Front propagation in a kinetic reaction-transport equation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Front propagation in a kinetic reaction-transport equation

Résumé

In this paper, we study the existence and stability of travelling wave solutions of a kinetic reactiontransport equation. The model describes particles moving according to a velocity-jump process, and proliferating thanks to a reaction term of monostable type. The boundedness of the velocity set appears to be a necessary and sufficient condition for the existence of positive travelling waves. The minimal speed of propagation of waves is obtained from an explicit dispersion relation. We construct the waves using a technique of sub- and super- solutions and prove their stability in a weighted L2 space. In case of an unbounded velocity set, we prove a superlinear spreading and give partial results concerning the rate of spreading associated to particular initial data. It appears that the rate of spreading depends strongly on the decay at infinity of the stationary Maxwellian.
Fichier principal
Vignette du fichier
Bouin-Calvez-Nadin-Front-Propagation-Kinetic-Equation-2013-submitted.pdf (3.62 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00849405 , version 1 (31-07-2013)
hal-00849405 , version 2 (07-08-2014)

Identifiants

Citer

Emeric Bouin, Vincent Calvez, Grégoire Nadin. Front propagation in a kinetic reaction-transport equation. 2013. ⟨hal-00849405v1⟩
375 Consultations
405 Téléchargements

Altmetric

Partager

More