A highly anisotropic nonlinear elasticity model for vesicles. II. Derivation of the thin bilayer bending theory - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

A highly anisotropic nonlinear elasticity model for vesicles. II. Derivation of the thin bilayer bending theory

Résumé

We study the thin-shell limit of the nonlinear elasticity model for vesicles introduced in part I. We consider vesicles of width 2eps ↓ 0 with elastic energy of order eps^3. In this regime, we show that the limit model is a bending theory for generalized hypersurfaces -- namely, codimension 1 oriented varifolds without boundary. Up to a positive factor, the limit functional is the Willmore energy. In the language of Gamma -convergence, we establish a compactness result, a lower bound result and the matching upper bound in the smooth case.
Fichier principal
Vignette du fichier
Merlet_VesiclesPartII.pdf (509.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00848552 , version 1 (26-07-2013)
hal-00848552 , version 2 (02-09-2014)

Identifiants

  • HAL Id : hal-00848552 , version 1

Citer

Benoit Merlet. A highly anisotropic nonlinear elasticity model for vesicles. II. Derivation of the thin bilayer bending theory. 2013. ⟨hal-00848552v1⟩
542 Consultations
237 Téléchargements

Partager

More