃) = µRq (K ∩ Q̃ \ A) <∞. Hence, by Proposition 6.8-(ix), [u]Q is moderate.

(v) Since Tq-supp (ureg) ⊂ R̃q(u) and Rq(u) ⊂ Rq(ureg) we have

Sq(ureg) ⊂ Sq(u) ∩ R̃q(u).

Next we show that Sq(u) \ bq(Sq(u)) ⊂ Sq(ureg).
If ξ ∈ Sq(u) \ bq(Sq(u)) then Rq(u) ∪ {ξ} is a Tq-open neighborhood of ξ. By (i) ureg is σ-moderate

and consequently (by Proposition 6.11-(i)) its trace is Tq-perfect. Therefore, if Q0 is a bounded Tq-open
neighborhood of ξ and Q = Q0 ∩ ({ξ} ∪ Rq(u)) then

tr(ureg)(Q) = tr(ureg)(Q \ {ξ}) = tr(u)(Q \ {ξ}),

where in the last equality we have used the fact that Q \ {ξ} ⊂ Rq(u). Let D be a Tq-open set such that

ξ ∈ D ⊂ D̃ ⊂ Q. If tr(u)(D̃ \ {ξ}) < ∞ then, by (iv), [u]D is moderate and ξ ∈ Rq(u), contrary to our

assumption. Therefore tr(u)(D̃ \ {ξ}) = ∞ so that tr(ureg)(Q0 \ {ξ}) = ∞ for every Tq-open bounded
neighborhood Q0 of ξ, which implies ξ ∈ Sq(ureg). This completes the proof of (6.53).
(vi) If ξ /∈ bq(Sq(u)), there exists a Tq-open neighborhood D of ξ such that (D \ {ξ}) ∩ Sq(u) = ∅ and
consequently

tr(ureg)(D \ {ξ}) = tr(ureg)(D \ Sq(u)) = tr(u)(D \ Sq(u)). (6.56)

If, in addition ξ ∈ Sq,0(u) then

tr(u)(D \ Sq(u)) = tr(ureg)(D \ Sq(u)) = ∞.

If Q is an arbitrary Tq-open neighborhood of ξ then the same holds if D is replaced by Q ∩D. Therefore
tr(ureg)(Q \ {ξ}) = ∞ for any such Q. Consequently ξ ∈ Sq(ureg), which proves that Sq,0(u) \ bq(Sq(u)) ⊂
Sq(ureg).

On the other hand, if ξ ∈ Sq(ureg) \ bq(Sq(u)) then there exists a Tq-open neighborhood D such that
(6.56) holds and tr(ureg)(D) = ∞. Since ureg is σ-moderate, tr(ureg) is Tq-perfect so that tr(ureg)(D) =
tr(ureg)(D\{ξ}) = ∞. Consequently, by (6.56), tr(u)(D\Sq(u)) = ∞. If Q is any Tq-open neighborhood of
{ξ} then D can be replaced by D∩Q. Consequently tru(Q\Sq(u)) = ∞ and we conclude that ξ ∈ Sq,0(u).
This completes the proof of (6.55). �

Proposition 6.13 Let F be a Tq-closed set. Then Sq(UF ) = bq(F ).

Proof. Let ξ ∈ RN such that F is C 2
q
, q′-thin at ξ. Let Q be a Tq-open neighborhood of ξ such that

Q̃ ⊂q F c. Then [UF ]Q = U
F∩Q̃

= 0. Therefore ξ ∈ Rq(UF ).

Conversely, assume that ξ ∈ F ∩Rq(UF ), thus there exists a Tq-open neighborhood Q of ξ such that

[UF ]Q is moderate. But [UF ]Q = U
F∩Q̃ which implies C 2

q
, q′(F ∩ Q̃) = 0 and Q ⊂ R(⊓). Now, note that

C 2
q
, q′(F ) ≤ C 2

q
, q′(F ∩Q) + C 2

q
, q′(Q

c). Thus F is Tq-thin at ξ. �
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6.5 The initial value problem.

Notation 6.14 a: Denote by M+(RN ) the space of positive outer regular Borel measure on RN .
b: Denote by Cq(RN ) the space of couples (τ, F ) such that F is Tq-closed, τ ∈ M+(RN ), Tq-supp (τ) ⊂ F̃ c

and τχF c is Tq-locally finite.
c: Denote by T : Cq(RN ) → M+(RN ) the mapping given by ν = T(τ, F ) where ν is defined as in (6.42)
with Rq(u), Sq(u) replaced by F, F c respectively. ν is the measure representation of the couple (τ, F ).
d: If (τ, F ) ∈ Cq(RN ) the set

Fτ = {ξ ∈ RN : τ(Q \ F ) = ∞ ∀Q Tq-open neighborhood of ξ} (6.57)

is called the set of explosion points of τ.

Remark. Note that Fτ ⊂ F (because τχF c is Tq-locally finite) and Fτ ⊂ F̃ c (because τ vanishes outside
this set). Thus

Fτ ⊂ bq(F
c) ∩ F. (6.58)

Proposition 6.15 Let ν be a positive Borel measure on RN .
(i) The initial value problem

∂tu−∆u+ |u|q−1u = 0, u > 0 in Q∞ = RN × (0, T ), tr(u) = ν in RN × {0}. (6.59)

possesses a solution if and only if ν ∈ Mq(RN ).
(ii) Let (τ, F ) ∈ Cq(RN ) and put ν := T(τ, F ). Then ν ∈ Mq(RN ) if and only if

τ ∈ Mq(RN ), F = bq(F ) ∪ Fτ . (6.60)

(iii) Let ν ∈ Mq(RN ) and denote

Eν := {E : E Tq-quasi-closed, ν(E ∩K) <∞, ∀ compact K ⊂ RN}
Dν := {D : D Tq-open, D̃ ∼q E for some E ∈ Eν}. (6.61)

Then a solution of (6.59) is given by u = v ⊕ UF where

G :=
⋃

Dν

D, F := Gc, v := sup{uνχE : E ∈ Eν}. (6.62)

Note that if E ∈ Eν then νχE is locally bounded Borel measure which does not charge sets of C 2
q
, q′-

capacity zero. Recall that if µ is a positive measure possessing these properties then uµ denotes the moderate
solution with boundary trace µ.
(iv) The solution u = v⊕UF is σ-moderate and it is the unique solution of problem (6.59) in the class of
σ-moderate solutions. Furthermore, u is the largest solution of the problem.

Proof. The proof is same as in [23].
(A) If u ∈ U+(QT )

tr(u) = ν ⇒ ν ∈ Mq(RN ). (6.63)

By Proposition 6.8, ureg is σ-moderate and u ≈Rq(u) ureg. Therefore

tr(u)χRq(u) = tr(ureg)χRq(u).

By Proposition 6.11, µRq
:= tr(ureg) ∈ Mq(RN ). If v is defined as in (6.62) then

v = sup{[u]F : F q−closed and F ⊂q Rq(u)} = ureg, (6.64)
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where the second equality holds by definition. Indeed, by Proposition 6.12, for every Tq-open set Q, [u]Q
is moderate if and only if ν(K ∩ Q̃ \A) <∞ for some set A capacity zero and for any compact K subset
of RN . This means that [u]Q is moderate if and only if there exists E ∈ Eν such that Q̃ ∼q E. When this
is the case,

tr([u]Q) = µRq(u)χQ̃ = µRq(u)χE = νχE.

Thus v ≥ ureg. On the other hand, if E ∈ Eν , then Ẽ ⊂q Rq(u) and µRq (u)(K ∩ Ẽ) = µRq (u)(K ∩E) <∞
for any compact K subset of RN . Therefore by Proposition 6.8-(ix), Ẽ is regular, i.e, there exist a Tq-open
regular set Q such that E ⊂q Q. Hence uνχE

≤ [u]Q and we conclude that v ≤ ureg. This proves (6.64).
In addition, if E ∩Sq(u) 6= ∅ then, by Definition 6.10 ν(E) = ∞. Therefore ν is outer regular with respect
to Tq-topology.

Next we must show that ν is essentially absolutely continuous. Let Q be a Tq-open set and A a non-
empty Tq-closed subset of Q such that C 2

q
, q′(A) = 0. Either ν(Q \A) = ∞ in which case ν(Q \A) = ν(Q)

or ν(Q \ A) <∞. In this case Q \ A ⊂ Rq(u) and

ν(Q \ A) = µRq
(Q \ A) = µRq

(Q) <∞.

Let ξ ∈ A let D be a Tq-open subset of Q such that ξ ∈ D ⊂ D̃ ⊂q Q. Let Bn be a Tq-open neighborhood

of A ∩ D̃ such that C 2
q
, q′(Bn) < 2−n and Bn ⊂q D. Then

[u]D ≤ [u]En + [u]Bn , En = D̃ \Bn.

Since lim[u]Bn = 0 it follows that [u]D = [u]En . Now since En ⊂ Rq(u), ν(En) ≤ ν(Q \ A) < ∞, we have
by definition of ν and Proposition 6.8-(ix) that [u]En is moderate. Also in view of Lemma 2.8 and Lemma
2.7(ii)-[19], we have for some positive constant C

∫ T

0

∫

K

[u]qEn
dxdt ≤ Cν(En) ≤ Cν(Q \ A) <∞,

for any compact K ⊂ RN . Therefore
∫ T

0

∫

K

[u]qDdxdt <∞, ∀ compact K ⊂ RN

which implies that [u]D is moderate and thus D ⊂ Rq(u). Since every point A has a neighborhood D as
above we conclude that A ⊂ Rq(u) and hence ν(A) = trR(u)(A) = 0. If A is any a non-empty Borel subset

of Q such that C 2
q
, q′(A) = 0, by inequality C 2

q
, q′(Ã) ⊂ cC 2

q
, q′(A), we have that ν is absolutely continuous

and ν ∈ Mq(RN ).
Secondly we prove:

(B) Suppose that (τ, F ) ∈ Cq(RN ) satisfies (6.60) and put ν = T(τ, F ). Then the solution u = v ⊕ UF ,
with v as in (6.62), satisfies tr(u) = ν.

By (6.63), this also implies that ν ∈ Mq(RN ).
Clearly v is a σ-moderate solution. The fact that τ is Tq-locally finite in F c and essentially absolutely

continuous relative to C 2
q
, q′ implies that

G := F c ⊂ Rq(v), tr(v)χG = τG. (6.65)

It follows from the definition of v that Fτ ⊂ Sq(v). Hence, by Proposition ?? and (5.61) we have

F = bq(F ) ∪ Fτ ⊂ Sq(v) ∪ Sq(UF ) ⊂ Sq(u) ⊂ F. (6.66)
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Thus, Sq(u) = F, v = ureg and τ = tr(ureg). Thus tr
c(u) = (τ, F ) which is equivalent to tr(u) = ν.

Next we show: (C) Suppose that (τ, F ) ∈ Cq(RN ) and that there exists a solution u such that trc(u) =
(τ, F ). Then

τ = trRq (u) = tr(ureg), F = Sq(u). (6.67)

If U := ureg ⊕UF then tr(U) = tr(u) and u ≤ U. U is the unique σ-moderate solution of (6.59) and (τ, F )
satisfies condition (5.61). Assertion (6.67) follows by Proposition 6.8-(i) and Definition 6.10. Since ureg
is σ-moderate, it follows, by Proposition 6.11, that τ ∈ Mq(RN ).

By Proposition 6.8 (vi), u ≈Rq(u) ureg. Therefore w := u ⊖ ureg vanishes on Rq(u) so that w ≤ UF .
Note that u− ureg ≤ w and therefore

u ≤ ureg ⊕ w ≤ U. (6.68)

By their definitions Sq,0(u) = Fτ and by Proposition 6.12 (vi) and Proposition ??,

Sq(U) = Sq(ureg) ∪ Sq(UF ) = Sq(ureg) ∪ bq(UF )
= Sq,0(u) ∪ bq(UF ) = Fτ ∪ bq(UF ). (6.69)

On the other hand, Rq(U) ⊃ Rq(uRq ) = Rq(u) and, as u ≤ U, Rq(U) ⊂ Rq(u). Hence Rq(U) = Rq(u)
and Sq(U) = Sq(u). Therefore, by (6.67) and (6.69), F = Sq(U) = Fτ ∪ bq(UF ). Thus (τ, F ) satisfies (6.60)
and trc(U) = (τ, F ). The fact that U is the maximal solution with this trace follows from (6.68).

The solution U is σ-moderate because both ureg and UF are σ-moderate solutions. This fact, with
respect to UF , see Proposition 5.21.

The uniqueness of the solution in the class of σ-moderate solutions follows from Proposition 6.11-(iv).
Finally we prove:

(D) If ν ∈ Mq(RN ) then the couple (τ, F ) defined by

v := sup{uνχE : E ∈ Eν}, τ := tr(v), F = Rc
q(v), (6.70)

satisfies (6.60). This is the unique couple in Cq(RN ) satisfying ν = T(τ, F ). The solution v is σ-moderate
so that τ ∈ Mq(RN ).

We claim that u := v ⊕ UF is a solution with boundary trace trc(u) = (τ, F ). Indeed u ≥ v so that
Rq(u) ⊂ Rq(v). On the other hand since τ is Tq-locally finite in Rq(v) = F c, it follows that Sq(u) ⊂ F.
Thus Rq(v) ⊂ Rq(u) and we conclude that Rq(u) = Rq(v) and F = Sq(u). This also implies that v = ureg.

Finally
Sq(u) = Sq(v) ∪ bq(Sq(UF )) = bq(F ) ∪ Fτ ,

so that F satisfies (6.60).
The fact that, for ν ∈ Mq(RN ), the couple (τ, F ) defined by (6.70) is the only one in Cq(RN ) satisfying

ν = T(τ, F ) follows immediately from the definition of these spaces.
Statements A-D imply (i)-(iv). �

Remark. If ν ∈ Mq(RN ) then G and v as defined by (6.62) have the following alternative represen-
tation:

G :=
⋃

Eν

E =
⋃

Fν

Q, v := sup{uνχQ : Q ∈ Fν}, (6.71)

Eν := {Q : E Tq-open, ν(Q ∩K) <∞, ∀ compact K ⊂ RN}. (6.72)

To verify this remark we first observe that Lemma 2.8 implies that if A is a Tq-open set then there
exists an increasing sequence of Tq-quasi closed sets {En} such that A = ∪∞

n=1En. In fact, in the notation
of Lemma 2.8 (b)(i)-(ii), we may choose En = Fn \ L where L = A′ \ A, is a set of capacity zero.
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Therefore ⋃

Dν

D ⊂
⋃

Fν

Q ⊂
⋃

Eν

E := H.

On the other hand, if E ∈ Eν then µRq(u)(K ∩ Ẽ) = µRq (u)(K ∩ E) = ν(K ∩ E) < ∞, for any compact

K ⊂ RN . By Proposition 6.8-(ix), Ẽ is regular, i.e., there exists a Tq-open regular set Q such that E ⊂q Q.
Thus H =

⋃
Dν
D.

If D is a Tq-open regular set then D = ∪∞
n=1En, where {En} is an increasing sequence of Tq-quasi

closed sets. Consequently,
uνχD

= limuνχEn
.

Therefore
sup{uνχQ

: Q ∈ Dν} ≤ sup{uνχQ
: Q ∈ Fν} ≤ sup{uνχQ

: Q ∈ Eν}.
On the other hand, if E ∈ Eν then there exists a Tq-open regular set Q such that E ⊂q Q. Consequently
we have equality.

7 The equation ∂tu−∆u+ V u = 0

Let C > 0 and V : RN × (0,∞) → [0,∞) be a potential such that

0 ≤ V (x, t) ≤ C

t
, ∀(x, t) ∈ RN × (0,∞).

7.1 Preliminaries

We denote by M(RN ) =the set of Radon measure on RN , and M+(RN ) =the set of positive Radon
measure on RN .

Definition 7.1 Let µ ∈ M(RN ). We say that u is a weak solution of the above problem, if u ∈ L1
loc(QT ),

V u ∈ L1
loc(QT ) and satisfies

−
∫ ∫

QT

u(φt +∆φ)dxdt+

∫ ∫

QT

V uφdxdt =

∫

RN

φ(x, 0)dµ −
∫

RN

φ(x, T )u(x, T )dx, ∀φ ∈ X(QT ),

(7.1)
where

X(QT ) = {φ ∈ Cc(QT ), φt +∆φ ∈ L∞
loc(Q∞)}.

Lemma 7.2 Let u be a positive weak solution of problem (7.1) with µ ∈ M+(RN ). Also let Ω be a smooth
bounded domain. Then there exist a unique positive weak solution v of problem

∂tv −∆v + V v = 0, in QΩ
T = Ω× (0, T ],

v(x, t) = 0 on ∂lQ
Ω
T = ∂Ω× (0, T ]

v(x, 0) = χΩµ in Ω, (7.2)

where χ is the characteristic function on Ω.

Proof. Let {tj}∞j=1 be a decreasing sequence to the origin, such that tj < T ∀ j ∈ N. We consider the
following problem

∂tv −∆v + V v = 0, in Ω× (tj , T ],

v(x, t) = 0 on ∂Ω× (tj , T ]

v(x, tj) = u(x, tj) in Ω× {tj}.
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Since 0 ≤ u ∈ L1(Ω× (tj , T ]) and 0 ≤ V ∈ L∞(Ω× (tj, T ]), there exists a positive weak solution vj of the
above problem. Also by maximum principle we have vj ≤ u, ∀ j ∈ N. By standard parabolic estimates,
we may assume that the sequence vj converges locally uniformly in Ω × (0, T ] to a function v ≤ u. Also

for some φ ∈ C1,1;1(QΩ
T ) which vanishes on ∂lQ

Ω
T and satisfies φ(x, T ) = 0, vj satisfies

−
∫ T

tj

∫

Ω
vj(φt +∆φ)dxdt+

∫ T

tj

∫

Ω
V vjφdxdt+

∫

Ω
φ(x, T − tj)u(x, T − tj)dx =

∫

Ω
φ(x, 0)u(x, tj)dx,

where in the above equality we have take as test function φ(x, t− tj). By dominated convergence theorem,
v is a weak solution of problem (7.2). �

Lemma 7.3 Let u be a positive weak solution of problem (7.1) with µ ∈ M+(RN ). Then for any (x, t) ∈
RN × (0, T ], we have

lim
R→∞

uR = u,

where {uR} is the increasing sequence of the weak solutions of the problem (7.2) with Ω = BR(0). Moreover,
the convergence is uniform in any compact subset of RN × (0, T ].

Proof. By the maximum principle (see remark 2.5-[19]), we have uR ≤ u, ∀R > 0 and uR ≤ u′R for any
R ≤ R′. Thus uR → w ≤ u. Also by standard parabolic estimates, this convergence is locally uniformly.
Now by dominated convergence theorem, we have that w is a weak solution of problem (7.1) with initial
data µ. Now we set w̃ = u− w ≥ 0. Then w̃ satisfies in the weak sense

w̃t −∆w̃ + V w̃ = 0, in RN × (0, T ],

w(x, t) ≥ 0, in RN × (0, T ],

w̃(x, 0) = 0 in RN .

But then w̃ satisfies in the weak sense

w̃t −∆w̃ ≤ 0, in RN × (0, T ],

w(x, t) ≥ 0, in RN × (0, T ],

w̃(x, 0) = 0 in RN ,

which implies w̃ = 0. �

Lemma 7.4 Let u ∈ C2,1(RN × (0, T ]) be a positive solution of

∂tu−∆u+ V u = 0, in RN × (0, T ).

Assume that, for any x ∈ RN , there exists an open bounded neighborhood U of x such that

∫ T

0

∫

U

u(y, t)V (y, t)dxdt <∞

Then u ∈ L1(U × (0, T )) and there exists a unique positive Radon measure µ such that

lim
t→0

∫

RN

u(y, t)φ(x)dx =

∫

RN

φ(x)dµ, ∀φ ∈ C∞
0 (RN ).
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Proof. Since V u ∈ L1(U × (0, T )) the following problem has a weak solution v (see [19]).

∂tv −∆v = V u, in U × (0, T ],

v(x, t) = 0 on ∂U × (0, T ]

v(x, 0) = 0 in U.

Thus the function w = u+ v satisfies the heat equation. Thus, we have that, there exists a unique Radon
measure µ such that

lim
t→0

∫

U

w(y, t)φ(x)dx =

∫

U

φ(x)dµ, ∀φ ∈ C∞
0 (U).

But the initial data of v is zero, thus result follows by a partition of unity and Lemma 7.3. �

7.2 Representation formula for the positive solutions.

Let C > 0 and V (x, t) : RN × (0,∞) → [0,∞) be a potential such that

0 ≤ V ≤ C

t
, ∀(x, t) ∈ RN × (0,∞).

Let u be a positive solution of the problem

∂tu−∆u+ V u = 0, in RN × (0, T ].

We set u(x, t) = eψ(x,t)v(x, t), where ψ ∈ C2,1(RN × (0, T ]). Then by straightforward calculations we have
that

∂tv −∆v − 2∇ψ∇v − |∇ψ|2v − 2∆ψv + (ψt +∆ψ + V ) v = 0 in RN × (0, T ]. (7.3)

We choose ψ such that it satisfies the problem

−ψt −∆ψ = V, in RN × (0, T ]

ψ(x, T ) = 0, in RN .

Then

ψ(t, x) =

∫ T

t

∫

RN

1

(4π(s − t))
n
2

e
−

|x−y|2

4(s−t) V (x, s)dxds.

By straightforward calculations we have
1. ψ ≤ C ln T

t
,

2. |∇ψ| ≤ C1(T ) + C2(ln
T
t
).

Thus (7.3) becomes

∂tv −∆v −
n∑

i=1

(2ψxiv)xi − |∇ψ|2v = 0,

Now since
∫ 1
0 | ln t|pdt <∞,∀ p ≥ 1 we have by 1 and 2,

∫ T

0
sup
x∈RN

|ψ|qds < M1 <∞, ∀q ≥ 1

and ∫ T

0
sup
x∈RN

|∇ψ|qds < M2 <∞, ∀q ≥ 1.
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For Ai,j = δij , Ai = 2ψxi Bi = 0 and C = |∇ψ|2 we have that the above operator satisfies the condition
H in Aronson’s paper [3] for R0 = ∞ and p = ∞. Thus there exists a heat kernel Γ(x, t; y, s) such that

C1(T, n,M2)
1

(4π(t− s))
n
2

e
−A1

|x−y|2

4(t−s) ≤ Γ(x, t; y, s) ≤ C2(T, n,M2)
1

(4π(t− s))
n
2

e
−A2

|x−y|2

4(t−s) , (7.4)

where A1, A2 > 0 depend on T, n, M2. Furthermore we have the representation formula for the positive
solution v

v(x, t) =

∫

RN

Γ(x, t; y, 0)dµ,

and

lim
t→0

∫

RN

∫

RN

Γ(x, t; y, 0)φ(x)dµ(y)dx =

∫

RN

φ(x)dµ, ∀φ ∈ C∞
0 (RN ).

where µ is a unique positive Radon measure on RN .
Also if e−γ|x|

2
u0 ∈ L2(RN ) for some γ ≥ 0, then if u0 is continuous at ξ

lim
t→0

∫

RN

Γ(x, t; y, 0)u0(x)dx = u0(ξ). (7.5)

Finally we have

u(x, t) = eψ
∫

RN

Γ(x, t; y, 0)dµ. (7.6)

8 σ-moderate solutions.

8.1 preliminaries

Proposition 8.1 Let u ∈ U+(QT ). Then

max(uRq , [u]Sq(u)) ≤ u ≤ ureg + [u]Sq(u). (8.1)

Proof. The proof is same as in [16].
By Proposition 6.8-(vii), the function v = u ⊖ ureg vanishes on Rq(u) i.e., Tq-supp (v) ⊂ Sq(u). Thus v
is a solution dominated by u and supported in Sq(u), which implies by Definition 5.27 that v ≤ [u]Sq(u).
Since u− ureg ≤ v this implies the inequality on the right hand side of (8.1). The inequality on the left
hand side is obvious. �

Proposition 8.2 Let u ∈ U+(QT ) and let A, B be two disjoint Tq-closed subsets of RN . If Tq-supp (u) ⊂
A ∪B and [u]A, [u]B are σ-moderate then u is σ-moderate. Furthermore

u = [u]A ⊕ [u]B = [u]A ∨ [u]B . (8.2)

Proof. The proof is same as in [16].

By Proposition 6.11-(iii) there exist two increasing sequence {τn}, {τ ′n} ⊂ W
− 2

q
,q
(RN ) ∩ Mb

+(R
N ) such

that
uτn ↑ [u]A, uτ ′n ↑ [u]B .

By proposition 5.26, we have Tq-supp (τn) ⊂q A and Tq-supp (τ
′
n) ⊂q B. ThusC 2

q
, q′ (Tq-supp(τn) ∩ Tq-supp(τ

′
n)) =

0, and
uτn ∨ uτ ′n = utn ⊕ ut′n = uτn+τ ′n .
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By (5.34) and Definition 5.27,
max([u]A, [u]B) ≤ u ≤ [u]A + [u]B . (8.3)

Therefore,
max(uτn , u

′
τn
) ≤ u⇒ uτn+τ ′n ≤ u.

On the other hand
u− uτn+τ ′n ≤ [u]A − uτn + [u]B − uτ ′n ↓ 0.

Thus
lim uτn+τ ′n = u, (8.4)

so that u is σ- moderate.
The assertion (8.2) is equivalent to the statements: (a) u is the largest solution dominated by [u]A + [u]B
and (b) u is the smallest solution dominating max([u]A, [u]B). Let

u ≤ w := [u]A ⊕ [u]B ≤ [u]A + [u]B .

Thus we have [u]A ≤ [w]A. But [w]A ≤ w ≤ [u]A + [u]B ⇔ [w]A− ≤ [u]A ≤ [u]B . By Notation 3.3 we have

v = [([w]A − [u]A)+]† ≤ [u]B , v ≤ [w]A,

that is
Tq-supp (v) ⊂ A and Tq-supp (v) ⊂ B,

but A ∩B = ∅, which implies v = 0 and [w]A ≤ [u]A. Similarly, we have [w]B ≤ [u]B . Thus

[w]A = [u]A, [w]B ≤ [u]B .

By (8.3) and the fact that for any Borel E [u]E ≤ [u]
Ẽ∩A + [u]

Ẽ∩B, we have that

Sq(u) = Sq(w).

LetQ be a Tq-open regular set inRq(w), then Q ∈ Rq(u). By (5.34), (5.35) and the fact that Tq-supp (w) ⊂
A ∩B, we have

[w]Q ≤ [w]
Q̃∩A + [w]

Ẽ∩B = [[w]A]Q̃ + [[w]B ]Q̃ = [u]
Q̃∩A + [u]

Q̃∩B .

Since [w]Q, [u]Q are moderate solutions and A ∩ B = ∅, we have [u]
Q̃∩A ⊕ [u]

Q̃∩B ≤ [u]Q, which implies

[w]Q = [u]Q. Thus by Proposition 6.8-(ii) wRq = uRq , and since u is σ-moderate by Proposition 6.15 and
the remark below we have

u ≤ w ≤ uRq ⊕ UF ,

and by the uniqueness of σ- moderate solutions (Proposition 6.11-(iv)), we have w = u. This proves (a).
For the statement (b), we note that

uτn+τ ′n = uτn ∨ uτ ′n ≤ [u]A ∨ [u]B ,

since uτn ≤ [u]A and uτ ′n ≤ [u]B . Thus the result follows by (8.4) and (8.3), if we send n to infinite. �
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8.2 Characterization of positive solutions of ∂tu−∆u+ uq = 0.

The following notation is used throughout the subsection.
Let u ∈ U+(QT ). Set

V = uq−1,

then

V ≤
(

1

q − 1

)q−1

t−1.

Thus u ∈ C2,1(RN × (0, T ] and satisfies

∂tu−∆u+ V u = 0, in RN × (0, 1]. (8.5)

Hence, by representation formula (7.6), u satisfies

u(x, t) = eψ
∫

RN

Γ(x, t; y, 0)dµ(y), ∀ t ≤ T,

where µ is Radon measure (see subsection 7.2).
For any Borel set E set

µE = µχE and (u)E = eψ
∫

RN

Γ(x, t; y, 0)dµE , ∀ t ≤ T.

Lemma 8.3 Let F be a compact subset of RN . Then

(u)F ≤ [u]F , ∀t ≤ T.

Proof. The proof is similar as in [16].
Let A be a Borel subset of RN . Let 0 < β ≤ T

2 and let vAβ be the positive solution of

∂tv −∆v + V v = 0, in QT = RN × (β, T ], (8.6)

v(x, β) = u(x, β)χA(x) in RN × {β}.

Also let wAβ be the positive solution of

∂tw −∆w + |w|q−1w = 0, in RN × (β, T ]

w(x, β) = χA(x)u(x, β) in RN × {β}.

Then by maximum principle, we have wAβ ≤ u which implies

0 =
dwAβ
dt

−∆wAβ + (wAβ )
q ≤

dwAβ
dt

−∆wAβ + V wAβ .

Thus wAβ is a supersolution of (8.6), thus by maximum principle (see [3] or Lemma 7.3), we have

vAβ ≤ wAβ ≤ u.

For any sequence {βk} decreasing to zero one can extract a subsequence {βkn} such that {wAβkn} and

{vAβkn} converge locally uniformly; we denote the limits wA and va respectively (the limits may depend

on the sequence). Then wA ∈ U+(QT ) while v
A is a solution of (8.5), and

vA ≤ wA ≤ [u]
Q̃
, ∀Q open, A ⊂ Q. (8.7)
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The second inequality follows from the fact that Tq-supp (w
A
β ) ⊂ Q̃ for any β.

Now we set vAβkn
= eψ ṽn, where ψ is the function in subsection 7.2. Then ṽn is the solution of

∂tv −∆v − 2∇ψ∇v − |∇ψ|2v − 2∆ψv + (ψt +∆ψ + V ) v = 0 in RN × (βkn , T ].

v(x, β) = χA(x)

∫

RN

Γ(x, βkn ; y, 0)dµ(y), in RN × {βkn}.

Now by representation formula (see [3]), we have for any open Q ⊃ A

ṽn =

∫

RN

χA(x)Γ(x, t − βkn ; y, 0)

(∫

RN

Γ(x, βkn ; y, 0)dµ(y)

)
dx

=

∫

RN

(∫

RN

χA(x)Γ(x, t− βkn ; y, 0)Γ(x, βkn ; y, 0)dx

)
dxdµ(y)

≤
∫

RN

(∫

RN

χQ(x)Γ(x, t − βkn ; y, 0)Γ(x, βkn ; y, 0)dx

)
dxdµ(y).

Thus by 7.5, estimates (7.4) and by the fact that Γ(x, t − s; y, 0) is a continuous function for any s < t
(see [3]), we can take the limit in the above equality

lim ṽn ≤
∫

RN

Γ(x, t; y, 0)dµ
Q̃
.

Hence
vA ≤ (u)

Q̃
.

We apply the same procedure to the set Ac extracting a further subsequence of {βkn} in order to
obtain the limits vA

c

and wA
c

. thus

vA
c ≤ wA

c ≤ [u]
Q̃′ , ∀Q′ open, Ac ⊂ Q′.

Note that
vA + vA

c

= u, vA ≤ (u)
Q̃
, vA

c ≤ (u)
Q̃′ .

Therefore
vA = u− vA

c ≥ (u)
(Q̃′)c

. (8.8)

Now, given F compact, let A be a closed set and O an open set such that F ⊂ O ⊂ A. Note that
Ac ∩ F = ∅. By 8.8 with Q′ = Ac

vA ≥ (u)O.

By (8.7)
vA ≤ wA ≤ [u]

Q̃
, ∀Q open, A ⊂ Q.

and consequently
(u)F ≤ (u)O ≤ [u]

Q̃
. (8.9)

By Lemma 2.8, we can choose a sequence of open sets {Qn} such that ∩Q̃j = E′ ∼q F, thus by Proposition
5.24-(iii) [u]Qj

↓ [u]F . The result follows by (8.9). �

Lemma 8.4 If E is a Borel set and C 2
q
, q′(E) = 0 then µ(E) = 0.
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Proof. The proof is same as in [16].
If F is a compact subset of E. C 2

q
, q′(F ) = 0 and therefore by Proposition 5.17, UF = 0. But [u]F =

u ∧ UF = 0. Therefore, by Lemma 8.3 (u)F = 0. Consequently µ(F ) = 0. As this holds for every compact
subset of E we conclude that µ(E) = 0. �

We recall here that, If ν ∈ W− 2
q
,q(RN ) ∩ Mb

+(R
N ), then ∀ T > 0, there exists a constant C > 0

independent on ν(see Lemma 2.11-[22])

C−1||ν||
W

− 2
q ,q

(RN )
≤ ||H[ν]||Lq(QT ) ≤ C||ν||

W
−2

q ,q
(RN )

, (8.10)

where H[ν] is the solution of the heat equation in Q∞ with ν as initial data.

Lemma 8.5 Let ν ∈ W− 2
q
,q(RN ) ∩ Mb

+(R
N ). Suppose that there exists no positive solution of (3.1)

dominated by the supersolution v = inf(u,H[ν]). Then µ ⊥ ν.

proof I use your idea and Marcus’ idea.
Set V ′ = vq−1 then v is a supersolution of

∂tw −∆w + V ′w = 0, in RN × (0, T ]. (8.11)

Assertion 1. There exists no positive solution of the above problem, dominated by v. Suppose that there
exist a positive solution w ≤ v of (8.11). Then w is a subsolution of (3.1):

∂tw −∆w + wq ≤ ∂tw −∆w + V ′w = 0.

Thus by Proposition 3.1 there exists a positive solution of (3.1) dominated by v, contrary to assumption.
Now for any t ≤ T, we have by representation formula (7.6),

inf(u,H[ν]) = inf(eψ
∫

RN

Γ(x, t; y, 0)dµ(y),H[ν]) ≥ inf(

∫

RN

Γ(x, t; y, 0)dµ(y),H[ν])

≥ C inf(H[µ](
t

A2
, x),H[ν](t, x)) ≥ C inf(H[µ](

t

max(A2, 1)
, x),H[ν](

t

max(A2, 1)
, x)).

Where in the above inequalities we have used (7.4) and the constants C > 0, A2 > 0 therein.

Now since inf
(
H[µ]( t

max(A2,1)
, x),H[ν]( t

max(A2,1)
, x)
)
is a supersolution of ∂tw− 1

max(A2,1)
∆w = 0, we have

that there exists a Radon measure ν̃ such that

lim
t→0

∫

RN

φ(x) inf(H[µ](
t

max(A2, 1)
, x),H[ν](

t

max(A2, 1)
, x))dx =

∫

RN

φ(x)dν̃, ∀φ ∈ C∞
0 (RN ).

Thus in view of Lemmas 7.3 and 7.4, there exists a weak positive solution ṽ ≤ v of the problem

∂tw −∆w + V ′w = 0, in RN × (0, T ].

w(x, 0) = ν̃, in RN × {0}.

Thus by Assertion 1 we have that ν̃ = 0.
Set h(t, x, y) the heat kernel. By Lebesgue-Radon-Nikodym Theorem we can write dν = φdµ + dσ,

where 0 ≤ φ ∈ L1
loc(R

N , µ) and σ ⊥ µ. Thus we have

0 = lim
t→0

∫

RN

φ(x) inf(H[µ](
t

max(A2, 1)
, x),H[ν](

t

max(A2, 1)
, x))dx

≥ lim
t→0

∫

RN

φ(x)h(
t

max(A2, 1)
, x, y)min(f, 1)(y)dµ(y)dx = lim

t→0

∫

RN

φ(y)min(f, 1)(y)dµ(y) = 0.

Hence f = 0 and ν ⊥ µ. �
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Lemma 8.6 Suppose that for every positive measure ν ∈W
− 2

q
,q
(RN )∩Mb

+(R
N ), there exists no positive

solution of (3.1) dominated by v = inf(u,H[ν]). Then u = 0.

Proof. The proof is same as in [16].
By Lemma 8.5,

µ ⊥ ν, ∀ν ∈W− 2
q
,q(RN ) ∩M

b
+(R

N ).

Suppose that µ 6= 0. By Lemma 8.4, µ vanishes on sets of C 2
q
, q′ zero. Thus, there exists an increasing

sequence {νk} ⊂W− 2
q
,q(RN )∩Mb

+(R
N ) which converge to µ. For every k there exists a Borel set Ak ⊂ RN

such that
µ(Ak) = 0, νk(A

c
k) = 0.

Therefore, if A = ∪Ak then
µ(A) = 0, νk(A

c) = 0, ∀k.
Since νk ≤ µ we have νk(A) = 0 and therefore νk = 0. Contradiction. �

Lemma 8.7 [u]Sq(u) is σ-moderate.

Proof. To simplify notation, we put u = [u]Sq(u), and denote F := Tq-supp (u). (Incidentally, F ⊂ Sq(u).
Since if Sq(u) is thin at ξ then Sq(u)c ∪ {ξ} is Tq-open and Sq(u)c ∪ {ξ} ∼q Sq(u)c. Thus by definition of
F, we see that F consists precisely of the C 2

q
, q′-thick points of Sq(u). The set Sq(u) \ F is contained in

the singular set of uRq .)

For ν ∈W
− 2

q
,q
(RN ) ∩Mb

+(R
N ) we denote by uν the solution of (3.1) with initial trace ν. Put

u∗ := sup{uν : ν ∈W− 2
q
,q(RN ) ∩M

b
+(R

N ), uν ≤ u}. (8.12)

By Lemma 8.6 the family over which the supremum is taken is not empty. Therefore u∗ is a positive
solution of (3.1) and by Proposition 6.11, it is σ-moderate. By its definition, u∗ ≤ u.

Let F ∗ = Tq-supp (u
∗). Then F ∗ is Tq-closed and F ∗ ⊂ F. Suppose that

C 2
q
, q′(F \ F ∗) > 0.

Then there exists a compact set E ⊂ F \ F ∗ such that C 2
q
, q′(E) > 0 and (F ∗)c =: Q∗ is a Tq-open set

containing E. Furthermore by Lemma 2.7 there exists a Tq-open set Q′ such that E ⊂q Q ⊂ Q̃′ ⊂q Q∗.
Since Q′ ⊂q Tq-supp (u), [u]Q′ > 0 and therefore by Lemma 8.6, there exists a positive measure τ ∈
W− 2

q
,q(RN )∩Mb

+(R
N ) supported in Q̃′ such that uτ ≤ u. As the Tq-supp (τ) is Tq-closed set disjoint from

F ∗ it follows that u∗ � uτ . On the other hand, since τ ∈ W− 2
q
,q(RN ) ∩Mb

+(R
N ) and uτ ≤ u, it follows

that uτ ≤ u∗. This contradiction shows that

C 2
q
, q′(F \ F ∗) = 0. (8.13)

Further u∗ is σ-moderate and therefore there exists a Tq-closed set F ∗
0 ⊂ F ∗ such that Sq(u∗) = F ∗

0

and Rq(u) = (F ∗
0 )
c. Suppose that

C 2
q
, q′(F \ F ∗

0 ) > 0.

Let Q′ be a Tq-open subset of Rq(u
∗) such that [u]Q′ is a moderate solution, then Q̃′ ⊂q Rq(u

∗) and [u∗]
Q̃′

is a moderate solution of 3.1, i.e.,

∫ T

0

∫

RN

[u∗]q
Q̃′
φ(x)dxdt <∞, ∀φ ∈ C0(RN ).
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On the other hand Q′ is a Tq-open subset of F = Tq-supp (u); therefore [u
∗]
Q̃′ is a purely singular solution

of (3.1),i.e.,

∫ T

0

∫

RN

[u]q
Q̃′
φ(x)dxdt = ∞, ∀φ ∈ C0(RN ), Sq([u]Q̃′) = Tq-supp ([u]Q̃′)

.

It follows that v :=
[
[u]

Q̃′ − [u∗]
Q̃′

]
†
is a purely singular solution of (3.1).

Let v∗ be defined as in (8.12) with u replaced by v. Then v∗ is a singular σ-moderate solution of (3.1).
Since v∗ ≤ u and it is σ-moderate it follows that v∗ ≤ u∗. On the other hand, since v∗ is singular and
Tq-supp (v

∗) ⊂q Q̃′ ⊂q Rq(u
∗) it follows that u∗ � v∗, i.e. (v∗ − u∗)+ is not identically zero. Since both

u∗ and v∗ are σ-moderate, it follows that there exists τ ∈ W− 2
q
,q(RN ) ∩Mb

+(R
N ) such that uτ ≤ v∗ but

(uτ −u∗) is not identically zero. Therefore u∗ � max(u∗, uτ ). The function max(u∗, uτ ) is a subsolution of
(3.1) and the smallest solution above it, which denote by Z is strictly larger than u∗. However uτ ≤ v∗ ≤ u∗

and consequently Z = u∗.
This contradiction proves that C 2

q
, q′(Q

′) = 0, for any set Q′ ⊂ Rq(u
∗) such that [u]Q′ is moderate

solution, that is C 2
q
, q′(Rq(u

∗)) = 0 which implies

C 2
q
, q′(F \ F ∗

0 ) = 0. (8.14)

In conclusion, u∗ is σ-moderate, Tq-supp (u
∗) ⊂ F and F ∗

0 = Sq(u∗) ∼q F. Therefore, by Proposition 6.15
and the remark below, u∗ = UF . Since by definition u∗ ≤ u ≤ UF , it follows u

∗ = u. �

Theorem 8.8 Every positive solution of (3.1) is σ-moderate.

Proof. The proof is similar to the one in [16].
By Proposition 6.8 Rq(u) has regular decomposition {Qn} (see Proposition 6.8-(i)). Also we have that

vn = [u]Qn ↑ uRq .

Thus the solution uRq is σ-moderate and

u⊖ uRq ≤ [u]Sq(u).

Put
un = vn ⊕ [u]Sq(u).

By Lemma 8.7 we have that [u]Sq(u) is σ-moderate solution, thus by Proposition 8.2, as Q̃n ∩ Sq(u) = ∅,
it follows that un is σ-moderate. As {un} is increasing it follows that u = lim un is a moderate solution
of (3.1). In addition

vn ∨ [u]Sq(u) = un = vn ⊕ [u]Sq (u) ⇒ max(uRq , [u]Sq(u)) ≤ u ≤ uRq + [u]Sq(u).

This further implies that Sq(u) = Sq(u). By construction we have

[u]Qn = vn ≤ [u]Qn

Letting n→ ∞ we have by Proposition 6.8

uRq ≤ uRq ⇒ uRq = uRq ,

thus tr(u) = tr(u) and since u ≤ u, we have by Proposition 6.15 and the uniqueness of σ-moderate
solutions that u = u. �
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