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II. Derivation of the thin bilayer bending theory
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Abstract We study the thin-shell limit of the nonlinear elasticity model for vesicles introduced
in part I. We consider vesicles of width 2ε ↓ 0 with elastic energy of order ε3. In this regime,
we show that the limit model is a bending theory for generalized hypersurfaces — namely, co-
dimension 1 oriented varifolds without boundary. Up to a positive factor, the limit functional is
the Willmore energy. In the language of Γ -convergence, we establish a compactness result, a
lower bound result and the matching upper bound in the smooth case.
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1 Introduction

In this article, we study the behavior as ε goes to 0 of the nonlinear elasticity model for vesicle
membranes with finite thickness introduced in [12]. More precisely, we perform a Γ -limit anal-
ysis of the family of functionals F/ε3 where ε is the half-thickness of the membrane. Before
stating the main results, we recall the model, set some notation and introduce complementary
assumptions. However, this second part strongly depends on the first part of the paper.

1.1 An Eulerian nonlinear elasticity model

Let us fix an integer d ≥ 2. Given ε > 0, a membrane of thickness 2ε in Rd is modeled by a
bounded open set Ω ⊂ Rd and two mappings τ ∈ L2(Rd,Rd) and σ ∈ L2(Ω ,Rd). These ob-
jects are subjected to a set of constraints: first, we assume that τ is a gradient vector field, more

precisely, there exists t ∈W
1,2
loc

(Rd)∩C(Rd, [−ε ,ε ]) such that τ = ∇t. Moreover, we assume

Ω = {y ∈ Rd : |t|(y)< ε}.
To prevent membranes from escaping to infinity, we fix a large radius R > 0 and enforce

|y|> R =⇒ t(y) = +ε .
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Eventually, we assume that ∇ ·σ = 0 in D ′(Ω). Outside the set Ω , we extend σ by 0,

σ(y) := 0 for every y ∈ Rd \Ω .

We denote by Aε(R) the set of triplets (σ ,τ ,Ω) satisfying the above hypotheses and by Aε the
union ∪R↑∞Aε(R).
The material density at some point x∈Ω is defined as σ(x) ·τ(x) and the total quantity of material
is,

Q(σ ,τ) :=
∫

Rd
σ · τ .

The parameter 2ε should represent the thickness of the vesicle layer, hence the natural definition
for the area of the membrane is Q(σ ,τ)/2ε . Given a radius R > 0 and a (d −1)-volume S > 0,
we set

Aε(R,S) := {(σ ,τ ,Ω) ∈ Aε(R) : Q(σ ,τ) = 2Sε} .

The elastic energy associated to a configuration a = (σ ,τ ,Ω) ∈ Aε has the form

F (a) :=
∫

Ω
f (σ(y),τ(y))dy,

where f ∈C(Rd ×Rd ,R+) depends on the material. In our context, the stored-energy functions
f of interest vanish on the sphere

S
d−1 :=

{
(e,e) : e ∈ Sd−1

}
⊂ Rd ×Rd,

that is

f (Sd−1) = {0}. (1.1)

For the lower bound part of the Γ -limit analysis, we also require that f does not degenerate with
respect to this constraint: we assume that the infimum of f /d(·,Sd−1)2 over Rd ×Rd \ Sd−1 is
positive. Equivalently, we assume

f ≥ κ f0, for some constant κ > 0, (1.2)

with f0(u,v) := |u− v|2 +(|u|−1)2 +(|v|−1)2, for every u,v ∈ Rd .
The energy functional associated to this particular function is denoted by

F0(σ ,τ ,Ω) :=

∫

Ω
f0(σ(y),τ(y))dy.

We study the Γ -limit as ε tends to 0 of the energy F/ε3 defined on the set Aε(R,S). For this
we consider families {aε}ε∈(0,1] (or sequences (aεk

) with εk ↓ 0) of triplets aε = (σε ,∇tε ,Ωε) ∈
Aε(R,S) with energy of order of ε3:

sup
ε

F (aε)

ε3
< ∞. (1.3)
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1.2 Topological hypotheses

In the proofs, we use a uniform equicontinuity hypothesis which in general does not follow
from (1.3) and might be only a technical assumption.

Hypothesis 1 There exists a modulus of continuity ω (i.e ω : R+ → R+ is a non-decreasing
concave continuous function such that ω(0) = 0) such that

for every ε ∈ (0,1], t(ε) : y ∈ Rd 7→ tε

ε
(εy) is ω-continuous.

The energy bound F0(σ ,∇t,Ω) < ∞ is not sufficient for t being continuous. However, in the
cases d = 2 and d = 3, if the stored energy function satisfies

f (σ ,τ) ≥ κ ′(|τ |−1)p

for some p > d and κ ′ > 0, then Hypothesis 1 is the consequence of the energy bound (1.3).
Indeed, in this case,

∫

(1/ε)Ωε

(|∇t(ε)|−1)p = ε3−d

(
1

ε3

∫

Ωε

(|∇tε |−1)p

)
≤
(

sup
ε

F (aε)

ε3

)
ε3−d

κ ′ .

Consequently, the family t(ε) has uniformly bounded gradients in Lp(Rd) and, by Morrey embed-

ding theorem, is uniformly equi-Hölder-continuous with Hölder exponent 1−d/p.

In the physical case d = 3 we can improve the compactness result under the following as-
sumption which prescribes the genus of the membrane.

Hypothesis 2 For every ε ∈ (0,1], the open set {y : |tε |(y) < 1/10} is connected. Moreover,

there exists g0 ≥ 0 such that for every ε ∈ (0,1]:

if Γ is a compact subset of a smooth embbeded surface Γ ′ ⊂ R3 and if Φ : Γ × [−1,1]→ R3 is a
smooth mapping satisfying

Φ (Γ ×{±1}) ⊂
{

y ∈ R3 : ±tε(y)> 1/10
}

;

then Γ is homeomorphic to a closed subset of the g0-torus.

1.3 Compactness

Let us fix R,S > 0 and consider a family {aε}0<ε≤1, aε = (σε ,τε ,Ωε) ∈ Aε(R,S), satisfying
Hypothesis 1 and

E0 := sup
0<ε≤1

F0(aε)

ε3
< +∞. (1.4)

Our strategy is to approximate the membrane described by the data aε by a smooth hypersurface
Σε = ∂Oε where Oε is an open subset of BR which is close in L1 to [tε ≡ −ε ] — see Section 2,
Proposition 2.1. We obtain uniform bounds on the (d − 1)-volume of Σε and on the Wilmore
energy W (Σε). Sets of finite perimeter seem reasonable limit objects for the family {Oε} as up
to extraction, (Oε) converges towards a set with finite perimeter O0. Unfortunately, we may loose
large pieces of membrane in the limit process: two (or more) pieces of the hypersurface Σε may
coincide at the limit ε ↓ 0, leading to H d−1(∂O0)< S. Moreover, if we consider the behavior of
the Willmore energy, the limit surface Σ0 = ∂O0 may not have square integrable mean curvature,
as cusps arise on the boundary of the cancelling pieces of hypersurface (see Figure 1.1). To keep
track of these phenomena and prevent cancellation, we have to take into account multiplicity.
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We do this by considering hypersurfaces as (d − 1)-dimensional varifolds. Varifolds have been
introduced as a generalization of manifolds by Almgren [2] for the study of Plateau’s problem,
(see also Allard [1] and the reference book by Simon [15]). More precisely, here we consider the
set of oriented (d −1)-varifolds as introduced by Hutchinson [10].

ε −→ 0

dε ↓ 0

nε

nε

Oε O0

Σε
Σ0

Fig. 1.1 Cancellation of boundaries with opposite orientations.

Definition 1.1

a) The space of oriented (d − 1)-varifolds in Rd is the topological dual of Cc(R
d × Sd−1),

that is the space M (Rd × Sd−1) of Radon measures on Rd × Sd−1 endowed with the weak star
topology of Radon measures.

b) To any oriented (d − 1)-varifold V ∈ M (Rd × Sd−1), we associate a distribution ΛV ∈
D ′(Rd,Rd) defined by

〈ΛV ;ψ〉 := 〈V ; (y,n) 7→ ψ(y) ·n〉 , for ψ ∈ D(Rd,Rd).

c) Given a smooth hypersurface Σ oriented by ν , we define the oriented (d − 1)-varifold
V = V (Σ ,ν) by

〈V ;ϕ〉 :=
∫

Σ
ϕ(x,ν(x))dH

d−1(x), for every ϕ ∈Cc(R
d ×Sd−1).

Remark 1.1

a) Usually, oriented k-varifolds are defined as the Radon measures over Rd ×Go(k,d), where

Go(k,d) denotes the Grassmannian of oriented k-subspaces of Rd . Here, we consider varifolds

with co-dimension 1 and we can identify any (d −1)-dimensional oriented subspace of Rd with

its positively oriented unit normal. This defines a smooth diffeomorphism Go(d −1,d)
∼→ Sd−1.

b) Similarly, in the literature (see e.g. [10]), one associates to any oriented k-varifold a k-
current C V . Here, we choose not to treat currents explicitly. We identify simple (d −1) vectors

of the form (−1)i+1e1 ∧· · ·∧ ei−1 ∧ ei+1 ∧· · ·∧ ed with ei . By duality, this identifies the (d −1)-
current C V with ΛV . In fact, in the present paper the boundary of C V always vanishes. With
our notation, this amounts to saying that ΛV is curl free (∂i[ΛV ] j = ∂ j[ΛV ]i for 1 ≤ i, j ≤ d) or
equivalently, thanks to Poincaré conditions, that the distribution ΛV is a gradient.

In general the distribution ΛV carries strictly less information than the oriented varifold V .
For instance, if Σ 6= ø is a smooth compact hypersurface oriented by ν then V := V (Σ ,ν)+
V (Σ ,−ν) does not vanish but ΛV ≡ 0.

c) When Σ is the boundary of a smooth and bounded open set O ⊂ Rd , with outward unit
normal ν , then Λ [V (Σ ,ν)] =−∇1O.

Our compactness result concerns varifolds constructed from elements of Aε .
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Definition 1.2 Let us fix a cut-off function χ⋆ ∈C∞
c (1/2,2) satisfying χ⋆(1) = 1. For ε ∈ (0,1],

we associate to any element a = (σ ,∇t,Ω) of Aε the oriented varifold,

〈V ⋆
ε (a);ϕ〉 :=

1

2ε

∫

Ω
χ⋆(|∇t|(y))ϕ

(
y,

∇t

|∇t|(y)
)

dy, ∀ϕ ∈C(Rd ×Sd−1).

Definition 1.3 (Limit sets)
a) The limit set A0(R,S) in our Γ -convergence analysis is a set of oriented (d − 1)-varifolds.

Namely, V0 ∈ M (Rd ×Sd−1) belongs to A0(R,S) if there exists a sequence of smooth open sets
(Ok)k≥1 ⊂ BR with outward unit normals νk and boundaries Σk such that

supk W (Σk) < ∞, H d−1(Σk)
k↑∞−→ S,

and V (Σk,νk)
k↑∞−→ V0 as Radon measures.

(1.5)

b) In the case d = 3, we also introduce the subset A00(R,S,g0) where g0 ∈ N is the genus intro-
duced in Hypothesis 2.
We say that V0 ∈ A00(R,S,g0) if there exists a sequence of smooth open sets (Ok) ⊂ BR such
that (1.5) holds and moreover Σk is connected and genus(Σk)≤ g0 for every k ≥ 0.
In this case the second fundamental form IIΣk

= divΣk
νk on Σk satisfies the identity

|IIΣk
|2 = |hΣk

|2 −2Kk,

where Kk = det IIΣk
denotes the Gaussian curvature of Σk. Thanks to the Gauss-Bonnet formula,

we have
∫

Σk

|IIΣk
|2 dH

d−1 = W (Σk)−2

∫

Σk

Kk dH
d−1 ≤ W (Σk)+8π(g0 −1).

Consequently, if V0 ∈ A00(R,S,g0), the second fundamental forms of the surfaces (Σk) in (1.5)
are uniformly square integrable .

We postpone further definitions and statements about varifolds to Section 4. Let us say however
that the elements of A0(R,S) are oriented integer rectifiable (d − 1)-varifolds (Definition 4.1)
which admit a L2-generalized mean curvature (Definition 4.2). The definition of the Willmore
energy extends to these objects as a lower semi-continuous functional on A0(R,S). If d = 3, the
elements of A00(R,S,g0) admit furthermore a L2-generalized second fundamental form.

Theorem 1.1
Let R,S > 0 and let {aε}0<ε≤1 be a family of configurations aε = (σε ,∇tε ,Ωε) ∈ Aε(R,S) satis-
fying the energy bound (1.4) and Hypothesis 1. Then:

a) There exists a non negative oriented (d −1)-varifold V0 with total mass S such that, up to
extraction,

V
⋆

ε (aε)
ε↓0−→ V0 as Radon measures.

b) There exists a set of finite perimeter O0 ⊂ BR, such that

∇1O0
=−ΛV0, and Tε :=

ε − tε

2ε

ε↓0−→ 1O0
weakly in BV (Rd).

c) Moreover, V0 ∈ A0(R,S) (hence V0 has finite generalized Willmore energy).

d) If d = 3 and if Hypothesis 2 holds, then V0 ∈ A00(R,S,g0).
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Remark 1.2
i. As a consequence of (b), if the interior domain Mε = [tε ≡−ε ] has prescribed volume or satisfies

H d(Mε) → V , then H d(O0) =V .

ii. The varifold V0 can be described by means of a (d − 1)-rectifiable set Σ0 and multiplicity
functions θ±

0 . The Willmore enrgy W (V0) has an explicit expression in terms of the generalized

curvature of Σ0 and θ±
0 (see Definition 4.1, Definition 4.2 and formula (4.8)).

1.4 Lower bound

For the lower bound, we make further assumptions on the stored energy function. Namely, we
assume that

f is of class C2 in some neighborhood N of Sd−1 in Rd ×Rd , (1.6)

and is isotropic in this neighborhood, that is

f (Qσ ,Qτ) = f (σ ,τ) ∀Q ∈ SO(d), ∀(σ ,τ) ∈ N . (1.7)

This assumption parallels the frame indifference hypothesis in nonlinear elasticity.

Theorem 1.2 Let R,S > 0 and let (aεk
)εk↓0 with aεk

∈ Aεk
(R,S) be a sequence of configurations

satisfying Hypothesis 1. Assume that there exists a (d − 1)-varifold V0 such that Vεk
(aεk

) → V0

as Radon measures.

Then, for every f ∈C(Rd ×Rd ,R+) satisfying (1.1), (1.2), (1.6) and (1.7), we have

c0( f )W (V0) ≤ liminf
εk↓0

F (aεk
)

ε3
k

,

where c0( f )> 0 only depends on the Hessian matrix D2 f on S
d−1. Namely,

c0( f ) :=
detL

3L2,2
with L :=




∂ 2 f

∂σd
2

∂ 2 f

∂σd∂τd

∂ 2 f

∂σd∂τd

∂ 2 f

∂τd
2



(ed,ed).

1.5 Upper bound in the smooth case

Theorem 1.3 Let f ∈ C(Rd ×Rd,R+) satisfying (1.1), (1.6) and (1.7) and let O0 ⊂ Rd be a
smooth bounded open subset with boundary Σ0 and outward unit normal ν0. Let us define

R := sup{|y| : y ∈ O0}+1 and S := H
d−1(Σ0).

Then there exists a family {aε}0<ε≤1, aε ∈ Aε(R,S), such that

V
⋆

ε (aε)
ε↓0−→ V (Σ0,ν0) as Radon measures and c0( f )W (Σ0) = lim

ε↓0

F (aε)

ε3
.

Moreover, noting aε = {σε ,∇tε ,Ωε}, the open sets Ωε and the vector fields σε and ∇tε are
uniformly smooth. In particular Hypothesis 1 holds.
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To complete the Γ -limit analysis, we should extend this reconstruction result to any data V0 ∈
A0(R,S). Namely, we should prove that given V0 ∈ A0(R,S) there exists a family {aε}0<ε≤1,
with aε ∈ Aε(R,S) such that V ⋆

ε (aε)→ V0 and F (aε)/ε3 → W (Σ0) as ε ↓ 0. A natural way for
this would be to answer positively the following question.

Question 1.1 Let V0 ∈A0(R,S). Does there exist a sequence of smooth open sets (Ok)⊂ BR with
outward normal νk and boundary Γk such that (1.5) holds and furthermore,

W (Σk)
k↑∞−→ W (V0) ?

As described in Section 2.7, the elements of A0 are oriented rectifiable (d − 1)-varifolds with
a generalized mean curvature in L2. To our knowledge the best regularity result established for
varifolds with a generalized mean curvature is due to A. Menne [11] who established their C2-
rectifiabilty (see also R. Schätzle [14] and references therein). In this context, giving a positive
answer to Question 1.1 seems a difficult task.

In the case d = 3 and under Hypothesis 2, the limit set is reduced to A00(R,S) (Theorem 1.1.d).
The elements of A00 are limit of compact surfaces (Σk) with uniformly bounded second funda-
mental forms in L2. These objects are more regular than in the general setting. For instance, a
theorem of J. Fu [7] which improves earlier results by T. Toro [17,18] implies that every Σk is lo-
cally the image of a bi-Lipschitz mapping defined on a subset of R2. Furthermore, the number of
bi-Lipschitz mappings required to cover Σk and their Lipschitz constants are uniformly bounded
with respect to k. In view of this result, we believe that giving a positive answer to Question 1.1
for V0 ∈ A00(R,S,g0) is a more tractable issue.

1.6 Notation

Throughout the paper, the letter C denotes a non negative constant which is either a universal con-
stant or only depends on the dimension d. For constants which also depend on other parameters,
α1, · · · ,αk, we write C(α1, · · · ,αk). As usual, the values of these constants may change from line
to line. For constants which depend on the data introduced in the hypotheses (the dimension d,
the limiting radius R, the prescribed (d − 1)-volume S, the modulus of continuity ω , the cut off
function χ⋆ or the energy upper bound E0) but not on ε , we use the short hand C6ε and we write
C6ε(α1, · · · ,αk) for constants also depending on other parameters.

We write Br(y) to denote the open ball in Rd with center y and radius r > 0 or simply Br for
Br(0).

The k-dimensional hausdorff measure of a set E ⊂ Rd is denoted by H k(E).

We often define the set of elements satisfying a property P by [P ]. For instance [t = ε ] is the set

{y ∈ Rd : t(y) = ε}.

Most of the time, we use y or z to denote a generic element of Rd whereas x is always a point on
a hypersurface.

For e ∈ Sd−1, πe denotes the orthogonal projection on the space e⊥ = {y ∈ Rd−1 : y · e = 0}, that
is πe(y) = y− (y · e)e.

We identify e⊥d with Rd−1 and for y ∈ Rd , we write y′ = (y1, · · · ,yd−1) = πed
y, so that y = (y′,yd).

Some objects introduced along the proofs are used in different and sometimes distant parts of the
paper. These objects are singled out by means of a superscript star: ω⋆, U⋆, etc. We have already
met the cut-off function χ⋆ in Definition 1.2.

We use the prefix “I” to refer to a result of the first part of this article. For instance, Theorem 2.1
in [12] is refered as Theorem I.2.1 .
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1.7 Outline of the paper

In Section 2, we establish the compactness result Theorem 1.1. The main part of this section is
devoted to the proof of Proposition 2.1 which contains the relevant constructions and estimates.
In particular, we use the rigidity estimates of [12] to show that we can approximate the varifolds
{V ⋆(aε)}ε by hypersurfaces {Σε}ε with uniformly bounded Willmore energy.
In Section 2.7, we establish Theorem 1.1 as a consequence of Proposition 2.1 and of Allard’s
compactness theorem for integer rectifiable varifolds applied to the family {Σε}.

In Section 3, we build a recovery sequence in the smooth case, proving Theorem 1.3. We also
describe there the general form of the Hessian matrix of our anisotropic stored energy functions
on the set Sd−1.

In Section 4 we introduce further material concerning varifolds. The aim of this section is
to provide a better understanding of the limit set A0(R,S) and to define the Willmore energy of
generalized hypersurfaces.

Section 5 is devoted to the proof of the lower bound of Theorem 1.2. In Section 5.1, we
introduce an approximate mean curvature at the ε-level. At some point x ∈ Σε , this approximate
mean curvature only depends on the restriction of σε to the ball B√

2ε(x). We show that this
approximate curvature is indeed an approximation of the mean curvature on Σε in a weak sense.
Again, the rigidity estimates are crucial in this step.
In Section 5.2 we pass to the limit ε ↓ 0 using lower semi-continuity of the Willmore energy. This
reduces the lower bound problem to a relatively easy local optimization problem: minimize the
local energy under prescribed approximate mean curvature.

In the last section, we discuss the hypotheses and indicate possible generalizations of our
results. In particular, we consider the case of a material with spontaneous curvature µ 6= 0.

2 Compactness, part 1. Approximation by smooth hypersurfaces

Let R,S > 0 and let us consider a family {aε}0<ε≤1 satisfying the hypotheses of Theorem 2.1.
In this section, for every ε , we build a smooth open set Oε with boundary Σε and outward unit
normal νε such that Oε is close in L1 to [tε ≡−ε ] and V (Σε ,νε) is close to V ′(aε). The relevant
uniform bounds and properties of these families are collected in Proposition 2.1 below. We then
deduce Theorem 1.1 from the proposition in Section 2.7.

Proposition 2.1
a) For every ε ∈ (0,1],

∣∣∣∣
1

2ε
H

d(Ωε)−S

∣∣∣∣+
∣∣∣∣

1

2ε

∫

Rd
|∇tε | −S

∣∣∣∣+ |〈V ⋆
ε (aε) ; 1〉−S| ≤ C6εε .

b) For every ε ∈ (0,1], there exists a smooth bounded open set Oε ⊂ BR+Cε with outward unit

normal νε , such that, with the notation Σε := ∂Oε and Mε := {y ∈ Rd : tε(y) =−ε}, we have

‖1Oε −1Mε‖L1 ≤ C6εεd−1, H
d−1(Σε) ≤ C6ε , W (Σε) ≤ C6ε .

c) For every ϕ ∈C(Rd ×Rd) such that supy,v |ϕ(y,v)|/(1+ |v|2) < ∞, we have

∣∣∣∣
1

2ε

∫

Ωε

ϕ(y,∇tε(y))dy−
∫

Σε

ϕ(x,νε(x))dH
d−1(x)

∣∣∣∣
ε↓0−→ 0.

d) If moreover, d = 3 and Hypothesis 2 holds, then we may assume that Σε is connected and
has genus gε ≤ g0.
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Except in the proof of part (c) of the proposition (Section 2.6), the parameter ε ∈ (0,1] is fixed.
In this case, it is convenient to rescale the domain by a factor 1/ε by setting Ω(ε) := ε−1Ωε . We
also define the rescaled data:

t(ε)(y) := ε−1tε (εy) , τ(ε)(y) := ∇tε(εy), σ(ε)(y) := σε(εy) for y ∈ Rd.

With this notation, the function t(ε) ∈ C(Rd, [−1,1]) is ω-continuous, we have ∇t(ε) = τ(ε) and

Ω(ε) = {y ∈ Rd : |t(ε)|(y)< 1}. The vector field σ(ε) is divergence free in Ω(ε) and vanishes in

Rd \Ω(ε). We also have,

Q(σ(ε),∇t(ε)) =
∫

Rd
σ(ε) ·∇t(ε) = 2S/εd−1,

and F0(σ(ε),∇t(ε),Ω(ε)) ≤ E0/εd−3. (2.1)

Part (a) is established in Section 2.1. In Section 2.2, we introduce the harmonic extension u(ε)
of t(ε) in a subset of Ω(ε) which contains [|t(ε)| < 4/5]. The level sets of u(ε) are candidates for
the hypersurface Σ(ε).
In Section 2.3 we state and prove some technical lemmas which follow from the weak rigidity
estimates of [12]. These lemmas are designed for selecting the “good” points where the data is
sufficiently close to a zero energy limit state, as described in Theorem I.1.1. We also state there all
the consequences of the strong rigidity estimates which are relevant to our purpose. Eventually,
we bound the volume of “bad” regions. All these results are also used in the proof of the lower
bound in Section 5.
In Section 2.4, we build the set O(ε) (and therefore the hypersurface Σ(ε)) and we prove the
estimates of part (b). The special case (d) is treated in Section 2.5. Eventually, the convergence
result (c) is established in Section 2.6.

To lighten notation, we drop all the subscripts (ε) and write t for t(ε), σ for σ(ε), Ω for Ω(ε),
etc. We come back to the unambiguous notation at the beginning of Section 2.6 when considering
the limit ε ↓ 0.

2.1 Proof of Proposition 2.1. a

For −1 ≤ α− < α+ ≤ 1, we set

Ω
α+
α− :=

{
y ∈ Rd : α− < t(y)< α+

}
⊂ Ω .

Lemma 2.1 Let −1 ≤ α− < α+ ≤ 1, we have
∫

Ω
α+
α−

∇t · σ = (α+−α−)S/εd−1. (2.2)

Moreover,

∣∣∣∣H
d(Ω

α+
α− )−

(α+−α−)S

εd−1

∣∣∣∣ ≤
5

2
F0(σ ,∇t,Ω

α+
α− )+2

√
SF0(σ ,∇t,Ω

α+
α− )

εd−1
, (2.3)

and similarly,

∣∣∣∣∣

∫

Ω
α+
α−

|∇t| − (α+−α−)S

εd−1

∣∣∣∣∣ ≤ 4F0(σ ,∇t,Ω
α+
α− )+4

√
SF0(σ ,∇t,Ω

α+
α− )

εd−1
. (2.4)
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Before proving the lemma let us show that it implies Proposition 2.1.a. Applying (2.3) and (2.4)
with α± =±1, unscaling and taking into account (2.1), we obtain

∣∣∣∣
1

2ε
H

d(Ωε)−S

∣∣∣∣+
∣∣∣∣

1

2ε

∫

Rd
|∇tε | −S

∣∣∣∣ ≤ C6εε . (2.5)

Next, we have

〈V ⋆
ε (aε) ; 1〉 =

1

2ε

∫

Ωε

χ⋆(|∇tε |(y))dy.

Since |χ⋆(τ)−1| ≤C||τ |−1|, we get

|〈V ⋆
ε (aε) ; 1〉−S| ≤ 1

2ε

∫

Ωε

||∇tε |−1| +
∣∣∣∣

1

2ε
H

d(Ωε)−S

∣∣∣∣
(1.4),(2.5)

≤
√

H d(Ωε)/2ε
√

E0 ε +C6εε
(2.5)

≤ C6εε . (2.6)

Proposition 2.1.a follows from (2.5),(2.6).

Proof (of Lemma 2.1) Let us first establish that for every smooth open set O such that

{x ∈ Rd : t(x)>−1} ⊂ O ⊂ {x ∈ Rd : t(x)< 1},

we have ∫

∂ O
σ ·ν = S/εd−1, (2.7)

where ν denotes the outward normal on ∂O and σ ·ν is well defined in H−1/2(∂O) as the trace

on ∂O of the normal component of σ ∈ Hdiv(Ω) = {σ ′ ∈ L2(Ω ,Rd) : divσ ′ ∈ L2(Ω)}.
Notice that the identity ∫

O
∇ϕ ·σ =

∫

∂ O
ϕσ ·ν , (2.8)

is valid for ϕ ∈C∞(Ω ) such that ϕ ≡ 0 in the neighborhood of {t ≡−1}. In order to extend this
formula to the case ϕ = t +1, we introduce for s ∈ (0,1), the truncated function ts defined by

ts(y) :=

{
t(y) if |t(y)| ≤ 1− s,

±(1− s) if ± t(y)> 1− s.

By continuity of t, the function ϕs := ts+(1−s)∈W 1,2(Ω) vanishes in the neighborhood of {t =
−1}. Consequently, ϕs belongs to the closure in W 1,2 of {ϕ ∈C∞(Ω ) : suppϕ ∩{t ≤−1} = ø}
and (2.8) is valid with ϕ = ϕs.

∫

O
∇ts ·σ =

∫

∂ O
(ts +(1− s))σ ·ν .

Letting s ↓ 0, since ts → t in W
1,2
loc (R

d), we obtain,

∫

O
∇t ·σ =

∫

∂ O
(t +1)σ ·ν .

Similarly, integrating ∇(ts − (1− s)) ·σ on Ω \O and passing to the limit s ↓ 0, we also get,
∫

Ω\O
∇t ·σ =

∫

∂ O
(−t +1)σ ·ν .
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Summing these identities, we obtain 2
∫

∂ O σ ·ν =
∫

Ω ∇t ·σ . By hypothesis, the value of the latter

is 2S/εd−1, so (2.7) holds true.

1/ Let us establish (2.2). By hypothesis, this identity is true for (α−,α+) = (−1,1). Let us first
assume −1 < α− < α+ < 1 and let O be a smooth bounded open set such that

{t ≤ α+} ⊂ O ⊂ {t < 1}.

For instance, we may slightly mollify t and invoke Sard theorem to define O as a smooth sublevel
set of the smooth approximation of t. Now let us introduce the truncated function,

t̃(y) :=

{
t(y) if α− ≤ t(y)≤ α+,

α± if ± t(y)> α±.

As above, (2.8) is valid with ϕ = t̃ −α− and we have,

∫

Ω
α+
α−

∇t · σ =
∫

Ω
α+
α−

∇t̃ · σ = (α+−α−)
∫

∂ O
σ ·ν (2.7)

= (α+−α−)S/εd−1.

Hence, identity (2.2) holds in the case −1 < α− < α+ < 1. The remaining cases follow by conti-
nuity of the integral.

2/ We are ready to establish (2.3). Let −1 ≤ α− < α+ ≤ 1. By (2.2), the left hand side of (2.3)

is bounded by

∫

Ω
α+
α−

|1−∇t ·σ |.

To estimate this integral, we write

|1−∇t ·σ |=
∣∣(1−|∇t|2)+(1−|σ |2)+ |∇t −σ |2

∣∣/2

≤ |1−|∇t||+ |1−|σ ||+
[
(1−|∇t|)2 +(1−|σ |)2 + |∇t −σ |2

]
/2.

Integrating on Ω
α+
α− and using the Cauchy-Scwharz inequality, we obtain,

∣∣∣X2 − (α+−α−)S/εd−1
∣∣∣ ≤

√
2F0 X +F0/2,

with the notation:

F0 := F0(σ ,∇t,Ω
α+
α− ), X :=

√
H d(Ω

α+
α− ).

In particular, X2 −
√

2F0X ≤ 2S/ε2 +F0/2, and X ≤ (
√

2F0 +
√

8S/ε2 +2F0)/2. Substituting
this in the right hand side of the above estimate, we obtain,

∣∣∣∣X
2 − (α+−α−)S

εd−1

∣∣∣∣ ≤ (3/2)F0 +
√

F2
0 +4F0S/ε2 ≤ (5/2)F0 +2

√
F0S/ε2,

that is (2.3).

Similarly, the left hand side of (2.4) is bounded by

∫

Ω
α+
α−

||∇t|−∇t ·σ |.

Writing ||∇t| −∇t ·σ | ≤ |1−∇t ·σ |+ ||∇t| − 1|, we get
∫

Ω
α+
α−

||∇t|−∇t ·σ | ≤
√

5F0X +F0/2

which yields (2.4). ⊓⊔
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2.2 Construction of a harmonic extension of tε . Definition of Σ s

Recall that ω is the modulus of continuity of Hypothesis 1. Let δ > 0 be the largest number such
that

δ ≤ 1/4, ω(δ ) ≤ 1/10. (2.9)

Then we define

Ω ′
(ε) :=

{
y ∈ Rd : |t(ε)|(y)< 9/10

}
, F ′

(ε) := Rd \Ω ′
(ε),

and

O(ε),δ :=
{

y ∈ Rd : d(y,F ′
(ε))> δ

}
, F(ε),δ :=

⋃

y∈F ′
(ε)

Bδ (y) = Rd \O(ε),δ .

Notice that [|t|< 4/5] ⊂ Oδ or equivalently, t ≥ 4/5 in Fδ . More precisely, for y ∈ F ′, we have
t ≥ 4/5 on Bδ (y) if t(y)≥ 9/10 and t ≤−4/5 on Bδ (y) if t(y)≤−9/10.

We introduce the harmonic extension u(ε) of t(ε) in O(ε),δ . Its level sets are good candidates

for the hypersurface Σ(ε) = (1/ε)Σε of Proposition 2.1.b.

Definition 2.1 We set uε(y) = εu(ε)(y/ε), where u(ε) is defined as

u(ε) := argmin

{∫

Rd
|∇ϕ |2 : ϕ ∈W

1,2
loc (R

d), ϕ ≡ t(ε) a.e on F(ε),δ

}
.

Remark 2.1

a) The definition of u(ε) is valid since the feasible domain of the minimization problem contains
at least t(ε).

b) We do not define u(ε) as the harmonic extension of t(ε) in Ω(ε) for two reasons.
• First, in the sequel, we need uε to be equal to tε in a large part of Ωε . Thanks to the definition
of Ω ′

(ε), this property holds true in the set [9/10 < |t(ε)| < 1]. When we will apply the rigidity

estimates of [12] to u(ε) and t(ε) in domains intersecting [9/10 < |t(ε)| < 1], this will allow us to

use the same averaged normal direction for both vector fields ∇uε , ∇tε .
• We also need u(ε) to be uniformly equicontinuous (independently of ε). For this, we define
the harmonic extensions uε in domains satisfying uniformly the exterior ball property. This is the
reason for the introduction of the sets O(ε),δ which have this property with balls with radius δ .

Definition 2.2
a) For −1/2 < s < 1/2, we set Σ εs

ε := εΣ s
(ε) where Σ s

(ε) is the level set

Σ s
(ε) := {x ∈ O(ε),δ : u(ε)(x) = s}.

b) For every z ∈ O(ε),δ , we set

n(ε)(z) :=





∇u(ε)

|∇u(ε)|
(z) if ∇u(ε)(z) 6= 0,

ed if ∇u(ε)(z) = 0.

Remark 2.2
Since u(ε) is harmonic in the neighborhood of Σ s

(ε), this set is an analytic surface with unit normal

n(ε) in the neighborhood of {x ∈ Σ s
(ε) : ∇u(ε)(x) 6= 0}.
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In the sequel, we drop again the subscripts (ε): we note u for u(ε), Oδ for O(ε),δ , n for n(ε) and

Σ s for Σ s
(ε), etc. We first establish that ∇u is close to ∇t.

Lemma 2.2 We have
∫

Rd
|∇u−σ |2 ≤ E0 and

∫

Rd
|∇u−∇t|2 ≤ 4E0.

Proof Since σ is divergence free in Oδ , we easily check that u minimizes the functional

J(ϕ) :=

∫

Rd
|∇ϕ −σ |2.

in the set Tδ :=
{

ϕ ∈W
1,2
loc (R

d) : ϕ ≡ t in Fδ

}
. Since t ∈ Tδ , we have by (2.1),

∫

Rd
|∇u−σ |2 = J(u) ≤ J(t) ≤ E0.

The second estimates then follows from (2.1) and the triangular inequality. ⊓⊔
Let us notice that, by construction, Oδ ⊂ BR satisfies the exterior ball property with balls of
radii δ . As a consequence, we can use the Perron method to obtain the existence of a function
ũ∈C(Oδ ) which is harmonic in Oδ and satisfies ũ≡ t on ∂Oδ (see [8], Theorem 2.14 and below).

By the maximum principle, we have ũ = u, hence u is continuous on Oδ . Thereafter we also need
u to be uniformly continuous with a modulus of continuity that does not depend on ε . We did not
find the relevant precise statements in our favorite textbooks for this last result. For the sake of
completeness, we provide a proof.

Lemma 2.3 There exists a modulus of continuity ω⋆ only depending on ω , δ and d such that u

is ω⋆-continuous on Rd .

Proof We start by regularizing the boundary data t and the domain. For 0 < η ≤ δ/2, we set

t ′η := t ⋆ρη where ρη = η−dρ(·/η) is a standard non-negative mollifier, compactly supported in

Bη . We also set O′
δ ,η := Oδ +Bη ⊃ Oδ .

Writing t ′η(y)− t ′η(z) =
∫
[t(y−x)− t(z−x)]dρη (x)≤

∫
ω(y− z)dρη = ω(y− z), we see that the

functions {t ′η}0<η<δ/2 are ω-continuous. They are also uniformly bounded in W 1,2(BR/ε) and

satisfy −1 ≤ t ′η ≤ 1.

By construction, the domain O′
δ ,η satisfies the exterior ball condition for balls with radii δ/2 and

the interior ball condition for balls with radii η . In particular ∂O′
δ ,η has C1,1 regularity and O′

δ ,η
is a bounded Lipschitz domain.
Let u′η be the variational harmonic extension of t ′η in O′

δ ,η , defined as

u′η := argmin

{∫

BR/ε

|∇ϕ |2 : ϕ ∈W
1,2
loc (R

d), ϕ ≡ t ′η a.e on Rd \O′
δ ,η

}
.

By classical elliptic regularity theory, u′η is of class C1 in O′
δ ,η and u′η ≡ t ′η on ∂Oδ ,ρ . We claim

that

∃ a modulus of continuity ω ′ = ω ′(ω,δ ,d) such that u′η ∈Cω ′(O′
δ ,η). (2.10)

Assuming the claim, there exists a function u′ ∈W 1,2(BR/ε) such that, up to extraction, u′η → u′

as η ↓ 0. Moreover, u′ is harmonic in Oδ , is ω ′-continuous in Oδ and u′ ≡ t in Rd \Oδ . Hence
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O′
δ

∂ O′
δ

y

x

g = 1

g = t ′(x)+ω(3r)r
2r

Ar(y)

Fig. 2.1 The barrier function g.

u = u′ and u is ω ′-continuous in Oδ . Since u = t is ω-continuous in Rd \Oδ , we conclude that u

is (ω +ω ′)-continuous in Rd and the lemma is proved.

Let us now establish (2.10). We fix η ∈ (0,δ/2] and drop the subscripts η .

Step 1 (interior estimate) First, by the maximum principle, we have in any case |u′(y)−
u′(z)| ≤ 2. Now, let 0 < r ≤ 1/2 and Br(x)⊂ O′

δ . By harmonic regularity we have |∇u| ≤C/r in

Br/2(x). So |u′(y)−u′(z)| ≤ C
√
|y− z| for every y, z ∈ Br2(x).

From this estimate, we conclude that we only have to establish that for any x ∈ ∂O′
δ , u′(z)→

u′(x) as z ∈ O′
δ → x with a convergence rate that only depends on ω , δ and d.

Step 2 (continuity up to the boundary) Let us fix x ∈ ∂O′
δ and let r ∈ (0,δ/2]. By hypothesis,

there exists a ball Br(y)⊂ Rd \O′
δ such that x ∈ ∂Br(y).

As a barrier, we consider the harmonic function g defined on the annulus Ar(y) := B2r(y)\Br(y)
satisfying the boundary conditions g ≡ t ′(x)+ω(3r) on ∂Br(y) and g ≡ 1 on ∂B2r(y) (see Fig-
ure 2.1).
We claim that g ≥ u′ in Ar(y)∩O′

δ . Indeed, g− u′ is harmonic on this set, so by the maximum

principle it is sufficient to check the inequality on the boundary of Ar(y)∩O′
δ . This boundary

splits into:

∂ (Ar(y)∩O′
δ ) = (∂B2r(y)∩O′

δ )∪ (Ar(y)∩∂O′
δ ).

On the first part, we have g−u′ = 1−u′ ≥ 0. On the second part u′ = t ′ on ∂O′
δ , so, g(z)−u′(z) =

t ′(x)+ω(3r)− t ′(z) ≥ ω(3r)−ω(|x− z|) ≥ 0 since |x− z| ≤ 3r and t ′ is ω-continuous. Hence,
g ≥ u′ in Ar(y)∩O′

δ .
An explicit computation gives

g(z) = t ′(x)+ω(3r)+(1− t ′(x)−ω(3r))
G(1)−G(|z− y|/r)

G(1)−G(2)
,

where z 7→ G(|z|) denotes a radially symmetric decreasing multiple of the fundamental solution

of the Laplacian (G(s) = − lns if d = 2 and G(s) = s2−d for d ≥ 3). Hence, for every x ∈ ∂O′
δ ,

0 < r < δ/2 and z ∈ O′
δ ∩Br(x), we have

u′(z)− t ′(x) ≤ g(z)− t ′(x) ≤ ω(3r)+2
G(1)−G(|z− y|/r)

G(1)−G(2)
.
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Substituting −t ′ for t and −u′ for u, we obtain the corresponding result with opposite signs. We
conclude that for every x ∈ ∂O′

δ , 0 < r < δ/2 and z ∈ O′
δ ∩Br(x),

|u′(z)− t ′(x)| ≤ ω(3r)+2
G(1)−G(|z− y|/r)

G(1)−G(2)
.

In particular, for x ∈ ∂O′
δ and z ∈ O′

δ , such that |z− x| ≤ δ 2, we can choose r =
√
|x− z|. In this

case,
|z− y|

r
≤ |x− y|

r
+

|z− x|
r

= 1+
√

|z− x|.
This leads to,

|u′(z)− t ′(x)| ≤ ω(3
√

|x− z|)+2
G(1)−G(1+

√
|z− x|)

G(1)−G(2)

|z−x|↓0−→ 0.

This establishes the claim (2.10). ⊓⊔
Recall that, in Fδ , we have |t| ≥ 4/5, so as a consequence of Lemma 2.3, the level sets

{Σ s}−1/2<s<1/2 lie at a positive distance from Fδ .

Corollary 2.1 For −1/2 < s < 1/2, we have

d(Σ s,Fδ ) ≥ δ ⋆, with δ ⋆ := max{r : ω⋆(r)≤ 2/5}.
In particular, δ ⋆ only depends on ω and d.

2.3 Good cylinders. Bad balls

We use here the weak rigidity inequalities of [12] (Theorems I.2.2 ) and I.1.1) to show that tε and
uε are close to some affine function in the neighborhood of points with small local energy. These
results allow us to select the good points where it is possible to carry out the computations and
derived the main estimates leading to the compactness (and lower bound) results.

Definition 2.3 The local energy in an open set O ⊂ Rd is defined as

E (O) :=

∫

O∩Ω
f0(σ ,∇t)+ |∇u−∇t|2.

When O is the open ball Bλ (y)⊂ Rd , we use the short hand,

Eλ (y) := E (Bλ (y)) =
∫

Ω∩Bλ (y)
f0(σ ,∇t)+ |∇u−∇t|2.

We first show that if z ∈ Ω is such that E3(z) is small enough, then Ω − z contains a cylinder
of the following form.

Definition 2.4 For λ > 0 and n̄ ∈ Sd−1, D′
λ (n̄) denotes the (d −1)-ball,

{y′ ∈ Rd : |y′|< λ , y′ · n̄ = 0} = Bλ ∩ n̄⊥.

For λ > 1, ξ ∈ [0,1) and n̄ ∈ Sd−1, D
ξ
λ (n̄) denotes the finite cylinder

{y′+ sn̄ : y′ ∈ D′
λ (n̄), |s|< 1−ξ}.

Using rotation invariance, we often consider the case n̄ = ed , for which we simply write D′
λ for

D′
λ (ed) and D

ξ
λ for

D
ξ
λ (ed) = {y ∈ Rd : |yd|< 1−ξ , ∑

i<d

y2
i < λ 2}.
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Lemma 2.4 Let ξ ∈ (0,1/2), and η > 0. There exists β = β1(ω,ξ ,η) such that if z∈Rd satisfies
|u(z)| ≤ 1/2 and E3(z)≤ β , then, |∇u(z)| ≥ 1/2 and using the notation

z0 := z−u(z)n(z), D := z0 +D
ξ
1 (n(z)), ϕ(y) = u(z)+(y− z) ·n(z),

we have,

(a) D ⊂ Ω (see Figure 2.2) and

‖t −ϕ‖L∞(D)+‖u−ϕ‖L∞(D)+‖∇t −∇ϕ‖L2(D)+‖σ −∇ϕ‖L2(D) ≤ η ;

(b) there exists an analytic mapping Ψ : D′
1(n(z))× (−1/2,1/2)→ R, such that ‖Ψ‖C2 ≤ η and

for every s ∈ (−1/2,1/2),

Σ s ∩D = [z0 + sn(z)]+
{

y′+Ψ(y′, s)n(z) ; y′ ∈ D′
1(n(z))

}
.

(c) As a consequence,

0 ≤ H
d−1(Σ s ∩D)−H

d−1(D′
1) ≤ c(η),

with c(η) ↓ 0 as η ↓ 0.

[t ≡ 1]

[t ≡−1]

Oδ

D = z0 +D
ξ
1 (n(z))

z0

z

n(z)

[u ≡ t]

[u ≡ t]

Σ 0

Fig. 2.2 Example of “good” cylinder in dimension d = 2.

Proof Without loss of generality, we assume z = 0 and ξ ∈ (0,1/20). Let η > 0. We establish by
contradiction that (a) holds for β > 0 small enough.

If (a) were not true for any value of β > 0, there would exist two sequences (ak), (a
′
k) with

ak = (σk,∇tk,Ok), a′k = (σk,∇uk,O
′
k) such that:

(i) (ak) and (a′k) both satisfy the hypotheses of Theorem I.1.1 with O = B3. In particular, (uk) and
(tk) are uniformly equicontinuous.
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(ii) Either |∇uk|(0)< 1/2;
or |∇uk|(0)≥ 1/2 and using the notation

n̄k := ∇uk/|∇uk|(0), Dk :=−uk(0)n̄k +D
ξ
1 (n̄k), ϕk(y) = uk(0)− z · n̄k,

we have either:
– Dk 6⊂ Ok ∩O′

k;
– or Dk ⊂ Ok ∩O′

k and

‖tk −ϕk‖L∞(Dk)
+‖uk −ϕk‖L∞(Dk)

+‖∇tk −∇ϕk‖L2(Dk)
> η ; (2.11)

(iii) Moreover, |uk|(0) ≤ 1/2 and setting F̃k := [|tk| ≥ 9/10] + Bδ , we have (taking into ac-

count (2.9)) uk ≡ tk on F̃k and uk is harmonic in B3 \ F̃k.

First, up to extraction, we may assume that both (tk(0))k and (uk(0))k converge towards re-

spectively s and s′ with |s| ≤ 9/10 and |s′| ≤ 1/2. By Theorem I.1.1, there exists n̄, n̄′ ∈ Sd−1 such
that

tk
k↑∞−→ ϕ on Cloc(O⋆), uk

k↑∞−→ ϕ ′ on Cloc(O
′
⋆),

with ϕ(y) := s+ n̄ · y, ϕ ′(y) := s′+ n̄′ · y, O⋆ = B2 ∩ [|ϕ |< 1], O′
⋆ = B2 ∩ [|ϕ ′|< 1].

Now, for any k ≥ 1, uk is harmonic in Bδ ⋆ . By harmonic regularity, we see that ∇uk(0) →
∇ϕ ′(0) = n̄′. In particular, for k large enough, there holds

|∇uk|(0) ≥ 1/2.

Next, considering the segment I = {y+(r− s)n̄ : −1 < r < 1} ⊂ O′
⋆, and the mapping p :

(−1,1)→ I defined by p(r) = y+(r− s)n̄, we have uk ◦ p → Id(−1,1) as k ↑ ∞.

In particular, for k large enough |uk|> 9/10 on p(19/20,1) which implies tk ≡ uk on p(19/20,1).
Passing to the limit we conclude that n̄ = n̄′, s = s′ and ϕ = ϕ ′. By uniform equicontinuity of the
sequence (tk), and convergence of (tk) towards ϕ ′ on O′

⋆ we then see that

D̃k :=−uk(0)n̄k +D
ξ/2

1+ξ
(n̄k) ⊂ [|tk|< 1−ξ/2], for k large enough.

We already know that the L∞ norms in (2.11) converge to 0.

Applying the weak rigidity inequality of Theorem I.2.2 to tk in D̃k ⊃ Dk we see that the W 1,2-
seminorms also converge to 0 which contradicts (2.11).

Parts (b) and (c) of the lemma follow from part (a) and the harmonicity of u in the domain
[u < 4/5]. ⊓⊔

When establishing the lower bound of Theorem 1.2 in Section 5, we apply the weak and strong
rigidity inequalities in the cylindrical boxes of Lemma 2.4. It is convenient to gather the relevant
estimates here.

Lemma 2.5 Let ξ ∈ (0,1/4). There exists β = β2(ω,ξ ) such that if x ∈ Σ 0 satisfies E3(x) ≤ β ,
then using the notation n(x) = n̄ and

Dint := x+D
2ξ
1−2ξ

(n̄) ⊂ D := x+D
ξ
1 (n̄) ,

we have:
(a) D ⊂ Ω ;

(b)
|II|4(x)+ |h|2(x) ≤ CE (D). (2.12)
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(c) There exists a harmonic function ψ : Dint → R satisfying ∇ψ(x) = 0, n̄ ·∇ψ ≡ 0,

∫

Dint

|∇ψ|2 ≤ C(ξ )
√

E (D), (2.13)

and such that
∫

Dint

|∇u− n̄−∇ψ|2 + |∇t − n̄−∇ψ|2 + |σ − n̄−∇ψ|2 ≤ C(ξ )E (D). (2.14)

Proof Part (a) is a direct consequence of the preceding lemma. Part (b) follows from Corol-
lary I.3.1 and the harmonicity of u in Bδ ⋆ .

Let us establish part (c). Without loss of generality, we assume x = 0 and ξ ∈ (0,1/20). We
apply Theorem I.2.2 to the function u in the cylinder Dint ⊂ D and in Bδ ⋆ ⊂ D. There exists
e′⋆,e⋆ ∈ Sd−1 such that

∫

Dint

|∇u− e′⋆|2 ≤ C(ξ )
√

E (D), (2.15)

∫

Bδ⋆

|∇u− e⋆|2 ≤ C(δ ⋆)
√

E (D).

In particular, we have |e⋆− e′⋆|2 ≤C(ξ ,δ ⋆)
√

E (D). Since u is harmonic in Bδ ⋆ , we see as in the
proof of Corollary I.3.1 that by the mean value property e⋆ = n(0) =: n̄. Inequality (2.15) then
implies ∫

Dint

|∇u− n̄|2 ≤ C(ξ ,δ ⋆)
√

E (D). (2.16)

Now, let us apply Theorem I.3.1 to u in Dint ⊂ D. There exists a harmonic function ψ1 ∈ L2(Dint)
such that n̄ ·∇ψ1 ≡ 0 and

∫

Dint

|∇u− n̄−∇ψ1|2 ≤ C(ξ ,δ ⋆)E (D). (2.17)

Now, notice that by orthogonality, we have

|∇ψ1|2(0)+ |∇u(0)− n̄|2 = |∇u(0)−∇ψ1(0)− n̄|2
(2.17)

≤ C(ξ ,δ ⋆)E (D).

In particular,

|∇ψ1|2(0) ≤ C(ξ ,δ ⋆)E (D). (2.18)

Eventually, setting ψ(y) := ψ1(y)− y ·∇ψ1(0), the function ψ is harmonic in Dint, it satisfies
n̄ ·∇ψ ≡ 0 and (2.14) holds thanks to (2.17) and (2.18). Inequality (2.13) then follows from (2.14)
and (2.16). ⊓⊔

In the sequel, we perform some changes in the order of integration for which we are led to
consider the sets

Γ ξ (z) := {x ∈ Σ 0 : z ∈ x+D
ξ
1 (n(x))}.

The purpose of next lemma is to estimate the (d −1)-volumes of these sets.
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Lemma 2.6 Let ξ ∈ (0,1/2) and η > 0. There exists β = β3(ξ ,η)> 0 such that if z∈Rd satisfies

|t(z)| ≤ 1−ξ and E3(z)≤ β ,

then the function x ∈ Σ 0 7→ |x− z|2 admits a unique minimizer x ∈ Σ 0 and we have z = x+ sn(x)
with |s− t(z)|< η . Moreover, using the notation of Lemma 2.4,

Γ ξ (z) = {x+ y+Ψ (y,0)n(x) : y ∈ X} ,

for some open subset X of n(x)⊥ such that

D′
1−η(n(x)) ⊂ X ⊂ D′

1+η(n(x)).

In particular, ∣∣∣H d−1(Γ ξ (z))−H
d−1(D′

1)
∣∣∣ ≤ Cη . (2.19)

Proof We can prove the lemma by arguing by contradiction as in the proof of Lemma 2.4.
The only difference is that we have to take into account all the connected components of {y :
limk→∞ uk(y) ∈ (−1,1)} (see Figure I.1.4). Details are left to the reader. ⊓⊔

We now bound the total volume of points which do not satisfy the assumption E3(x)< β . Let
us fix β > 0 and let us define the sets of good and bad points as

Gβ := {x ∈ Rd : E3(x)≤ β}, Bβ := Rd \Gβ .

Lemma 2.7 i) There exists a finite number of disjoint balls B3(y1), · · · ,B3(yN)⊂ Rd such that

Bβ ⊂ Uβ :=
N⋃

i=1

B9(yi), with N ≤ C6εε3−d/β .

ii) Moreover, there exists a finite number of balls {B9αi
(zi)}1≤i≤N′ ⊂ Rd with

1 ≤ αi ≤ 2N−1 and N ′ ≤ N

such that the balls {B9(1+αi)(zi)} do not intersect and

Bβ ⊂ Uβ ⊂ U ′
β :=

N′⋃

i=1

B9αi
(zi).

Proof Since the total energy E+∞(0) is bounded by CE0ε3−d , the first part classically follows
from Vitali covering theorem. For the second part, it is enough to prove that we can cover ∪B18(yi)
with N ′ ≤ N non intersecting balls with radii bounded by 18 · 2N−1. This ensues from the follow-
ing claim.

Claim Let N ≥ 1 and ρ > 0, if U is a union of N open balls with radius ρ , we can cover U with
N (or less) disjoint open balls with radii at most 2N−1ρ .
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We proceed recursively on N. For N = 1 the result is obvious. Let us assume N ≥ 2 and consider
the union of N balls with radius ρ , UN = ∪N

i=1Bρ(zi). If these balls are disjoint, there is nothing
to prove. If at least two balls intersect, say Bρ(zN−1)∩Bρ(zN) 6= ø, then UN is contained in the
union of N −1 balls of radius 2ρ ,

UN ⊂ UN−1 := B2ρ (z1)∪· · ·∪B2ρ (zN−2)∪B2ρ

(
zN−1 + zN

2

)
.

By the induction hypothesis, we cover UN−1 with M ≤ N−1 balls with radii at most 2N−2(2ρ) =
2N−1ρ . ⊓⊔

As a consequence of the bound on N we have H d(Uβ ) ≤ C6ε(β )ε3−d and more generally, for

β > 0, λ ≥ 1,

H
d
(
∪N

i=1B9λ (yi)
)
≤ C6ε(β ,λ )ε

3−d.

In the sequel, we use this inequality without further reference.

2.4 Definition and properties of the hypersurface Σε . Proof of Proposition 2.1.b

Before beginning, let us sketch our construction of the hypersurface Σ(ε).

• Step 0. We introduce a bad set U ♭
(ε) of points with local energy larger than a fixed value β > 0.

We also define the larger open set U⋆
(ε) :=U ♭

(ε)+B9 and the good set G⋆
(ε) := Rd \U⋆

(ε).

• Step 1. Then, we define Σ(ε) in G⋆
(ε) as Σ⋆

(ε) := G⋆
(ε)∩Σ 0

(ε) = G⋆
(ε)∩ [u(ε) ≡ 0].

• Step 2. Next, we use Corollary I.2.1 to find a level set Σ s♭

(ε) such that Σ s♭

(ε)∩U(ε) satisfies conve-

nient bounds. We then set Σ ♭
(ε) := Σ s

(ε)∩U(ε).

• Step 3. Eventually, we complete the construction of Σ ♭
(ε)∪Σ⋆

(ε) by adding a smooth hypersuface

in the gap U⋆
(ε) \U ♭

(ε) with boundary ∂Σ⋆
(ε)∪∂Σ ♭

(ε) ⊂ ∂U⋆
(ε)∪∂U ♭

(ε).

Let us fix ξ = η = 1/4. With the notation of Corollary I.3.1 , Lemma 2.4 and Lemma 2.7, we
define,

β := min
(

β0δ ⋆(d+2), β1(ω,ξ ,η)
)
, U ♭ := Uβ =

N⋃

i=1

B9(yi). (2.20)

Let us recall that N ≤C6εε3−d . We also note

U⋆ :=
N⋃

i=1

B18(yi), G⋆ := Rd \U⋆.

Step 1. We set,

Σ⋆ := Σ 0 ∩G⋆.

By Lemma 2.4, Σ⋆ is an analytic hypersurface. Moreover, Σ⋆ ⊂ BR/ε and its boundary lies on the

spheres ∂B18(yi).
Now, for every x ∈ Σ⋆, we have by Corollary 2.1, Bδ ⋆(x)⊂ Oδ and applying Corollary I.3.1 with
ϕ = u in the ball Bδ ⋆(x), we obtain

|h|2(x) ≤ C

δ ⋆(2+d)

∫

Bδ⋆ (x)
(|∇u|−1)2,
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where h denotes the mean curvature on Σ 0. Integrating on Σ⋆, and using Fubini, we get
∫

Σ⋆
|h|2 dH

d−1 ≤ C

δ ⋆(2+d)

∫

G⋆+Bδ⋆

H
d−1(Bδ ⋆(y)∩Σ 0)(|∇u|(y)−1)2 dy.

By Lemma 2.4.b, we have

H
d−1(Bδ ⋆(y)∩Σ 0) ≤ C for every y such that d(y,Σ⋆)< δ ⋆.

Hence, ∫

Σ⋆
|h|2 dH

d−1 ≤ C

δ ⋆(2+d)

∫

Rd
(|∇u|(y)−1)2 dy ≤ C6εε3−d . (2.21)

Similarly, using Lemma 2.4.b and Lemma 2.1, we obtain,

H
d−1(Σ⋆) ≤ CH

d(Ω(ε)) ≤ CSε1−d +C6εε2−d. (2.22)

Step 2. We now define the hypersurface Σ⋆ inside the balls B18(yi). Let us first consider the

union of interior balls U ♭ = ∪B9(yi) ⊂⊂ U⋆. By Corollary 2.1, for any point y ∈ Rd such that
|u(y)| < 1/2, we have Bδ ⋆(y) ⊂ Oδ , that is u is harmonic in Bδ ⋆(y). For such a point y, we can
apply Corollary I.2.1 .b to u in Bδ ⋆(y). We get

∫

R

∫

Σ s∩Bδ⋆/2(y)
|IIs|2 dH

d−1 ds ≤ (C/δ ⋆2)

∫

Bδ⋆ (y)
||∇u|−1|,

where IIs denotes the second fundamental form on Σ s. Applying Vitali covering theorem to a
cover of {y ∈U : |u(y)|< 1/2} with balls of the form Bδ ⋆/3(y) and summing the estimates, we
deduce, ∫ 1/2

−1/2

∫

Σ s∩U
|IIs|2 dH

d−1 ds ≤ (C/δ ⋆2)
∫

U⋆
||∇u|−1|.

Next, by Cauchy-Schwarz inequality,

∫ 1/2

−1/2

∫

Σ s∩U
|IIs|2 dH

d−1 ds ≤ (C/δ ⋆2)

√
H d(U⋆)

∫

Rd
(|∇u|−1)2 ≤ C6εε3−d.

On the other hand, by Corollary I.2.1.a, we have
∫

R
H

d−1(Σ s ∩U)ds ≤ H
d(U)+C6εε3−d ≤ C6εε3−d.

Let us now introduce a small parameter s0 ∈ (0,1/4) to be fixed later. From the above bounds,

there exists s♭ ∈ [−s0, s0] such that Σ ♭ := Σ s♭ ∩U ♭ is an analytic hypersurface satisfying

H
d−1(Σ ♭)+

∫

Σ ♭
|II♭|2 dH

d−1 ≤ C6εε3−d/s0. (2.23)

Step 3. We have to build a hypersurface in U⋆ \U ♭ connecting Σ⋆ to Σ ♭. For this, let us
introduce a nonincreasing cut off function χ ∈ C∞(R+) such that χ ≡ 1 on [0,1], χ ≡ 0 on
[3,+∞) and 0 ≥ χ ′ ≥ −1. We also introduce a nondecreasing truncating function T ∈ C∞(R+)
such that T (0) = 0, T ≡ 1 on [1,+∞) and 0 ≤ T ′ ≤ 2. We then set

Σ := {x ∈ Rd : u(x)− s♭θ (x) = 0} with θ (y) := T

(
N

∑
i=1

χ(d(y,B9(yi))

)
.
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Since θ ≡ 1 in U ♭ and θ ≡ 0 in G⋆, we obviously have Σ ∩G⋆ = Σ⋆, Σ ∩U ♭ = Σ ♭ and in fact

Σ = Σ s♭ in some neighborhood of U ♭, Σ = Σ 0 in some neighborhood of G⋆. Notice that the balls
B3(yi) are disjoint. Hence, there exists K ≥ 0, only depending on d such that the number P(y) of
non-zero elements in the sum which defines θ (y) satisfies P(y)≤ K.

Let us note v(y) = u(y)− s♭θ and let us fix z ∈ Σ ∩ [U⋆ \U ]. We compute at point z,

|∇v|(z) ≥ |∇u|(z)−|s♭| |∇θ |(z) ≥ 1/2−2|s♭|P(z)‖χ ′‖∞ ≥ 1/2−2K s0.

Now, we fix

s0 := 1/(4K),

so that

|∇v|(z) ≥ 1/4.

Consequently, Σ = v−1({0}) is a smooth hypersurface.
Let us now estimate the (d − 1)-volume and the L2 norm of the second fundamental form of

Σ ∩ [U⋆ \U ]. We consider again a point z ∈ Σ ∩ [U⋆ \U ]. We have |u(z)| ≤ |s♭| ≤ 1/4 and by
construction, E3(z)≤ β1(ω,1/4,1/4) so we can apply Lemma 2.4 at this point with ξ = η = 1/4.
Assuming without loss of generality that z = 0, n(z) = ed and using the notation of Lemma 2.4.b
we have for y′ ∈ D′

1 and −1/2 < s < 1/2,

v(y′+ sed) = 0 ⇐⇒ Ψ(y′, s♭θ (y′+ sed)) = s.

Now, let us set,

Z(y′, s) := s−Ψ(y′, s⋆θ (y′+ sed)), for y′ ∈ D′
1, −1/2 ≤ s ≤ 1/2.

We have ±Z(y′,±1/2)≥ 1/2−η = 1/4 > 0 and d
ds

Z(y′, s) ≥ 1−η |s0|‖θ ′‖∞ ≥ 15/16 > 0, so

for every y′ ∈ D′
1, the equation Z(y′, s) = 0 admits a unique solution s = ζ (y′). In other words,

[D′
1 × (−1/2,1/2)ed]∩Σ is the graph of the mapping ζ . By regularity of Ψ and θ , we also have

‖∇ζ‖∞ ≤ C, ‖D2ζ‖∞ ≤ C.

We deduce the inequality

H
d−1(

[
D′

1 × (−1/2,1/2)ed

]
∩Σ) +

∫

[D′
1×(−1/2,1/2)ed ]∩Σ

|II|2 dH
d−1 ≤ C.

Using Vitali covering theorem and the bound H d(U⋆ \U ′)≤C6εε3−d , we get,

H
d−1 (Σ ∩U⋆)+

∫

Σ∩U⋆
|II|2 dH

d−1 ≤ C6ε ε3−d. (2.24)

Taking into account (2.21),(2.22),(2.23) and (2.24), we have established

H
d−1 (Σ) ≤ CSε1−d +C6ε , and W (Σ) ≤ C6ε ε3−d. (2.25)

Eventually, we set M := {y ∈ Rd : t(y) = −1} and O := {y ∈ Rd : v(y) = u(y)− s⋆θ (y) <
0}. We have O ⊂ BR/ε and ∂O = Σ . Moreover, taking into account Lemma 2.1 and the bound

H d(U⋆)≤C6εε3−d , we have

‖1O−1M‖L1 ≤ 2Sε1−d +C6ε ε2−d. (2.26)
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Putting back the subscripts (ε), we note Σ(ε) := Σ , O(ε) := O, M(ε) := M, U⋆
(ε) :=U⋆ and G⋆

(ε) :=

G⋆. Returning to the original variables, we set Σε := (1/ε)Σ(ε), Oε := (1/ε)O(ε) and Mε :=
(1/ε)M(ε). Unscaling the inequalities (2.25)(2.26), we obtain the estimates of Proposition 2.1.b.

For later use, we remark here that

H
d−1(B1(y)∩Σ(ε)) ≤ C, for every y ∈ G⋆. (2.27)

Indeed, by construction, B1(y)∩Σ(ε)=B1(y)∩Σ 0
(ε) for every y∈G⋆

(ε) and we can apply Lemma 2.4.b

to any point z ∈ B1(y)∩Σ(ε).
In the sequel, we consider bad sets which write, using the notation of Lemma 2.7.a, as U(ε) =
U(ε),β ′ . We deduce from Lemma 2.7.a (2.24) and (2.27) that

H
d−1
(

Σ(ε)∩
(

U⋆
(ε)∪U(ε)

))
≤ C6ε(β

′)ε3−d .

More generally, for λ > 0, we have

H
d−1
(

Σ(ε)∩
[
(U⋆

(ε)∪U(ε))+Bλ

])
≤ C6ε(β

′,λ )ε3−d. (2.28)

2.5 Alternative construction of Σε . Proof of Proposition 2.1.d

In this subsection (and only here) we assume that d = 3 and that Hypothesis 2 holds.
Let us fix ξ = 1/4 and let η ∈ (0,1/4) to be fixed later. We then define β by (2.20). The definition
of the bad set is not the same as in the previous subsection: we use here the union of distant open
balls provided by Lemma 2.7.b. Let us set

U⋆ := U ′
β +B1 = ∪N′

i=1B9(αi+1)(zi), G⋆ := R3 \U⋆. (2.29)

In the good set we will define Σ⋆ as Σ 0 ∩ G⋆. For the present alternative construction of Σ⋆

inside the bad balls, we need that the trace of some Σ s on the boundary of bad balls meets some
regularity properties. For this, we establish a quantitative Sard like result.

Claim There exists κ > 0 only depending on ω , E0 and η such that for any 1 ≤ i ≤ N ′ there exist
si ∈ [−1/8,1/8] and ri ∈ [0,1/2] satisfying

x ∈ Σ si ∩∂B9(αi+ri)(zi) =⇒ |n(x)×νi(x)| > κ, (2.30)

where νi(x) = (x− zi)/|x− zi| is the outward unit normal on ∂B6(αi+ri)(zi).

The claim means that the intersections Σ si ∩∂B9(αi+ri)(zi) are uniformly transverse.

Proof (of the claim) Let us recall the properties:

1 ≤ αi ≤ 2N−1, N ′ ≤ N ≤C6ε ,
‖u‖∞ ≤ 1, u is ω⋆-continuous and u is harmonic in [|u|< 1/2]+Bδ ⋆.

Moreover, ∀y ∈ B9(αi+1)(zi)\B9αi
(zi), |u|(y)≤ 1/2 ⇒ |∇u|(y)≥ 1/2.

Let us assume by contradiction that for every k ≥ 1, there exist

• αk ∈ [1,2N−1];
• uk : R3 → [−1,1], ω⋆-continuous, harmonic in [|uk|< 1/2]+Bδ ⋆ , satisfying

[
9αk < |y|< 9(αk +1) and |uk|(y)≤ 1/2

]
=⇒ |∇uk|(y)≥ 1/2;
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• a mapping (r, s) ∈ [0,1/2]× [−1/8,1/8] 7→ xk(r, s) ∈ R3 such that for every (r, s) ∈ [0,1/2]×
[−1/8,1/8],

u(xk(r, s)) = s, |xk(r, s)|= 9(αk + r) and |∇u(xk(r, s))× xk(r, s)| ≤ 1/k.

By diagonal extraction, we may assume that αk → α⋆ ∈ [1,2N−1], xk → x⋆ on

P := (Q×Q) ∩ ([0,1/2]× [−1/8,1/8])

and by equicontinuity of (uk) that uk → u⋆ in Cloc(R
3). Since uk is harmonic in [|uk|< 1/2]+Bδ ⋆ ,

we also have uk → u⋆ in C1
loc([|u|< 1/2]+Bδ ⋆) and u⋆ is harmonic in [|u|< 1/2]+Bδ ⋆ . Passing

to the limit, we conclude that for every (r, s) ∈ P,

u⋆(x⋆(r, s)) = s, |x⋆(r, s)|= 9(α⋆+ r), ∇u⋆(x⋆(r, s))× x⋆(r, s) = 0. (2.31)

Now, for every (r, s) ∈ [0,1/2]× [−1/8,1/8]\P, we can extract a sequence of elements of P,
(r j, s j) → (r, s) such that x(r j, s j) converges towards some limit denoted x⋆(r, s). By continu-
ity, (2.31) holds for every (r, s) ∈ [0,1/2]× [−1/8,1/8].

To conclude, we consider the mapping φ : y 7→ (|y|,u(y)) defined on the open set

{
y ∈ R3 : 9α⋆ < |y|< 9(α⋆+1/2), |u⋆|(y)< 1/2

}
.

This mapping is smooth and by (2.31) every element of

(9α⋆,9α⋆+9/2)× (−1/8,1/8)

is a critical value of φ . Indeed, for every (r, s) ∈ [0,1/2]× [−1/8,1/8],

φ (x⋆(r, s)) = (9(α⋆+ r), s) and rank Dφ (x⋆(r, s)) = 1 < 2.

This contradicts Sard theorem. ⊓⊔
We now define the set of bad balls as U# :=∪iB9(αi+ri)(zi) and the good set as G# := R3 \U#. Let

us notice that since ri ≤ 1/2, we have

d(B9(αi+ri)(zi),B9(α j+r j)(z j))≥ 9 for 1 ≤ i < j ≤ N ′.

Using the cut-off function χ as in the previous subsection, we set

Σ # := {x ∈ G# : u(x)−θ #(x) = 0} with θ #(x) :=
N

∑
i=1

siχ(d(x,B9(αi+ri)(zi))).

In particular, Σ # coincides with Σ 0 in G⋆ and Σ # = Σ si in the neighborhood of B9(αi+ri)(zi). We
also define

O# := {y ∈ G# : u(y)−θ #(y) < 0}.
So that Σ # \U# = ∂O# \U#. Proceeding as in the previous subsection, Σ # is a smooth surface and
we have the estimates

H
d−1(Σ #) ≤ CS/ε2+C6ε , W (Σ #) ≤ C6ε (2.32)

and ‖1O# −1M‖L1 ≤ 2S/ε2 +C

√
SE0/ε2 +C6ε . (2.33)

Now, let us consider the mapping

Φ : (y, t) ∈ Σ # × [−1,1] 7→ x+(t/4)n(x) ∈ R3.
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For the moment, the construction depends on the parameter η ∈ (0,1/4). By Lemma 2.4, there
exists η0 ∈ (0,1/4) such that for η ∈ (0,η0),

Φ is a smooth diffeomorphism, and ±Φ(Σ ×{±1})≥ 1/10. (2.34)

From now on, we fix η := η0/2 (notice that η is a universal constant, in particular, it does not
depend on ε). By Hypothesis 2, Σ # is homeomorphic to a closed subset of the g0-torus.

We have to complete Σ # inside U# to form a connected compact surface with genus at most g0.

Let us first describe the trace of Σ # on ∂U# = ∪i∂B9(αi+ri)(zi). To lighten notation, we note Si

the sphere ∂B9(αi+ri)(zi). Let us fix 1 ≤ i ≤ N ′ and set

Γi := Σ # ∩Si.

Let x ∈ Γi. By Lemma 2.4.b there exists a radius r > 0 only depending on η such that

B±(x) := Br(x± rn(x)) ⊂ {y : ±(u(y)− si)> 0}.
Recall that αi ≥ 1. By (2.30) the trace of B+(x) (respectively B−(x)) on Si contains a geodesic
ball of radius ρ which is tangent to Γi at x and where ρ > 0 depends monotonically on κ and r
(see Figure 2.3). As a consequence, the set Γi ⊂ Si has the exterior and interior ball properties with

n(x)
ν(x)

x

θ , sinθ > κ

≃ 2ρ

Si

B+(x)

B−(x)

[u > si]

[u < si]

Fig. 2.3 Cross-sectional view near x ∈ Γi.

γ0

γ1

γ2

γ1,1

γ1,2

γ2,1

γ1,1,1

Si

A′
γ0

A′
γ2

A′
γ

2,1

Fig. 2.4 Labelling the components of Γi.

balls of radius ρ in the sense that for any x ∈ Γi there exist two distinct geodesic open balls on Si

with radius ρ which both contain x on their boundary and do not intersect Γi. Hence Γi is a smooth
curve on Si with curvature bounded by 2/ρ (the factor 2 accounts for the difference between the
geometries in R3 and in Si). Moreover, Γi has a finite number Mi of connected components which
are closed Jordan curves on Si and the geodesic distance between two distinct components is at
least 2ρ . Notice that Mi ≤C(κ)≤C6ε . Let us denote by Ci the set of connected components of Γi.

Before describing further the construction, let us discuss what has to be proved. By Hypothe-
sis 2, the set [|t|< 1/10] is connected. By Lemma 2.4 and the choice of η , this implies that the
union Σ # ∪U# is connected. Let us denote by

C
# = {Σ #

1 , · · · ,Σ #
M#}

the set of connected components of Σ #. It may happen that U# is empty. In this case Σ # has only
one connected component and is a smooth surface of genus g0, we then set Σ = Σ #, O = O# and
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with (2.32)(2.33) Proposition 2.1.b is proved. In the other case, the boundary of any element of
C # is formed by a finite union of curves of ∪iCi. Let us consider a connected component Σ #

j ∈C #

and let us denote by γ j,1, · · · ,γ j,K j
the topological circles forming its boundary. Considering Σ #

j

as an abstract manifold, we can fill its holes by adding K j topological disks with boundaries

γ j,1, · · · ,γ j,K j
. We obtain an abstract compact surface Σ ′

j. The genus of Σ #
j is then defined as the

genus of the Σ ′
j. More generally, we can define the genus of any relatively compact surface whose

boundary is made of a finite union of topological circles. For example, the genus of the periodic
strip S1 × (0,1) is 0 and the genus of a torus from which we have removed a topological disk is
1. Let us recall the basic genus arithmetic which is used thereafter. Given two disjoint connected
surfaces Σ 1, Σ 2 with geni g1, g2 and common boundary ∪I

i=1γi where the γi are disjoint Jordan
curves, there holds:

genus
[
Σ1 ∪Σ2 ∪

(
∪I

i=1γi

)]
= g1 +g2 +(I −1).

From the above discussion, a way to connect the surfaces Σ #
j without increasing the total genus

∑g#
j is to add recursively exactly (M# −1) necks (periodic strips) connecting Σ #

j to ∪ j′< jΣ
#
j′ for

j = 2, · · · ,M#. Our construction is not that simple because we can not choose the order of the
connections. We proceed as follows.
Step 1. We close every hole of the connected components of Σ # with topological disks contained
in U#.
Step 2. We define a family of possible necks which connect two components of Σ #, we show that
there exists a subfamily of necks connecting Σ # without redundant connections.
Step 3. Eventually, we regularize the resulting surface.

Step 1. Closing the holes. Let us fix 1 ≤ i ≤ N ′ and let us consider the ball B9(αi+ri)(zi). Without

loss of generality, we assume zi = 0 and to lighten notation, we set Ri := 9(αi+ri)∈ [9,9(2N−1+
1)].
Notice first that every curve γ ∈ Ci splits Si into two topological disks Dγ ,1, Dγ ,2. Let us order

these sets such that H 2(Dγ ,1) ≥ H 2(Dγ ,2). Now let γ0 be a curve maximizing H 2(Dγ0,1) and

let us note Aγ0 = Dγ0,1. By maximality, Aγ0 contains all the elements of Ci \{γ0}.

Next, every curve of γ ∈ Ci \ {γ0} is the boundary of a topological disk in Aγ0 , that we denote

by Aγ . We consider the partial order on Ci defined by γ ≤ γ ′ if and only if Aγ ⊂ Aγ ′ . This order
defines an oriented graph with the elements of Ci as vertices. In fact, the corresponding non-
oriented graph do not have loops, that is: if γ1 ≤ γ2 ≤ γ3 and γ1 ≤ γ ′2 ≤ γ3 then either γ2 ≤ γ ′2 or
γ ′2 ≤ γ2.
Indeed, we have Aγ2

∩Aγ ′2
⊃ Aγ1

6= ø which implies γ2 < γ ′2 or γ ′2 < γ2 or γ2 ∩ γ ′2 6= ø which in turn

implies γ ′2 = γ2.
As a consequence, the above oriented graph is a finite oriented tree. The only maximal element
is γ0, so the tree is connected with root γ0.
We use the paths from γ0 to the elements of Ci \ {γ0} in the oriented tree for labelling these
elements. More precisely, every element γ of Ci \ {γ0} is labelled γ = γ j1,··· , jk

where k is the

height of γ in the tree and ( j1, · · · , jk) describe the path from γ0 to γ . Then the maximal chain
from γ to γ0 is

γ = γ j1,··· , jk
< γ j1,··· , jk−1

< · · · < γ j1
≤ γ0.

See an example in Figure 2.4.

We are now able to perform the construction of Step 1. Let K be the height of the tree and for
k = 0, · · · ,K, let λk := (k+1)/(K +1). We define a “closing” surface Σ ′

i as the union over all the
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elements γi1,··· ,ik ∈ Ci of

Σγ j1,··· , jk
:= λkAγ j1,··· , jk

∪
{

λ∂Aγ j1,··· , jk
: λk ≤ λ < 1

}
.

As required, Σγ j1,··· , jk
is a tological open disk with boundary ∂Aγ j1,··· , jk

. By construction, these

surfaces do not intersect, see the example Figure 2.5.

Eventually, we define the surface

Σ̃ := Σ # ∪
[
∪N′

i=1Σ ′
i

]

which is the disjoint union of M# closed surfaces with genii g#
1, · · · ,g#

M.

γ0

γ1

γ1,1

γ1,2

Σγ0

Σγ1

Σγ1,1

Σγ1,2

Si

Fig. 2.5 Step 1. Example, with K = 2.

γ0

γ1

γ1,1

γ1,2
Si

Fig. 2.6 Step 2. γ1,γ1,2 ∈ N , γ1,1 6∈ N .

Step 2. Connections. Let 1 ≤ i ≤ N ′ and let us use the notation of Step 1. For γ ∈ Ci, we call
A′

γ the connected component of Si \Γi such that A′
γ ⊂ Aγ and γ ∈ ∂A′

γ . Equivalently, (See again
Figure 2.4)

A′
γ j1,,··· , jk

= Aγ j1,··· , jk
\
[
⋃

l>k

Aγ j1,··· , jk, jk+1,··· , jl

]
.

For every element γ ∈ Ci, there exists a geodesic open disk Dγ ⊂ A′
γ with radius ρ/2 and such

that d(Dγ ,Γi)≥ ρ/2.
Given γ ∈ Ci with height k in the tree and a surface X which contains λk−1A′

γ and λkA′
γ we define

the operation of adding the neck Nγ as

Y = X \ [λk−1Dγ ∪λkDγ ] ∪ {λ : λk−1 < λ < λk}∂Dγ .

We will write Y = X +Nγ . Notice that by construction Σ̃ contains λk−1A′
γ and λkA′

γ for any γ ∈ Ci

with height k. Moreover, the additions of different necks Nγ do not create crossings since the A′
γ

are disjoint sets. Now, we see that

Σ̃ +
N

∑
i=1

∑
γ∈Ci

Nγ is a connected surface without boundary.

Hence, there exists a minimal subset N of {γ ∈ Ci : 1 ≤ i ≤ N} such that

Σ ♭ := Σ̃ + ∑
γ∈N

Nγ
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is connected (see Figure 2.6). If there were redundant connections, then we could remove a neck

and still have a connected surface, so the genus of Σ ♭ is exactly

g :=
M#

∑
i=1

g#
i ≤ g0.

Step 3. Smoothing.

By construction, Σ ♭ is piecewise smooth and the smooth pieces meet on a finite number of
smooth curves and form angles larger than arcsinκ . Moreover, there exists ρ⋆ > 0 only depending
on E0 and ω such that every singular curve has curvature bounded by 1/ρ⋆ and the distance
between two distinct singular curves is at least ρ⋆. From the regularity of Σ # in G# and the

regularity properties of the singular curves, we can mollify Σ ♭ in the neighborhood of the singular

curves to obtain a surface Σ homeomorphic to Σ ♭ such that Σ # \U# = Σ \U# and such that the
total area and maximal curvature of Σ inside U# are bounded by C6ε . Notice that the smooth

surface Σ ⊂ R3 is compact and connected, hence it is orientable and splits R3 into exactly one
unbounded and one bounded component. We define O as the bounded connected component of
R3 \Σ . We have O# ⊂ O and O \O# ⊂ U#. Taking into account (2.32) and (2.33), we see that
Σ and O satisfy (2.25) and (2.26) (with d = 3). We conclude by unscaling as in the previous
subsection.
We also see that (2.27) and (2.28) still hold for this construction with U⋆ and G⋆ given by (2.29).

2.6 Proof of Proposition 2.1.c

In Sections 2.4 and 2.5, we have built the open sets Oε and Σε satisfying the estimates of Proposi-
tion 2.1.b. We now establish Proposition 2.1.c. Let ϕ ∈C(Rd×Rd) such that sup

[
|ϕ(y,v)|/(1+ |v|2)

]
<

∞. In scaled variables, we have to prove that

εd−1

∣∣∣∣∣
1

2

∫

Ω(ε)

ϕ(εz,∇t(ε)(z))dz−
∫

Σ(ε)

ϕ(εx,ν(ε)(x))dH
d−1(x)

∣∣∣∣∣
ε↓0−→ 0. (2.35)

Proof (of (2.35))

Step 1. Mollification

Let us introduce the quantities,

Q(ε)[ϕ ] :=
1

2

∫

Ω(ε)

ϕ(εz,∇t(ε)(z))dz, Q′
(ε)[ϕ ] :=

∫

Σ(ε)

ϕ(εx,ν(ε)(x))dH
d−1(x).

Let χ ∈ C∞
c (R

d, [0,1]) be a cut-off function satisfying χ ≡ 1 in B2 and let us set ϕ ′(y,v) =
χ(v)ϕ(y,v). We obviously have Q′

(ε)[ϕ
′] = Q′

(ε)[ϕ ]. On the other hand, we compute

εd−1
∣∣Q(ε)[ϕ

′−ϕ ]
∣∣ ≤ εd−1

2

∫

[|∇tε |>2]
|ϕ |(εz,∇t(ε)(z))dz.

Since |ϕ |(y,v) ≤ C(ϕ)(|v|−1)2 for |v|> 2, this leads to,

εd−1
∣∣Q(ε)[ϕ

′−ϕ ]
∣∣ ≤ C(ϕ)εd−1

2

∫

Ω(ε)

(|∇t(ε)|−1)2 ≤ C(ϕ)E0ε2

2

ε↓0→ 0.

As a consequence, we may assume that ϕ is compactly supported in BR+1 ×B4.
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Let ϕ̃ ∈Cc(R
d ×Rd), we deduce from the estimates of Proposition 2.1.b,

εd−1
∣∣Q(ε)[ϕ̃ −ϕ ]

∣∣ ≤ εd−1
H

d(Ω(ε))‖ϕ̃ −ϕ‖∞/2 ≤ C6ε‖ϕ̃ −ϕ‖∞,

εd−1
∣∣∣Q′

(ε)[ϕ̃ −ϕ ]
∣∣∣ ≤ εd−1

H
d−1(Σ(ε))‖ϕ̃ −ϕ‖∞ ≤ C6ε‖ϕ̃ −ϕ‖∞.

Thus, by density, we may also assume that ϕ is smooth and compactly supported.

Step 2. Cut-off procedure.

From now on, we consider a fixed test function ϕ ∈D(Rd ×Rd). In order to ease the estimate

below, we perform partitions of Rd into good sets and bad sets. Let us introduce a small parameter
ξ ∈ (0,1/2) and let us set

Ω
ξ/2

(ε)
:=
{

z ∈ Ω(ε) : |t(ε)|(z)< 1−ξ/2
}
.

By Lemma 2.4 and Lemma 2.5, there exists βa > 0 only depending on ξ such that if x ∈ Σ 0
(ε)

satisfies E(ε),3(x)< βa then

x+D
ξ
1 (n(ε)(x)) ⊂ Ω

ξ/2

(ε) ,

and we have the estimate,

1

H d(D0
1)

∫
[
x+D

ξ
1 (n(ε)(x))

] |∇t(ε)(z)−n(ε)(x))|dz ≤ ξ . (2.36)

Now, for z ∈ Ω
ξ/2

(ε) , we set

q
ξ
(ε)

(z) :=
1

H d(D0
1)

∫

Σ 0
(ε)

θ ξ (z− x,n(ε)(x))dH
d−1(x),

where for n̄ ∈ Sd−1, y 7→ θ ξ (y, n̄) denotes the characteristic function of D
ξ
1 (n̄).

By Lemma 2.6 there exists βb > 0 only depending on ξ such that if z ∈ Ω
ξ/2

(ε)
satisfies E(ε),3(x)<

βb, then

|qξ
(ε)(z)−1| ≤ ξ . (2.37)

Let us set β := min(βa,βb) and let us define the bad sets

U(ε) :=
[
U⋆
(ε)∪U(ε),3,β

]
+B√

2 ⊂ U
′
(ε) := U(ε)+B2,

and the corresponding good sets

G(ε) := Rd \U(ε) ⊃ G
′
(ε) := Rd \U

′
(ε).

By Lemma 2.7, we have

H
d−1(U ′

(ε)) ≤ C6ε(ξ )ε3−d. (2.38)

We now introduce a cut-off function χ(ε),ξ ∈C∞(Rd, [0,1]) such that

χ(ε),ξ ≡ 1 on G
′
(ε), χ(ε),ξ ≡ 0 on U(ε), ‖∇χ(ε),ξ‖∞ ≤ 1.
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We set ϕε ,ξ (y,v) := χ(ε),ξ ((1/ε)y)ϕ(y,v). We have,

εd−1
∣∣Q(ε)[ϕε ,ξ −ϕ ]

∣∣ ≤ ‖ϕ‖∞εd−1
H

d(U ′
(ε))/2

(2.38)

≤ C6ε(ϕ ,ξ )ε2,

εd−1
∣∣∣Q′

(ε)[ϕε ,ξ −ϕ ]
∣∣∣ ≤ ‖ϕ‖∞εd−1

H
d−1(Σ(ε)∩U

′
(ε))

(2.28)

≤ C6ε(ϕ ,ξ )ε2.

Therefore,

εd−1
∣∣∣
{

Q(ε)[ϕε ,ξ ]−Q′
(ε)[ϕε ,ξ ]

}
−
{

Q(ε)[ϕ ]−Q′
(ε)[ϕ ]

}∣∣∣ ≤ C6ε(ϕ ,ξ )ε2 ε↓0−→ 0.

As a consequence, we can substitute ϕε ,ξ for ϕ in (2.35). The rest of the proof consists in estab-
lishing

limsup
ε↓0

εd−1
∣∣∣Q(ε)[ϕε ,ξ ]−Q′

(ε)[ϕε ,ξ ]
∣∣∣ ≤ C6ε(ϕ)ξ . (2.39)

Sincem ξ ∈ (0,1/2) is arbitrary, this proves the desired convergence result (2.35).

Step 3. Proof of (2.39).

Let us enumerate the benefits of the cut-off procedure. Since ϕε ,ξ is supported in G(ε)×Rd ,

we may substitute Σ 0
(ε) for Σ(ε) in the definition of Q′

(ε)[ϕε ,ξ ]. Moreover (2.36) hold for any

x ∈ Σ 0
(ε)∩G(ε) and (2.37) hold for any z ∈ Ω

ξ/2

(ε) ∩G(ε). Eventually, ϕε ,ξ satisfies

‖ϕε ,ξ‖∞ ≤ ‖ϕ‖∞, ‖∇ϕε ,ξ‖L∞(G ′
ε×Rd) ≤ ‖∇ϕ‖∞.

To lighten notation we write Q(ε) for Q(ε)[ϕε ,ξ ] and Q′
(ε) for Q′

(ε)[ϕε ,ξ ]. With this notation, we

have to show that

limsup
ε↓0

εd−1
∣∣∣Q(ε)−Q′

(ε)

∣∣∣ ≤ C6ε(ϕ)ξ .

For this, we introduce the intermediate quantities

Q(ε)(ξ ) :=
1

2

∫

Ω
ξ/2

(ε)

ϕε ,ξ (εz,∇t(ε)(z))dz,

and

Q′
(ε)(ξ ) :=

∫

Σ 0
(ε)

{
1

H d(D0
1)

∫
[
x+D

ξ
1 (n(ε)(x))

]ϕε ,ξ (εz,∇t(ε)(z))dz

}
dH

d−1(x).

We prove (2.39) by estimating successively Q(ε)−Q(ε)(ξ ), Q(ε)(ξ )−Q′
(ε)(ξ ) and Q′

(ε)(ξ )−Q′
(ε).

In these estimates, apart from the conclusions, we drop the subscripts (ε).

Step 3.1. Estimating Q(ε)−Q(ε)(ξ ).

Using (2.3) in Lemma 2.1 with (α−,α+) = (−1,−1+ξ/2) and (α−,α+) = (1−ξ/2,1), we
obtain,

Q−Q(ξ )| ≤ ‖ϕ‖∞

2
H

d
(

Ω−1,−1+ξ/2 ∪Ω1−ξ/2,1
)

≤ ‖ϕ‖∞

2

(
Sξ

εd−1
+

C6ε(ξ )

ε(d−1)/2

)
.

Hence,

limsup
ε↓0

εd−1|Q(ε)−Q(ε)(ξ )| ≤ ‖ϕ‖∞Sξ/2. (2.40)
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Step 3.2. Estimating Q(ε)(ξ )−Q′
(ε)(ξ ).

Changing the order of integration in the definition of Q′′(ξ ), we obtain,

Q′(ξ ) =

∫

Ωξ/2
ϕε ,ξ (εz,∇t(z))qξ (z)dz,

Hence, by (2.37), we have,

|Q(ξ )−Q′(ξ )| ≤ ‖ϕ‖∞H
d(Ω)ξ

(2.3)

≤
(

S

εd−1
+

C6ε
ε(d−1)/2

)
ξ .

Again, this leads to

limsup
ε↓0

εd−1|Q(ε)(ξ )−Q′
(ε)(ξ )| ≤ ‖ϕ‖∞Sξ . (2.41)

Step 3.3. Estimating Q′(ξ )−Q′.

We have
∣∣Q′(ξ )−Q′∣∣ ≤

∫

Σ 0
q(x)dH

d−1(x),

with

q(x) :=

∣∣∣∣∣ϕε ,ξ (εx,n(x))− 1

H d(D0
1)

∫
[
x+D

ξ
1 (n(x))

] ϕε ,ξ (εz,∇t(z))dz

∣∣∣∣∣ .

Let us set U ′′ = U ′+B√
2 and G ′′ := Rd \U ′′. For x ∈ Σ 0 ∩U ′′, we use the rough estimate

q(x) ≤ 2‖ϕ‖∞. For x ∈ Σ 0 ∩G ′′, we have ϕε ,ξ ≡ ϕ in [x+D
ξ
1 (n(x))]×Rd and we estimate q(x)

as follows.

q(x) ≤ |ϕ(εx,n(x))|
[
1−H

d(D
ξ
1 )/H

d(D0
1)
]

+
1

H d(D0
1)

∫
[
x+D

ξ
1 (n(x))

] |ϕ(εz,∇t(z))−ϕ(εx,n(x))|dz

≤ 2‖ϕ‖∞ξ +

(
√

2‖∇xϕ‖∞ε +
‖∇τϕ‖∞

H d(D0
1)

∫
[
x+D

ξ
1
(n(x))

] |∇t(z)−n(x)|dz

)

(2.36)

≤
(

2‖ϕ‖∞+
√

2‖∇xϕ‖∞ε +‖∇τ ϕ‖∞

)
ξ .

Thus,

∣∣Q′(ξ )−Q′∣∣ ≤ 2‖ϕ‖∞H
d−1(Σ 0 ∩U

′′)+2‖ϕ‖W 1,∞H
d−1(Σ)ξ ≤ C6ε(ϕ)(ε2−d + ε1−dξ ).

We conclude that

limsup
ε↓0

εd−1|Q′
(ε)(ξ )−Q′

(ε)| ≤ C6ε(ϕ)ξ . (2.42)

Step 3.4. Conclusion.

Gathering (2.40)(2.41)(2.42), we have established (2.39). This proves (2.35). ⊓⊔
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2.7 Proof of Theorem 1.1

Let R,S > 0 and let us consider a family {aε}0<ε≤1 with aε = (σε ,∇tε ,Ωε) ∈Aε(R,S) satisfying
the hypotheses of Theorem 1.1. In this case, the conclusions of Proposition 2.1 hold. We use the
notation of the proposition.

Let us call V ′
ε = V (Σε ,nε) the oriented (d −1)-varifold associated to Σε = ∂Oε and let ϕ ∈

C(Rd ×Sd−1). Proposition 2.1.c applied to the test function ϕ(y,v) = ϕ(y,v/|v|)χ⋆(|v|) reads

〈V ⋆
ε (aε);ϕ〉−

〈
V

′
ε ;ϕ

〉
→ 0 as ε ↓ 0.

Now, since χ⋆(1) = 1, we have 〈V ′
ε ;ϕ〉= 〈V ′

ε ;ϕ〉 and we conclude that

V
⋆

ε (aε)−V
′

ε → 0 weakly in M (Rd ×Sd−1) as ε ↓ 0. (2.43)

As a consequence, the compactness and limit properties of {V ′
ε } transfer to the family {V ⋆

ε (aε)}
and it is sufficient to study the former.

The Radon measures {V ′
ε } are non negative and supported in BR+C × Sd−1. By the second

estimate of Proposition 2.1.b, their total mass ‖V ′
ε ‖(Rd ×Sd−1) = 〈V ′

ε ; 1〉 is uniformly bounded.
Thus, there exists a (not relabelled) sequence ε ↓ 0 and an oriented (d −1)-varifold V0 such that
up to extraction,

V
′

ε → V0 in M (Rd ×Sd−1) as ε ↓ 0.

The estimates of Proposition 2.1.b show that the sequence of varifolds V ′
ε = V (Σε ,νε) satisfies

the requirements of (1.3). There fore, V0 ∈ A0(R,S). Moreover, in the case d = 3 and under
Hypothesis 2, the surface Σε has genus smaller than g0¿ By definition, we have V0 ∈A00(R,S,g0)
in this case. This establishes parts (c) and (d) of the theorem.

We easily see that V0 is non negative and compactly supported in BR ×Sd−1 and that its total
mass is given by

‖V0‖(Rd ×Sd−1) = 〈V0; 1〉= lim
ε↓0

〈
V

′
ε ; 1
〉 (2.43)

= lim
ε↓0

〈V ⋆
ε (aε); 1〉 = S.

The last identity follows from the second estimate of Proposition 2.1.a. Taking into account
V ⋆(aε)−V ′

ε → 0, we have established part (a) of the theorem.

Next, let us study the compactness properties of the family Tε = (ε − tε)/2ε . These functions
are compactly supported in BR and by Proposition 2.1.a the sequence (Tε) is uniformly bounded

in BV (Rd). Hence, up to a second extraction, we may assume that (Tε) (weakly) converges in

BV (Rd) towards a function T ∈ BV (Rd) which is compactly supported in BR. Moreover, by

Proposition 2.1.a, H d(Ωε)∼ Sε and since {y ∈ Rd : Tε(y) 6∈ {0,1}} ⊂ Ωε , we have T ∈ {0,1}
almost everywhere in Rd . Therefore, there exists a set of finite perimeter O0 ⊂ BR such that

Tε → T = 1O0
weakly in BV (Rd) as ε ↓ 0.

(For properties of BV functions and sets of finite perimeter, we refer to the books by Ambrosio,
Fusco and Palara [3] or Evans and Gariepy [5]).
Let us now apply Proposition 2.1.c with ϕ(y,n) = ψ(y) · n for any vector field ψ ∈ Cc(R

d,Rd).
Passing to the limit ε ↓ 0, we get

∫

Rd
∇1O0

·ψ = −〈ΛV0 ; ψ〉 , for every ψ ∈Cc(R
d,Rd).

Hence, ΛV0 =−∇1O0
. This identity uniquely defines the limit T = 1O0

, so the second extraction
was not necessary.
This establishes part (b) and ends the proof of Theorem 1.1.



An anisotropic nonlinear elasticity model for vesicles. II. 33

3 Construction of a recovery family in the smooth case. Proof of Theorem 1.3

We consider an energy F (σ ,τ) =
∫

τ 6=0 f (σ ,τ) with stored energy function f ∈C(Rd×,Rd,R+).

We assume that f satisfies (1.1) and (1.6), (1.7), namely: f ≡ 0 on the sphere S
d−1 = {(e,e) : e ∈

Sd−1}, f is of class C2 in some neighborhood N of Sd−1 in Rd ×Rd and f is invariant under
change of orthonormal coordinates in this neighborhood, i.e. f (Qv1,Qv2) = f (v1,v2) for every
(v1,v2) ∈ N and every (orientation preserving) Q ∈ SO(d).

We begin first describe the structure of the Hessian matrix of f at some point of Sd−1.

Lemma 3.1 Let e ∈ Sd−1 and b1, · · · ,bd−1 ∈ Sd−1 such that (b1, · · · ,bd−1,e) is an orthonormal

basis of Rd . We define an orthonormal basis of Rd ×Rd as

B =
(
(b1,0) , · · · , (bd−1,0) , (0,b1) , · · · , (0,bd−1) , (e,0) , (0,e)

)
.

Then there exists a ≥ 0 and a 2×2 non negative symmetric matrix L which do not depend on e,
such that, in the basis B, the Hessian matrix of f at point (e,e) reads

D2 f (e,e) =




a Id−1 −a Id−1 0
−a Id−1 a Id−1 0

0 0 L


 . (3.1)

(Id−1 denotes the identity matrix of size (d −1)× (d −1).)

Moreover, if (1.2) also holds ( f ≥ κ f0 for some κ > 0), then a and L are positive.

Proof In the basis B, we can write D2 f (e,e) on the form,

D2 f (e,e) =




A B M1

BT C M2

MT
1 MT

2 L


 , (3.2)

where A, B,C, M1, M2, L are real matrices, A, B,C ∈ Md−1,d−1(R), M1, M2 ∈ Md−1,2(R), L ∈
M2,2(R) and A, C and L are symmetric.

Let us consider the action of rotations with axis e : for every Q ∈ SO(d−1) and every x,y ∈ e⊥ =
Rd−1 ⊂ Rd , we have f ((e+Qx), (e+Qy)) = f ((e+ x), (e+ y)), which yields,

D2 f (e,e) =




QT AQ QT BQ M1Q

QT BT Q QTCQ M2Q

(M1Q)T (M2Q)T L


 for every Q ∈ SO(d −1).

Identifying this expression with (3.2), we see that M1 = M2 = 0 and that for K = A,B,C we have

QT KQ = K for every Q ∈ SO(d −1), (3.3)

Let us split B into its symmetric and skew-symmetric parts: B = Bsy +Bsk, so that (3.3) also holds
for K = Bsy and K = Bsk. Since A, Bsy and C are symmetric, hence diagonal in some orthonormal
basis, this implies that these operators are diagonal in any orthonormal basis. Hence, there exists
a,b,c ∈ R such that

A = a Id−1, Bsy = b Id−1, C = cId−1 .

At this point, in the basis B, D2 f (e,e) writes

D2 f (e,e) =




a Id−1 b Id−1+Bsk 0
b Id−1−Bsk cId−1 0

0 0 L


 .
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Now, for a fixed z ∈ Sd−1 ∩ e⊥, we observe that d((e,e)+ r(z, z) ,Sd−1) = O(r2). Since f is

minimal on Sd−1, we have f ((e,e) + r(z, z)) = O(r4) and the second order derivative of r 7→
f ((e,e) + r(z, z)) vanishes at r = 0. From the last expression for D2 f (e,e), this second order
derivative equals a|z|2+b|z|2 + zT Bskz+b|z|2 − zT Bskz+ c|z|2 = a+2b+ c. Hence

b = −(a+ c)/2.

Next, the space T = span {(e,0) , (0,e)}⊥ is stable under the action of the symmetric oper-
ator D2 f (e,e). Since this operator is non negative, for every v ∈ T we have vT D2 f (e,e)v ≥ 0 .

Choosing v = (z,λ z′) with z, z′ ∈ e⊥, this inequality reads

c|z′|2λ 2 +2
(
bz · z′+ zT Bskz′

)
λ +a|z|2 ≥ 0 for every λ ∈ R. (3.4)

Choosing z = z′ ∈ Sd−1 ∩ e⊥, the term zT Bskz′ vanishes and we end up with the condition cλ 2 +
2bλ +a≥ 0 for every λ ∈R. This leads to b2 ≤ ac which together with the identity b=−(a+c)/2
yields

a = c = −b.

Let us now establish that Bsk = 0. Since Bsk ∈ Md−1,d−1(R) is skew-symmetric, we have Bsk = 0

if d = 2. Now, we assume d ≥ 3 and we apply (3.4) with λ = 1, z ∈ Sd−1 ∩ e⊥ and z′ = z+ ry
for some y ∈ e⊥∩ z⊥. We deduce zT Bsky = O(r). Hence, zT Bsky = 0 for every y ∈ e⊥∩ z⊥ which
yields the conclusion:

Bsk = 0.

We have established that D2 f (e,e) has the form stated in the lemma. The non-negativity of a

and L follow from that of D2 f (e,e). Eventually, assuming f ≥ κ f0 for some κ > 0, we obtain
D2 f (e,e)≥ κD2 f0(e,e) which easily yields a > 0 and L positive definite. ⊓⊔

Now let us establish Theorem 1.3. Let O0 ⊂ Rd be a smooth bounded open subset of Rd , let
ν0 the outward unit normal to O0 and let Σ0 := ∂O0.
We introduce the mapping

ψ : Σ0 ×R → Rd, ψ(x, s) := x+ sν0(x).

There exists ε⋆> 0 such that ψ is a smooth (and bi-Lipschitz) diffeomorphism from Σ0×(−ε⋆,ε⋆)
onto its range Ω⋆. The inverse mapping is given by Ψ−1 = (π0,Z) where π0 is the orthogonal pro-

jection on Σ0 and where Z(y) := d(y,O0)−d(y,Rd \O0) is the signed distance function to Σ0.

Let us extend ν0 as a mapping n0 : Ω⋆ → Sd−1 by n0(y) = ν0(π0(y)) = ∇Z(y).
We are going to build a quasi optimal family {aε}= {(σε ,∇tε ,Ωε)} such that σε and ∇tε are the
restrictions to Ωε of vector fields σ and ∇t defined on Ω⋆.

For symmetry reasons, we look for vector fields σ and ∇t which are collinear to n0 in Ω⋆

and equal to ν0 on Σ0. Under this ansatz the only possibility for the divergence free vector field
σ : Ω⋆ → Rd is to set

σ(y) := (det [Id +Z(y)Dν0(π0(y))])
−1

n0(y) for every y ∈ Ω⋆. (3.5)

Let us check that σ is divergence free in Ω⋆. Equivalently, we have to show that
∫

Ω⋆
∇ϕ · σ

vanishes for every ϕ ∈ D(Ω⋆). We perform the change of variable y = Ψ(x, s). The Jacobian
determinant of Ψ is JΨ (x, s) = det [Id +sDν0(x)] and we indeed obtain,

∫

Ω⋆

∇ϕ(y) ·σ(y)dy =
∫

Σ0

{∫ ε⋆

−ε⋆
[ν0(x) ·∇]ϕ(x+ sν0(x))ds

}
dH

d−1(x) = 0.
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Then we set

t(y) :=

(
1+

α(π0(y))

2
Z(y)

)
Z(y),

where α ∈ C1(Σ0) has to be optimized. Eventually, for ε ∈ (0,ε⋆), we define Ωε := Σ0 +Bε =
Ψ(Σ0 × (−ε ,ε)),

σε(y) :=

{
σ(y) if y ∈ Ωε ,

0 if y ∈ Rd \Ωε ,
tε(y) :=

{
t(y) if x ∈ Ωε ,

±ε if ± t(y)≥ ε ,

By construction, we have aε := (σε ,∇tε ,Ωε)∈Aε(R) for some large R > 0. Writing y =Ψ(x, s),
we compute the expansions

σε(x+ sν0(x)) = ν0(x)− sh0(x)ν0(x)+O(s2),

∇tε(x+ sν0(x)) = ν0(x)+ sα(x)ν0(x)+O(s2),

where h0(x) = ∇ · n0(x) is the scalar mean curvature of Σ0. Taking into account Lemma 3.1, we
have for every y =Ψ(x, s) ∈ Ωε ,

f (σε(y),∇tε(y)) =
s2

2
(−h0(x),α(x))T L(−h0(x),α(x))+o(s2).

Optimizing with respect to α(x), we get α(x) = (L1,2/L2,2)h0(x) which yields

f (σε(y),∇tε(y)) = h2
0(x)

det L

2L2,2
s2 +o(s2).

The energy of aε then expands as

F (aε) =
det L

3L2,2
W (Σ0)ε3 +o(ε3).

This is the expected expansion, however, the volume constraint is not exactly satisfied. We only
have

Q(σε ,∇tε) =

∫

Ωε

σ ·∇t = 2εH
d−1(Σ0)+O(ε2).

We recover the exact constraint Q(σ ′
ε ,∇t ′ε) = 2εH d−1(Σ0) by substituting a′ε = (σ ′

ε ,∇t ′ε ,Ω
′
ε)

for aε with

σ ′
ε(y) := σε((1/λε)y), t ′ε(y) := λε tε((1/λε)y), Ω ′

ε := λε Ωε ,

where the magnification factor is defined as

λε :=

[
Q(σε ,∇tε)

2εH d−1(Σ)

]1/d

= 1+O(ε).

The convergence properties of {V ⋆
ε (a′ε)} towards V (Σ0,ν0) and of the sets {[t ′ε =−ε ]} towards

O0 are straightforward by construction. This ends the proof of Theorem 1.3.
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4 Oriented varifolds with L2-generalized mean curvature

In order to prepare the proof of Theorem 1.2, we gather here well known facts about oriented
integer varifolds. In particular, we extend the Willmore functional to the elements of A0.

Let us first introduce a suitable generalization of Definition 1.1.b extending the notion of
hypersurface.

Definition 4.1 (oriented integer rectifiable (d −1)-varifolds)
a) Given:

i. a (d −1) rectifiable set Σ ⊂ Rd , that is:

• H d−1(Σ)< ∞ and Σ is H d−1-measurable,

• there exists a countable set of Lipschitz continuous functions Lk : Rd−1 → Rd , such that
H d−1(Σ \∪kLk(R

d−1)) = 0;

ii. two positive integer valued H d−1-integrable functions θ−,θ+ : Σ → N\{0}.

We define the oriented (d −1)-varifold V = V (Σ ,ν ,θ+,θ−) by

〈V ;ϕ〉 :=
∫

Σ

{
θ+(x)ϕ(x,ν(x))+θ−(x)ϕ(x,−ν(x))

}
dH

d−1(x).

b) The set of all such oriented integer rectifiable (d−1)-varifolds is denoted by IVo. In the sequel,
we only write integer varifold for oriented integer rectifiable (d −1)-varifold. We also introduce
the set

IVo
0 :=

{
V ∈ IVo : ΛV = ∇U for some U ∈ D

′(Rd)
}
.

Equivalently, this set is formed by integer varifolds whose associated current has vanishing
boundary (see Remark 1.1.b).

Remark 4.1

i. The total mass of V = V (Σ ,ν ,θ+,θ−) is 〈ν ; 1〉 =
∫

Σ (θ
++θ−)dH d−1 and ΛV = (θ+−

θ−)νH d−1
xΣ .

ii. The functions θ+,θ− account for multiplicity: the above formula means that the generalized
surface pass at point x ∈ Σ , θ+ times with orientation ν(x) and θ−(x) times with opposite orien-
tation.

iii. By continuity of the mapping Λ : M (Rd ×Sd−1)→D ′(Rd)d , the space {V ∈M (Rd ×Sd−1) :

ΛV ≡ 0} is closed in M (Rd ×Sd−1).

Another important tool in the context of area minimization is the first variation δV (X) of a
(d − 1)-varifold. If V = V (Σ ,ν) is the oriented (d − 1) varifold associated to a smooth hyper-
surface Σ = ∂O, this quantity describes the initial rate of change of the total mass of V under the
flow generated by X ∈ D(Rd,Rd). It is defined as

δV (X) :=

∫

Σ
divΣ X dH

d−1, (4.1)

Recall that for every x ∈ Σ , if (e1, · · · ,ed−1) denotes an orthonormal basis of ν(x)⊥, we have

divΣ X(x) =
d−1

∑
i=1

eT
i ∇X(x)ei.
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The right hand side of (4.1) naturally extends as a linear continuous functional defined on the
space of (d −1)-varifolds: for every V ∈ M (Rd ×Sd−1), we set

δV (X) := 〈V ; (y,n) 7→ divn⊥ X(y)〉 , for every X ∈ D(Rd,Rd).

In general, δV is a distribution of D ′(Rd)d . However, if Σ ⊂Rd is a smooth (d−1)-submanifold

with tangent hyperplane ν⊥(x), then the first variation of V = V (Σ ,ν) can be related to the

vectorial mean curvature H : Σ → Rd defined by H = hν = (∇ · ν)ν . The vector field H only
depends on the local geometry of Σ : it does not depend on the local orientation ±ν . With this
notation, the tangential Green formula reads,

∫

Σ
H ·X dH

d−1 =

∫

Σ
divΣ X dH

d−1 for every X ∈ D(Rd,Rd). (4.2)

In particular, the first variation of V is a measure given by

δV (X) =
∫

Σ
H ·X dH

d−1. (4.3)

Now let R,S > 0 and let us consider an element V0 ∈ A0(R,S) and an associated sequence of
varifolds Vk = V (Σk,νk) complying to (1.5). The estimates of (1.5) and the Cauchy-Schwarz
inequality easily imply

|δVk(X)| ≤ K‖X‖∞ for every X ∈ D(Rd,Rd),

for some constant K ≥ 0. By the Riesz representation theorem, this implies δVk ∈ M (Rd)d for
any k ≥ 1 with the uniform bound

‖δVk‖(Rd) ≤ K. (4.4)

We can now state a compactness result due to Hutchinson [10]. It extends Allard’s compactness
theorem for (non-oriented) integer varifolds [1] to oriented integer varifolds.

Theorem 4.1 ([10] Theorem 3.1.1) Let K > 0 and let EK be the set of varifolds V ∈ IVo
0 such

that δV is a Radon measure of M (Rd)d and

‖V ‖(Rd ×Sd−1)+‖δV ‖(Rd) ≤ K.

Then EK is compact in M (Rd ×Sd−1).

We can apply this result to the sequence (Vk) and deduce,

V0 = V (Σ0,n0,θ
+
0 ,θ−

0 ) ∈ IVo
0. (4.5)

We now have to prove that V0 admits a L2-generalized mean curvature. Let us introduce this
notion.

Definition 4.2 (L2-generalized mean curvature. Willmore energy of a varifold)
a) Let V ∈ M (Rd × Sd−1) and let πV ∈ M (Rd) be the pushforward of V by the mapping

(y,n) ∈ Rd ×Sd−1 7→ y ∈ Rd , that is [πV ](E) = V (E ×Sd−1) for every Borel set E ⊂ Rd .
We say that V admits a L2-generalized curvature, if there exists K ≥ 0 such that

δV (X) ≤ K‖X‖L2(Rd ,πV ) for every X ∈C1
c (R

d)d.

1 We only use the special case of oriented integer varifolds without boundary
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Since πV is a Radon measure, it is regular and the space C1
c (R

d)d is dense in L2(Rd, |V |)d . Con-
sequently, if we assume the above bound, we can apply the (Hilbert space) Riesz representation
theorem to deduce the existence of a πV -measurable mapping H : supp(πV )→ Rd , such that

δV (X) =

∫

Rd
H ·X d[πV ] for every X ∈C1

c (R
d)d.

This formula extends (4.3) and we will say that H is the (L2-)generalized (vectorial) mean cur-

vature of V .

b) If V ∈ M (Rd ×Sd−1) admits a L2-generalized mean curvature H, we define its Willmore
energy as

W (V ) :=
∫

Rd
|H|2 d[πV ].

If V does not admit a L2-generalized mean curvature, we set W (V ) = +∞.

Remark 4.2

a) Of course if V = V (Σ ,ν), where Σ is a smooth compact surface oriented by ν , then it ad-
mits a generalized vectorial mean curvature which matches the usual definition H = (divΣ ν)ν .

Moreover, [πV ] = H d−1
xΣ so W (V (Σ ,ν)) = W (Σ).

b) For V =V (Σ ,ν ,θ+,θ−)∈ IVo, then [πV ] = (θ++θ−)H d−1
xΣ . If V admits a L2-generalized

mean curvature H : Σ → Rd , then H is H d−1-measurable and we have,

W (V ) =
∫

Σ
|H|2 (θ++θ−)dH

d−1.

c) If a rectifiable varifold V = V (Σ ,ν ,θ+,θ−) admits a generalized mean curvature H, then H
is [πV ]-almost everywhere collinear to ν (see K. Brakke [4]).

It is easily seen that the extension of the Willmore energy defined above is lower semi-continuous
with respect to the convergence of Radon measures. Indeed, let (Vk)⊂M (Rd ×Sd−1) converging
to V and assume without loss of generality that liminf W (Vk) < ∞. Using the Cauchy-Schwarz

inequality, we have, with obvious notation: for every X ∈C1
c (R

d)d ,

δVk(X) = 〈πVk ; Hk ·X〉 ≤
√

W (Vk)‖X‖L2(Rd ,πVk)
=
√

W (Vk)
√
〈πVk; |X |2〉.

By the convergence Vk →V as k ↑∞, the left hand side converges towards δV (X) and ‖X‖L2(Rd ,πVk)
→

‖X‖L2(Rd ,πV ). So,

δV (X) ≤
√

liminf W (Vk) ‖X‖L2(Rd ,πV ) (4.6)

Hence, V admits a L2-generalized vectorial mean curvature H ∈ L2(Rd ,πV )d . Now, by density

of C1
c (R

d)d in L2(Rd,πV )d , we have
√

W (V ) = ‖H‖L2(Rd ,πV ) = sup 〈V ;X ·H〉= supδV (X),

where the suprema are taken over all X ∈ C1
c (R

d) such that ‖X‖L2(Rd ,πV ) ≤ 1. With (4.6), this

yields
W (V ) ≤ liminf

k↑∞
W (Vk), (4.7)

as claimed.

In our context, if V0 ∈ A0, then it is the limit of a sequence Vk = V (Σk,νk) of smooth
oriented integer varifolds with uniformly bounded Willmore energy. We conclude that V0 =
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V (Σ0,ν0,θ
+
0 ,θ−

0 )∈ IVo
0 admits a L2-generalized mean curvature H0, the formula of Remark 4.2.b

provides a more explicit expression for W (V0):

W (V0) =

∫

Σ0

|H0|2 (θ+
0 +θ−

0 )dH
d−1. (4.8)

5 Lower bound. Proof of Theorem 1.2

In this Section, we assume that the stored energy function f satisfies (1.1), (1.2) and (1.6), (1.7)
and we consider an oriented (d − 1)-varifold V0 and a sequence (aεk

)k≥0 with εk ↓ 0 such that
aεk

∈ Aεk
(R,S) for some R,S > 0 and Vεk

(aεk
)→ V0 as εk ↓ 0.

The lower bound result being obvious in the case liminfk F (aεk
)/ε3

k = +∞, we assume without
loss of generality, that there exists E0 > 0 such that

F0(aεk
) ≤ E0 ε3

k , for every k ≥ 0.

Consequently, the constructions and estimates of Proposition 2.1 and Theorem 1.1 apply to the
sequence {aεk

} and V0. In particular V0 ∈ A0(R,S) and by Section 4 V0 = V (Σ0,ν0,θ
+
0 ,θ−

0 ) is

an oriented integer rectifiable (d−1)-varifold which admits a L2-generalized mean curvature. To
lighten notation, we drop the subscripts k in the sequence εk. We use the notation of Section 2 for
the objects constructed along the proof of Proposition 2.1: uε , Oε , Σε , νε and the corresponding
rescaled objects u(ε), O(ε), Σ(ε), ν(ε), etc.

By lower semi-continuity of the Willmore energy (see (4.6)) we have

W (V0) ≤ liminf
ε↓0

W (Σε).

However, there is little hope for deducing the lower bound of Theorem 1.2 from this inequality.
Indeed, the mean curvature hε of Σε is loosely and non locally related to the data aε through the
harmonic function uε . Remark that uε does not even depend on σε . In short (and omitting cut-off
issues) our strategy is the following.

i. In Section 5.1, we define an approximate mean curvature ĥε(x) as the dot product of σε with a

particular test function supported in the cylinder x+εD
2ξ
1−2ξ

(ν(x)), where ξ ∈ (0,1/4) is a small

parameter. We also establish that ĥε is indeed an approximation of hε in a weak sense. We deduce
the inequality

W (V0) ≤ liminf
ε↓0

∫

Σε

|ĥε |2 dH
d−1. (5.1)

ii. In Section 5.2, we introduce local minimization problems of the form

c(η ,ξ , f ) := inf
[
F

(
σ #,∇t#,D

2ξ
1−2ξ

(ed)
)
/
∣∣ĥ#
∣∣2
]
,

where the infimum ranges over all admissible vector fields σ #, ∇t# with approximate mean cur-

vature ĥ# ∈ (−η ,η)\{0} at x = 0. With this notation, we deduce from (5.1)

c(η ,ξ , f )W (V0) ≤ liminf
ε↓0

1

ε3

∫

Σε∩[|ĥε |<η/ε ]
F

(
σε(x),∇tε(x),x+ εD

2ξ
1−2ξ

(νε(x))
)

dH
d−1(x).

We then show that the above integral is bounded by [1+ s(η)]H d−1(D′
1)F (aε) with s(η)→ 0

as η ↓ 0 and get

c(η ,ξ , f )W (V0) ≤ [1+ s(η)]H d−1(D′
1) liminf

ε↓0

F (aε)

ε3
.
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Eventually we study these local problems and establish

liminf
ξ↓0

liminf
η↓0

c(η ,ξ , f ) ≥ H
d−1(D′

1)c0( f ),

which will lead to the desired lower bound.

The above description leaves aside the following technical difficulties: 1/ we are only able
to define the approximate mean curvature in a good set, so we need to perform a cut-off and
control the volume of the bad set; 2/ we need also to control the (d − 1)-volumes of the sets

Σε ∩ [|ĥε | ≥ η/ε ]; 3/ for compactness issues we introduce a small parameter α > 0 and (with
obvious notation), we substitute

F

(
σ #,∇t#,D

2ξ
1−2ξ

)
+α

∫

B3∩Ω#

[
f0(σ

#,∇t#)+ |∇u# −∇t#|2
]

for F (σ #,∇t#,D
2ξ
1−2ξ

) in the local optimization problem.

5.1 Definition and properties of the approximate mean curvature.

We already know that σε approximates νε , so a naive way to build an approximation of the

total curvature on Σε by means of the data (σε ,∇tε) is to set ĥε(x) := divΣε σε(x). However, the
regularity of σε is too weak to provide a robust definition under sole energy bounds. The next idea
consists in using a weak notion for the mean curvature where, thanks to integration by parts, the
space derivatives on σε are transferred to a test function. The relevant tool for this is the tangential
Green formula.
Let us consider a smooth compact hypersurface Γ ⊂ Rd with normal ν and mean curvature h. Let
X ∈ C1(Γ ,Rd) of the form X(x) = ϕ(x)ν(x) and let us extend it as a mapping X ∈C1

c (R
d,Rd).

For such a test vector field, the tangential Green formula (4.2) reads,

∫

Γ
ϕ hν dH

d−1 =
∫

Γ
∇Γ ϕ dH

d−1 for every ϕ ∈ D(Rd). (5.2)

Assume for simplicity that 0 ∈ Γ with ν(0) = ed and let us localize the above identity around 0.
For this, we introduce a function of the form

ζ (y′,yd) := χ//(|y′|)χ⊥(yd),

with χ//,χ⊥ ∈ D(R,R+) even and such that χ⊥(0)
∫

Rd−1 χ//(|y′|)dy′ = 1. Using the test function

ϕ(y) = η1−dζ ((1/η)y) in (5.2), taking the scalar product with ν(0) = ed and sending η to 0, we
obtain after some Taylor expansions,

h(0) = − lim
η↓0

1

η

∫

Γ(η)

χ⊥(zd)ν(η)(z) ·∇χ//(z
′)dH

d−1(z).

where Γ(η) is the hypersurface (1/η)Γ and ν(η)(z) := ν(ηz).
We mimic this formula for defining an approximate mean curvature on Σε . For this, we choose
η = ε and we substitute the vector field σ(ε) for the outward unit normal ν(η) = ν(ε). This sub-
stitution closely connects the approximate curvature to the data. We also thicken the domain of
integration by substituting the cylinder D0

1 ⊂ Rd for the piece of hypersurface Σ(ε)∩ suppζ . The
precise construction is detailed below.
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Definition 5.1 Let χ//,χ⊥ ∈W 1,∞(R,R+) be two nonnegative, even cut-off functions which are
compactly supported in (−1,1) and satisfy

(∫

Rd−1
χ//(|y′|)dH

d−1(y′)

)(∫

R
χ⊥(s)ds

)
= 1.

We define a Lipschitz test function ζ ∈W 1,∞(Rd ×Sd−1,R+), by setting

ζ := ζ//ζ⊥ with ζ⊥(y; n̄) := χ⊥(y · n̄), ζ//(y; n̄) := χ// (|πn̄y|) .

Notice that for n̄ ∈ Sd−1, the function y 7→ ζ (y; n̄) is compactly supported in D0
1(n̄). In the

sequel, we fix ξ = ξ (ζ ) ∈ (0,1/4) such that

suppζ (·; n̄) ⊂ D
2ξ
1−2ξ

(n̄) for n̄ ∈ Sd−1.

Notice also that ∫

Rd
ζ (y; n̄)dy = 1.

Definition 5.2 Let us introduce a small parameter η ∈ (0,ξ/2) and let us set

βη := min(β1(ω,ξ ,η) , β3(ω,ξ/2,η)) , (5.3)

where the functions β1 and β3 are given in Lemma 2.4 and Lemma 2.6. Using the notation of
Lemma 2.7, we define the two bad sets (union of bad bad balls),

U(ε),η :=
[
U⋆
(ε)∪U(ε),3,βη

]
+B√

2 ⊂ U
′
(ε),η := U(ε),η +B√

2 ,

and the corresponding good sets

G(ε),η := Rd \U(ε),η , ⊃ G
′
(ε),η := Rd \U

′
(ε),η .

Finally, we define a cut-off function χ(ε),η ∈ D(Rd, [0,1]) satisfying

χ(ε),η ≡ 1 on G
′
(ε),η , χ(ε),η ≡ 0 on U(ε),η , ‖∇χ(ε),η‖∞ ≤ 1.

The approximate (scalar) mean curvature of Σε at some point x ∈ Σε is defined as

ĥε(x) := −
χ(ε),η (εx)

ε

∫

Rd
σε(x+ εz) ·πνε (x)∇yζ (z;νε(x)) dz.

Eventually, the approximate mean curvature is defined as Ĥε(x) := ĥε(x)νε(x).

Remark 5.1 To lighten the notation in the above definitions we did not emphasized the depen-
dencies in ζ and η . Below, the main computations are carried out for a fixed test function ζ and a
fixed parameter η . Only at the end, we send η to 0 and we optimize the lower bound with respect
to ζ .

The next proposition states that ĥε approximates hε , at least in a weak sense in L2(Σε ,H
d−1).



42 Benoı̂t Merlet

Proposition 5.1 Let ĥε be given by Definition 5.2:

a) We have the following uniform bound in ε ,

∫

Σε

|ĥε |2 dH
d−1 ≤ C6ε(ζ ,η).

b) Moreover, for every ϕ ∈C(Rd),
∫

Σε

ϕ
[
ĥε −hε

]
νε dH

d−1 ε↓0−→ 0.

Proof Let us fix ε ∈ (0,1] and for x ∈ Σ(ε), let us set

ĥ(ε)(x) := ε ĥε(εx).

We now drop the subscripts (ε): we write Σ = Σ(ε), U⋆ =U⋆
(ε), χη = χ(ε),η , etc.

In rescaled variables, we have for x ∈ Σ ,

ĥ(x) = −χη (x)

∫

Rd
σ(x+ y) · (ζ⊥∇yζ//)(y;ν(x)) dy. (5.4)

Recall that in the above integral we can reduce the domain of integration to D
2ξ
1−2ξ

(ν(x)).

We start with a few remarks. Let us consider the piece of hypersurface,

Γη := Σ ∩ supp χη .

By definition of χη , we have supp χη +B√
2 ⊂U⋆ so that Σ ∩(supp χη +B√

2)⊂ Σ 0. In particular,

Γη ⊂ Σ0 and ν(x) = n(x) on Γη

By definition of βη , Lemma 2.4 and Lemma 2.5 apply to any point of Γη . Following the notation
of these lemmas, we define for every x ∈ Γη ,

Dint(x) := x+D
2ξ
1−2ξ

(n(x)) ⊂ D(x) := x+D
ξ
1−ξ

(n(x)) ⊂ Ω .

The inequalities (2.12) and (2.14) apply at x and moreover, Σ ∩D(x) = Σ 0 ∩D(x). Eventually,
since η < ξ/2, Lemma 2.4 implies |t| ≤ 1− ξ/2 in D(x); so Lemma 2.6 apply to any element
y ∈ D(x), x ∈ Γη .

(a) We have to estimate the quantity

∫

Σε

ĥ2
ε dH

d−1 = εd−3
∫

Γη

ĥ2 dH
d−1.

Let x ∈ Γη and let ψx be the harmonic function provided by Lemma 2.5. c). Since n(x) ·∇ψx ≡ 0
and πn(x)∇ζ⊥ ≡ 0, we have

∫

Rd
∇ψx ·∇ζ//(y;n(x))ζ⊥(y;n(x))dy = −

∫

Rd
∆ψx ·∇ζ (y;n(x))dy = 0.

This identity and n(x) ·∇ζ// ≡ 0 allow us to rewrite (5.4) as

ĥ(x) = −χη (x)
∫

Rd

[
σ(x+ y)−n(x)−∇ψx(x+ y)

]
· (ζ⊥∇yζ//)(y;n(x)) dy.
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Then (2.14) and the Cauchy-Schwarz inequality yield |ĥ|2(x) ≤ C(ζ )E (D(x)). Integrating on
Γη and using Fubini, we obtain

∫

Γη

|ĥ|2 dH
d−1 ≤ C(ζ )

∫

Ω1−ξ/2

[
f0(σ ,∇t)+ |∇u−∇t|2

]
(y)qξ (y)dy,

with the notation Ω1−ξ/2 := [|t|< 1−ξ/2] and

qξ (y) :=
∫

Γη

θ ξ (y− x,n(x))dH
d−1(x).

where θ ξ (·,n(x)) is the characteristic function of D
ξ
1−ξ

(n(x)).

By inequality (2.19) of Lemma 2.6, we have |qξ (y)| ≤C(η). Hence,

εd−3
∫

Γη

|ĥ|2 dH
d−1 ≤ C(ζ )εd−3

∫

Ω

[
f0(σ ,∇t)+ |∇u−∇t|2

] (Lemma 2.2)

≤ C6ε(ζ ).

This establishes Proposition 5.1.a.

(b) Let ϕ ∈ C(Rd). In scaled variables we have to bound the vector Q̂(ε)[ϕ ]−Q(ε)[ϕ ] ∈ Rd ,
with

Q̂(ε)[ϕ ] := εd−2
∫

Σ(ε)

ϕ(εx)ĥ(ε)(x)n(ε)(x)dH
d−1(x),

Q(ε)[ϕ ] := εd−2
∫

Σ(ε)

ϕ(εx)h(ε)(x)n(ε)(x)dH
d−1(x).

The scaling factors εd−2 come from H d−1(Σε) = εd−1H d−1(Σ(ε)) and hε(x) = ε−1h(ε)(ε
−1x).

Let us drop again the subscripts (ε). Recall that Σ ⊂ BR/ε , so we can assume that ϕ is com-

pactly supported. We can in fact assume that ϕ is Lipschitz continuous by density of W 1,∞(BR/ε)

in C(BR/ε). Indeed, ϕ 7→ (Q− Q̃)[ϕ ] is linear and by part (a) and the bounds of Proposition 2.1.b,

|(Q̂−Q)[ϕ ]| ≤ ‖ϕ‖∞

√
2εd−3

∫

Σ
|ĥ|2 + |h|2 dH d−1

√
εd−1H d−1(Σ) ≤ C6ε(ζ ,η)‖ϕ‖∞.

Now, we claim that we can somehow assume that ϕ is supported in G ′
η . Let us introduce a cut-off

function χ ′
η ∈ D(Rd, [0,1]) satisfying

χ ′
η ≡ 1 on G

′′
η , χ ′

η ≡ 0 on U
′

η , ‖∇χ ′
η‖∞ ≤ 1.

with the larger bad set and smaller good set:

U
′′

η := U
′

η +B√
2, G

′′
η := Rd \U

′′
η .

We then define
ϕη(y) := χη ((1/ε)y)ϕ(y).

Since |ϕη −ϕ | is supported in U ′′
η and bounded by ‖ϕ‖∞, we have, proceeding as above and

using (2.28):

|(Q̂−Q)[ϕη −ϕ ]| ≤
√

2εd−3

∫

Σ
|ĥ|2 + |h|2 dH d−1

√
εd−3H d−1(Σ ∩U ′′

η ) ‖ϕ‖∞ ε

≤ C6ε(ζ ,η)‖ϕ‖∞ ε
ε↓0−→ 0.
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Therefore, we may and do substitute ϕη for ϕ and assume ϕ ∈ W 1,∞(Rd) in the proof of (b).
Remark that albeit not explicitly written, ϕη depends on ε . Let us summarize the properties of
ϕη :

‖ϕη‖W 1,∞ ≤ C(ϕ), suppϕη ⊂ G
′
η .

In particular χη ≡ 1 on the support of ϕη and we can drop the factor χη and replace Σ by Γη ⊂ Σ0

in the definitions of Q(ε)[ϕη ] and Q̂(ε)[ϕη ].

In the sequel we write Q and Q̂ for Q[ϕη ] and Q̂[ϕη ]. Using formula (5.4), we rewrite Q̂ as an

integral over (x,y) ∈ Σ ×Rd . Then, performing the change of variable z = x+ y ∈ Rd , x = x ∈ Σ
and using Fubini, we obtain, for i = 1, · · · ,d−1,

Q̂i = εd−2
∫

Rd
σ(z) · q̂i(z)dz,

with the notation Q̂ = (Q̂1, · · · , Q̂d) and

q̂i(z) :=
∫

Γη

−ϕη(εx)ni(x) [ζ⊥∇yζ//] (z− x;n(x))dH
d−1(x). (5.5)

Here ni(x) denotes the i-est component of n(x). Next, having in mind the identities πn̄∇yζ//(y; n̄)=
∇yζ//(y; n̄) and πn̄∇yζ⊥(y; n̄) = 0, we compute the expansion,

πn(x)∇x

[
ϕη(εx)ζ (z− x;n(x))ni(x)

]
= ai(x, z)+bi(x, z)+ϕη(εx)πn(x)ci(x, z), (5.6)

where:

a. The term ai(x, z) involves the gradient of the function z 7→ ζ (z; n̄),

ai(x, z) := −ϕη(εx)ni(x) [ζ⊥∇yζ//] (z− x;n(x)).

Remark that ai(x, z) is the integrant in (5.5).
b. The term bi(x, z) involves the gradient of x 7→ ϕη(εx).

bi(x, z) := εζ (z− x;n(x))ni(x)πn(x)∇ϕη(εx).

c. The last term ci(x, z) involves the gradient of n(x). It can be written on the following form,

ci(x, z) =
d

∑
k=1

∂ [ζ (z− x; n̄)n̄i]

∂ n̄k

∣∣∣∣
n̄ = n(x)

∇nk(x) =
d

∑
j=1

ci, j(x; z)∇n j(x). (5.7)

We have supp[ci, j(·; z)]⊂ D√
2(z) and ‖ci, j‖∞ ≤C(ζ ).

Integrating (5.6) on Γη and applying the Green formula (5.2) to the left hand side, we get,

q̂i(z) =
∫

Γη

ai(x, z)dH
d−1(z)

=
∫

Γη

ϕη(εx)ζ (z− x;n(x))ni(x)h(x)n(x)dH
d−1(x)

−
∫

Γη

bi(x, z)dH
d−1(x)−

∫

Γη

ϕη(εx)πn(x)ci(x, z)dH
d−1(x).
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Taking the dot product with σ(z) = n(x)+[σ(z)−n(x)], integrating in z ∈ Rd and changing back
the variables of integration to y = z− x,x = x, we obtain,

Q̂i = Q̂i,1+ Q̂i,2 + Q̂i,3 + Q̂i,4,

with

Q̂i,1 := εd−2
∫

Γη

[∫

Rd
ζ (·;n(x))

]
h(x)ϕη(εx)ni(x)dH

d−1(x)

Q̂i,2 := εd−2
∫

Γη

[∫

Rd
ζ (·;n(x))(σ(x+ ·)−n(x))

]
·n(x)h(x)ϕη (εx)ni(x)dH

d−1(x)

Q̂i,3 := −εd−1
∫

Γη

[∫

Rd
ζ (·;n(x))σ(x+ ·)

]T

πn(x)∇ϕη(εx)dH
d−1(x)

Q̂i,4 := −εd−2
d

∑
j=1

∫

Γη

[∫

Rd
ci, j(x,x+ ·)σ(x+ ·)

]T

πn(x)∇n j(x)ϕη(εx)dH
d−1(x).

Le us consider Q̂i,1. By definition of ζ , the term into brackets is equal to 1. Therefore,

Q̂i,1 = Qi. (5.8)

We have to establish that the three remaining terms go to 0 as ε ↓ 0.

Let us fix a point x ∈ Γη . The harmonic function ψx given by Lemma 2.5.c applied in x+

D
ξ
1−ξ

(n(x)) satisfies ∇ψx(x) = 0 and n(x) ·∇ψx ≡ 0. In particular, we can substitute [σ(x+ ·)−
n(x)−∇ψx(x+ ·)] for [σ(x+ ·)− n(x)] in the definition of Q̂i,2. Using (2.14) and the Cauchy-
Schwarz inequality, we compute

|Q̂i,2| ≤ C(ξ )‖ϕ‖∞ εd−2
∫

Γη

√
E (B√

2(x)) |h|(x)dH
d−1(x)

≤ C(ξ )‖ϕ‖∞ ε
√

εd−3W (Σ)

√
εd−3

∫

Γη

E (B√
2(x))dH d−1(x).

Using Fubini and taking into account Lemma 2.2, we obtain

|Q̂i,2| ≤ C(ξ ,η)‖ϕ‖∞ ε
√

εd−3W (Σ)

√
εd−3

∫

Ω
f0(σ ,∇t) .

Unscaling, we get

|Q̂i,2| ≤ C(ξ ,η)‖ϕ‖∞

√
W (Σε)

√
E0 ε

ε↓0−→ 0. (5.9)

Next, we consider Q̂i,3. We first notice that n(x) ·πn(x) ≡ 0 so that we can substitute [σ(x+ ·)−
n(x)] for σ(x+ ·) in the integral into brackets. Now, since n(x) ·∇ψx ≡ 0 and ζ (·;n(x)) is radially
symmetric with respect to the direction n(x), the mean value property yields

∫

Rd
ζ (y;n(x))∇ψx(x+ y)dy = ∇ψx(x) = 0. (5.10)
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Therefore, we can substitute [σ(x+ ·)−n(x)−∇ψx(x+ ·)] for σ(x+ ·) in the definition of Q̂i,3.
Proceeding as above, we obtain

|Q̂i,3| ≤ C(ξ )‖∇ϕη‖∞

√
εd−3

∫

Ω
f0(σ ,∇t)

√
εd−1H d−1(Σ) ε

≤ C6ε(ξ )‖∇ϕη‖∞ ε
ε↓0−→ 0. (5.11)

For the last term, we can obviously substitute [σ(x+ ·)− n(x)] for σ(x+ ·) but we can still
also substitute [σ(x+ ·)−n(x)−∇ψx(x+ ·)] as in fact

∫

Rd

d

∑
j=1

ci, j(x,x+ y)∇ψT
x (x+ y)πn(x)∇n j(x)dy

=

∫

Rd
∇ψx(x+ y) ·πn(x)ci(x,x+ y))dy = 0. (5.12)

To see this, we have to go back to the definition (5.7) of ci. Without loss of generality, we assume
that x = 0 and n(x) = ed . By (5.7), we have for 1 ≤ i ≤ d −1,

ci(0, z) = ζ (z;ed)∇ni(0)
(5.10)
=⇒

∫

Rd
∇ψ0(z) ·πed

ci(0, z) = 0.

For i = d, we have

cd(0, z) =
d−1

∑
k=1

∂ [ζ (z; n̄)]

∂ n̄k

∣∣∣∣
n̄ = ed

∇nk(0)

Writing z = (z′, zd) and taking into account the relations

ζ ((z′, zd);ed) = ζ ((z′,−zd);ed), ζ (Rz;Rn̄) = ζ (z; n̄) for every R ∈ SO(d),

we have using rotations in the plane (ek,ed),

∂ζ

∂ n̄k

((z′, zd); n̄)

∣∣∣∣
n̄ = ed

+
∂ζ

∂ n̄k

((z′,−zd); n̄)

∣∣∣∣
n̄ = ed

= 0, for k = 1, · · · ,d−1.

Hence, since ∇ψ0(z
′, zd) does not depend on zd , we have

∫

Rd
∇ψ0(z) ·πed

cd(0, z) = 0.

Therefore, (5.12) holds.
Substituting [σ(x+ ·)−n(x)−∇ψx(x+ ·)] for σ(x+ ·) in the definition of Q̂i,4 and using (2.12)
to bound |∇n|(x) = |II|(x) and (2.14) as above, we deduce

|Q̂i,4| ≤ C(ξ )‖ϕ‖∞ εd−2
∫

Γη

[
E (B√

2(x))
]3/4

dH
d−1(x)

(Hölder)

≤ C(ξ )‖ϕ‖∞

[
εd−3

∫

Γη

E (B√
2(x))dH

d−1(x)

]3/4 [
εd−1

H
d−1(Σ)

]1/4√
ε

= C6ε(ξ )‖∇ϕη‖∞

√
ε

ε↓0−→ 0. (5.13)

Proposition 5.1.b then follows from (5.8),(5.9),(5.11) and (5.13). ⊓⊔
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5.2 Passage to the limit ε ↓ 0, computation of the lower bound

Proceeding in the same way as to obtain the lower semicontinuity of W (see (4.7)), we deduce
from Proposition 5.1 that

W (V0) =
∫

Σ0

(θ+
0 +θ−

0 )|H0|2 dH
d−1 ≤ liminf

ε↓0

∫

Σε

|ĥε |2 dH
d−1. (5.14)

By definition of ĥε , we can replace the domain of integration by Γε ,η := εΓ(ε),η in the last integral.
Let us recall the definition of the local energy at some point x ∈ Γ(ε),η ,

E(ε)(x) :=
∫

B3(x)∩Ωε

[
f0(σ(ε),∇t(ε))+ |∇u(ε)−∇t(ε)|2

]
.

We introduce another local energy. Let α > 0 be a small parameter, we set,

F(ε),α (x) :=

∫

x+D
2ξ
1−2ξ

(n(ε)(x))
f (σ(ε),∇t(ε))+αE(ε)(x).

Remark 5.2 We add the term αE(ε) for compactness reasons. This terms controls oscillations of

∇u and thus of Σ 0.

We then consider local optimization problems associated to this local energy. By frame invari-
ance, we only have to consider the case x = 0 and n(x) = ed .

Definition 5.3 Let ζ , ξ = ξ (ζ ), α > 0 and η ∈ (0,ξ/2) as above. We set

cζ ,η ,α( f ) :=
1

H d−1(D′
1)

inf

{
F #

α(a
#)

|ĥ#|2(a#)
: a# ∈ S

#
η , ĥ#(a#) 6= 0

}
,

where:

(i) S #
η is the set of quadruplets a# = (σ #, t#,u#,Σ #) with:

σ # ∈ L2(B3,R
d), t#,u# ∈W 1,2(B3, [−1,1]), Γ # ⊂ D

1/2
1 (ed),

such that:

• t# is ω-continuous, u# is ω⋆-continuous, u# = t# in {|t#| ≥ 9/10},
• the vector field σ # is divergence free in D ′([|t#|< 1]),

• u# is harmonic and |∇u#| ≥ 1/2 in D
1/2
1 (ed),

• Γ # is the hypersurface:

Γ # =
[
u# = 0

]
∩D

1/2
1 (ed),

and moreover, 0 ∈ Γ # and ∇u#/|∇u#|(0) = ed ,
• we have the energy bound (see (5.3))

∫

Bλ∩Ω#

(
f0(σ

#,∇tε)+ |∇u# −∇t#|2
)
≤ βη .
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(ii) The local energy F #
α(a

#) is modeled on F(ε),α :

F
#
α(a

#) :=
∫

D
2ξ
1−2ξ

f (σ #,∇t#)+αE
#(a#),

with

E
#(a#) :=

∫

B3∩[|t#|<1]

[
f0(σ

#,∇t#)+ |∇u# −∇t#|2
]
.

(iii) The approximate curvature ĥ#(a#) is defined as (compare to (5.4)):

ĥ#(a#) := −
∫

Rd
σ # · (ζ⊥∇yζ//)(y;ed) dy.

The parameter η ∈ (0,ξ/2) being fixed, according to the above definition we have for every
x ∈ Γ(ε),η , ε ∈ (0,1]:

|ĥ(ε)|2(x) ≤ 1

cζ ,η ,α( f )

1

H d−1(D′
1)

F(ε),α(x). (5.15)

Using this inequality in (5.14), we obtain

cζ ,η ,α( f )W (V0) ≤ 1

H d−1(D′
1)

liminf
ε↓0

εd−3
∫

Γ(ε),η

F(ε),α(x)dH
d−1(x). (5.16)

Let us consider the integral in the right hand side. Replacing F(ε),α(x) by its definition, applying
Fubini and taking into account Lemma 2.4, we get

∫

Γ(ε),η

F(ε)(x)dH
d−1(x) ≤

∫

Ω
ξ/2

(ε)

f (σ(ε),∇t(ε))q(ε)

+α

∫

Ω(ε)

[
f0(σ(ε),∇t(ε))+ |∇u(ε)−∇t(ε)|2

]
q′(ε) .

with Ω
ξ/2

(ε) = [|t(ε)|(y)< 1−ξ/2],

q(ε)(y) := H
d−1
({

x ∈ Γ(ε),η : y ∈ x+D
2ξ
1−2ξ

(n(x))
})

.

and q′(ε)(y) = H d−1(Σ 0
(ε)∩B3(y)).

By inequality (2.19) of Lemma 2.6, we have q(ε)(y) ≤ H d−1(D′
1)(1+ s(η)) with s(η) → 0 as

η ↓ 0. On the other hand, thanks to (2.27), we have q′(ε) ≤C6ε . Hence,

1

H d−1(D′
1)

∫

Γ(ε),η

F(ε),α(x)dH
d−1(x) ≤ (1+ s(η))F (σ(ε),∇t(ε),Ω(ε))+C6εα.

Putting this estimate in (5.16), unscaling and sending η to 0 and then α to 0, we end with

[
liminf

α↓0
liminf

η↓0
cζ ,η ,α( f )

]
W (V0) ≤ liminf

ε↓0

F (σε ,∇tε ,Ωε)

ε3
.

Theorem 1.2 then follows from the next lemma which states the required lower bound for the
local optimization problems.
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Lemma 5.1 (Local optimization)
(a) For every α > 0, there holds:

liminf
η↓0

cζ ,η ,α( f ) ≥ c0,ζ ( f ) :=
detL

2L2,2

(
H

d−1(D′
1)
∫

D1
1

|∂yd
ζ |2(y;ed)dy

)−1

,

where L is the 2×2 matrix defined in Lemma 3.1.

(b) There exists a sequence of convenient functions (ζk)⊂W 1,∞(Rd ×Sd−1,R+) (i.e. ζk complies
to the constraints of Definition 5.1) such that

c0,ζk
( f )

k↑∞−→ c0( f ) =
detL

3L2,2
.

Proof Let us fix α > 0 and let ζ be as in Definition 5.1. We first establish (a). For this, we

consider a minimizing sequence a#
k = (σ #

k ,∇t#
k ,∇u#

k,Σ
#
k )⊂ S #

ηk
such that ηk ↓ 0, ĥ#

ζ (a
#
k) 6= 0 and

lim
k↑∞

F #
α(a

#
k)

|ĥ#|2(a#
k)

= H
d−1(D′

1) liminf
η↓0

cζ ,η .

Using the reflection symmetry with respect to the hyperplane e⊥d , we assume without loss of

generality that ĥ#
ζ (a

#
k)> 0.

We start by proving that cζ ,η ,α( f ) is uniformly bounded with respect to η . Lemmas 2.4 and 2.5
have been stated for the quadruplets

(
σ(ε), t(ε),u(ε),Σ

0
(ε)

)

but by definition of the sets S #
η they obviously also apply to the elements of the sequence (a#

k) at

point x = 0. In particular, σ #
k → ed in L2(D

ξ
1−ξ

), which implies ĥ#
ζ (a

#
k)→ 0.

Now let ℏ ∈ (0,1] and let us define a# := (σ #, t#,u#,Σ #), as

σ #(y) = ed +ℏ

(
1

d −1
y′− yded

)
, t#(y) = u#(y) = yd, Σ # = D′

1.

We easily check that ĥ#
ζ (a

#) = ℏ, that a# ∈ S #
η for η ∈ (0,η0) for some η0 > 0 depending on ℏ

and that

F
#
α(a

#) ≤ C( f )ℏ2 = C( f ) |ĥ#(a#)|2.
Therefore, cζ ,η ,α( f ) ≤ C( f )/H d−1(Sd−1) and since (a#

k) is a minimizing sequence, we may

assume F #
α(a

#
k)≤C( f ) |ĥ#(a#

k)|2.

Using the notation ℏk := ĥ#(a#
k), we now assume

F
#
α(a

#
k) ≤ C( f ) |ℏk|2

k↑∞−→ 0. (5.17)

Let us call ψ#
k the harmonic function given by Lemma 2.5.c applied to a#

k and let us set ψ♭
k :=

(1/
√
ℏk)ψ

#
k . We define a vector field σ ♭

k and a function t♭k on D
2ξ
1−2ξ

by

σ #
k = ed +

√
ℏk ∇ψ♭

k +ℏkσ ♭
k , ∇t#

k = ed +
√

ℏk ∇ψ♭
k +ℏk∇t♭k. (5.18)
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(To fix the the constant, we assume
∫

D
2ξ
1−2ξ

t♭k = 0)

Using (5.17) in the estimates of Lemma 2.5.c, we have

‖∇ψ♭
k‖2

L2(D0
1−3ξ/2

)
+‖σ ♭

k‖2

L2(D
2ξ
1−2ξ

)
+‖∇t♭k‖2

L2(D
2ξ
1−2ξ

)
≤ C( f ,α,ξ ). (5.19)

Hence, up to extraction, there exist two functions ψ♭
∞, t

♭
∞ ∈W 1,2(D

2ξ
1−2ξ

) and a vector field σ ♭
∞ ∈

L2(D
2ξ
1−2ξ

,Rd) such that ψ♭
∞ is harmonic, ∂dψ♭

∞ ≡ 0, σ ♭
∞ is divergence free and

∇ψ♭
k

k↑∞−→ ∇ψ♭
∞ in C∞

(
D0

1−2ξ

)
, (5.20)

σ ♭
k

k↑∞−→ σ ♭
∞, ∇t♭k

k↑∞−→ ∇t♭∞ weakly in L2(D
2ξ
1−2ξ

). (5.21)

To study the asymptotic behavior of F #
ζ (a

#
k), we are going to use (5.18) and a Taylor expansion

of f . The latter requires point-wise bounds. First, by (5.20), there exists a constant K > 0 such
that

sup
D0

1−2ξ

|∇ψ♭
k | ≤ K.

We do not have pointwise bounds on the sequence (σ ♭
k ,∇t♭k) and we are led to reduce the domains

of definition of these functions.
For this, let us introduce a small parameter ρ > 0. By the preceding estimate, for k large enough,
say k ≥ k0(ρ), there holds √

ℏk|∇ψ♭
k | < ρ on D0

1−2ξ .

Now, for k ≥ 0, we set

Sρ ,k :=
{

y ∈ D
2ξ
1−2ξ

: |(σ ♭
k(y),∇t♭k(y))|< ρ/|ℏk|

}
.

Notice, for later use, that since (σ ♭
k) and (∇t♭k) are bounded in L2(D

2ξ
1−2ξ

) and ℏk → 0, we have

H
d−1(D

2ξ
1−2ξ

\Sρ ,k)
k↑∞−→ 0. (5.22)

Since f is of class C2 in some neighborhood of Sd−1, there exists ρ0 > 0 and a sublinear modulus

of continuity ω f (r)
r↓0→ 0 such that for σ ′,τ ′,σ ′′,τ ′′ ∈ Bρ0

(ed), we have

|D2 f (σ ′′,τ ′′)−D2 f (σ ′,τ ′)| ≤ ω f (|(σ ′′−σ ′,τ ′′− τ ′)|). (5.23)

Let us now assume ρ ∈ (0,ρ0/2) and let us fix for a moment k ≥ k0(ρ) and y ∈ Sk so that by
construction, we have σ #

k (y),∇t#
k (y) ∈ Bρ0

(ed)). We set

m := ed +
√

ℏk∇ψ♭
k(y), n := m/|m|,

(we also have n ∈ Bρ0
(ed)). Let us also introduce the pairs of vectors,

M := (m,m), N := (n,n), and Q := ℏk

(
σ ♭

k(y) , ∇t♭k(y)
)
,



An anisotropic nonlinear elasticity model for vesicles. II. 51

We estimate f (σ #
k (y),∇t#

k (y)) from below by using (5.18) and a Taylor expansion of f at N.
Taking into account f (N) = 0, D f (N) = 0 and (5.23), we obtain

f (σ #
k (y),∇t#

k (y)) = f (N +(M−N +Q))

≥ 1

2
(M−N +Q)T

D2 f (N)(M−N +Q)− 1

2
ω f (2ρ)|M−N +Q|2.

We rewrite the quadratic term as

D2 f (N) = D2( f (ed,ed))+ [D2 f (N)−D2( f (ed,ed)].

Since, |n− ed|< ρ , this leads to

f (σ #
k (y),∇t#

k (y))

≥ 1

2
(M−N +Q)T

D2 f (ed,ed)(M−N +Q)−ω f (2ρ)|M−N +Q|2. (5.24)

Now performing a Taylor expansion of m−n, we get

m−n =
ℏk

2
|∇ψ♭

k|2(y)ed +O(|ℏk|3/2K3).

Hence, setting

ν ♭
k := σ ♭

k +
|∇ψ♭

k|2
2

ed , τ♭k := ∇t♭k +
|∇ψ♭

k |2
2

ed,

we obtain,

M−N +Q = ℏk

(
ν ♭

k,τ
♭
k

)
+O(|ℏk|3/2K3).

Substituting this expansion in (5.24), dividing by (ℏk)
2 and integrating on Sρ ,k, we get

1

|ℏk|2
F

#
ζ (a

#
k) ≥ 1

2

∫

Sρ,k

(
ν ♭

k(y),τ
♭
k(y)

)T

D2 f (ed,ed)
(

ν ♭
k(y),τ

♭
k(y)

)

−2ω f (2ρ)
(

2C(K)H d−1(D′
1)+C(α,ξ )

)
, (5.25)

where we have used (5.19) to bound the remainder.
Let χρ ,k be the characteristic function of Sρ ,k. We deduce from (5.20) (5.21) and (5.22), that

(
χρ ,kν ♭

k , χρ ,kτ♭k

)
k↑∞−→ (ν ♭

∞,τ
♭
∞) :=

(
σ ♭

∞ +
|∇ψ♭

∞|2
2

ed , ∇t♭∞ +
|∇ψ♭

∞|2
2

ed

)

weakly in L2(D
2ξ
1−2ξ

).

By positivity of D2 f (ed ,ed), the functional

W ∈ L2(D
2ξ
1−2ξ

) 7→
∫

O
W T D2 f (ed,ed)W

is lower semicontinuous with respect to the topology of weak convergence in L2. Therefore,
sending k to +∞ in (5.25), then sending η to 0 and taking into account the fact that ρ > 0 is
arbitrary, we end with

H
d−1(D′

1)

[
liminf

η↓0
cζ ,η ,α

]
≥ 1

2

∫

D
2ξ
1−2ξ

(ν ♭
∞,τ

♭
∞)

T D2 f (ed,ed)(ν
♭
∞,τ

♭
∞).
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We simplify further the right hand side by using the structure of D2 f (ed ,ed) described in Lemma 3.1.

Calling p = (ν ♭
∞,d,τ

♭
∞,d) the last components of the vector fields ν ♭

∞,τ
♭
∞, we obtain,

H
d−1(D′

1)

[
liminf

η↓0
cζ ,η ,α

]
≥ 1

2

∫

D
2ξ
1−2ξ

pT Lp. (5.26)

where the positive symmetric 2×2 matrix L is defined by (3.1).
Now we pass to the limit in the affine constraint. Putting the expansion (5.18) of σ #

k in the defi-

nition of ℏk = h#
ζ (a

#
k) and using the facts that ψ#

k is harmonic and does not depend on yd , we see

that

−
∫

Rd
σ ♭

k · (ζ⊥∇yζ//)(y;ed) dy = 1.

Passing to the limit k ↑ ∞, σ ♭
∞ satisfies the constraint

−
∫

Rd
σ ♭

∞ · (ζ⊥∇yζ//)(y;ed) dy = 1. (5.27)

Since ∇ ·σ ♭
∞ ≡ 0 and ζ is compactly supported, this amounts to

∫

Rd
σ ♭

∞,d(y)∂yd
ζ (y;ed) dy = 1.

Now, since p1 = σ ♭
∞,d + |∇ψ♭

∞|2/2 and ∇ψ♭
∞ does not depend on yd , we also have

∫

Rd
p1(y)∂yd

ζ (y;ed) dy = 1. (5.28)

Eventually, we have to optimize the right hand side of (5.26) with respect to the elements

p ∈ L2(D
ξ
1−2ξ

,R2) satisfying the constraint (5.28). Since L is positive definite, the existence of

a unique minimizer relies on the Lax-Milgram theorem. The Euler-Lagrange equations lead to

popt = λ∂yd
ζ (·;ed)L

−1
(

1
0

)
, where the Lagrange multiplier

λ =
detL

L2,2‖∂yd
ζ (·;ed)‖2

L2(D0
1)

is fixed by the constraint. The minimal energy is λ/2. Together with (5.26), this leads to

H
d−1(D′

1)

[
liminf

η↓0
cζ ,η ,α

]
≥ detL

2L2,2‖∂yd
ζ (·;ed)‖2

L2(D0
1)

,

and (a) is proved.

(b) We now optimize in ζ . We are looking for the largest possible lower bound so the smallest
possible ‖∂yd

ζ‖2
L2(D0

1(ed ))
. Minimizing this quantity under the constraints

∫
D0

1
(ed)

ζ = 1, ∂yd
ζ ∈

L2(D0
1(ed)) and ζ = 0 on {y ∈ ∂D0

1(ed) : yd =±1}, we obtain as unique minimizer

ζ0(y) =
3

4H d−1(D′
1)

(
1− y2

d

)
with H

d−1(D′
1)
∫

D0
1
(ed)

|∂yd
ζ0|2 =

3

2
.

As required, we have c0,ζ0
( f ) = (det L)/(3L2,2) and ζopt is a product of smooth functions de-

pending on tangential and thickness coordinates respectively. However, we can not use ζ0 in



An anisotropic nonlinear elasticity model for vesicles. II. 53

Definition 5.1 because it is not compactly supported in D0
1(ed). Anyway, we can approximate ζ0

by a sequence of compactly supported function (ζ j) ⊂ W 1,∞(D0
1(ed)× Sd−1) that comply to the

requirements of Definition 5.1. For example:

ζ j(R(y
′,yd);Red)) := ζ j((y

′,yd);ed) :=
j+1

j

θ j(y
′)

‖θ j‖L1(D′
1)

ζ0

(
y′,

j+1

j
yd

)
,

with θ j ∈ D(D′
1, [0,1]) satisfying θ j(y

′) = 1 for |y′| ≤ 1− 2/ j. For such a sequence, we have
c0,ζ j

( f )→ (det L)/(3L2,2) as j ↑ ∞ which establishes part (b) of the lemma. ⊓⊔

6 Concluding remarks

6.1 The uniform continuity and confining assumptions

We would like to get rid of the uniform continuity hypothesis on x 7→ ε−1tε(εx) (Hypothesis 1)
and establish the compactness result under sole energy bounds.
We could try to relax the hypothesis by approximating the functions

tε ∈W
1,2
loc (R

d, [−ε ,ε ])

by Lipschitz continuous functions. In fact, proceeding as in Evans and Gariepy [5], (Section 6.6.3,
Theorem 3, see also the appendix of [6]), it is not difficult to establish that for such function, there
exists t̂ε ∈W 1,∞(Rd, [−ε ,ε ]) and an open set Uε such that t̂ε ≡ tε in Rd \Uε , ‖∇t̂ε‖∞ ≤ 2 and

H
d(Uε)+

∫

Rd
|∇t̂ε −∇tε |2 ≤

∫

Rd
[|∇tε |−1]2+ .

The last term is controlled by the energy F0(σε ,∇tε ,Ωε) and we can think of substituting t̂ε for tε
to derive our estimates. This implies that we should also substitute Ω̂ε = [|t̂ε |< ε ] for the domain

Ωε and find a vector field σ̂ε which approximates σε and is divergence free on Ω̂ε . We did not
find a solution to this last problem. In fact, given a vector field σ ∈W 1,2(Ω ,Rd) and an open set

U ⊂ Rd , it is not true in general that we can extend σ as a divergence free vector field in Ω ∪U or
even that we can find a vector field which is reasonably close to σ in Ω and which is divergence
free in Ω ∪U . The difficulty arises from the topology of Ω ∪U which may differ from that of Ω .
For instance, if σ = x/|x|d in B1 \Bρ then we can not extend σ as a divergence free vector field
in B1.

We would also like to weaken the confining hypothesis: [tε ≡ ε ] in the complement of BR. This
is feasible, at least for d = 2 and d = 3.

In dimension d = 2, the bad sets introduced in the compactness step are empty for ε small
enough: indeed, the number of bad balls in Lemma 2.7 is subjected to N ≤ C6ε(β )ε . Therefore,
the one dimensional set Σε is, for ε small enough equal to [uε = 0] which is a finite union of non-
intersecting analytic Jordan curves. The total length of these curves is uniformly bounded, as well
as their elastic energy W (Σε). Substituting the condition “tε ≡ ε in the neighborhood of infinity”
for the confining assumption, we can track the different connected components by using finitely
many translations and obtain at the limit a finite number of W 1,2 Jordan curves with total mass
S. Alternatively, we can assume that [|tε | < 1/2] is connected, the lemmas of Section 2.3 then
imply that Σε reduces to a single Jordan curve. Assuming |tε(0)|< 1/2 to anchor the membranes
or using a translation, we obtain a bounded sequence of uniformly bounded Jordan curves with
uniformly bounded lengths and uniformly bounded elastic energy.
In these cases, the conclusion of the compactness result is the same as in [13].
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In dimension d = 3, the number of bad balls is only uniformly bounded: N ≤ C6ε(β ). Sub-
stituting the condition “tε ≡ ε in the neighborhood of infinity” to the confining assumption and
assuming that [|tε |< 1/2] is connected, we see that

diam(Σε) ≤ ∑
i

diam(Σ i
ε)+C6ε ,

where the Σ i
ε are the connected components of Σε . We invoke a result of Simon [16], Lemma 1.1

which states that for such connected components, there holds

diam(Σ i
ε) ≤ C

√
H d−1(Σ i

ε)W (Σ i
ε) .

Therefore,

diam(Σε) ≤ C

√
H d−1(Σε)W (Σε) +C6ε ≤ C6ε ,

and, up to translations, we recover the confining hypothesis.

6.2 The case of a material with non vanishing spontaneous curvature

The model introduced in [12] is more general than the one we have discussed so far. In Section
I.1.3, the divergence free condition is relaxed to

∇ ·σ = µ in D
′(Ω), (6.1)

where µ ∈ R is a parameter which characterizes the spontaneous curvature of the material. As
expected in [12], the results of the present paper extend to this case. More precisely, we claim
that if we substitute for the Willmore functional, the following energy introduced by Helfrich [9],

Wµ(Σ) :=
∫

Σ
|h−µ |2 dH

d−1,

then Theorems 1.1, 1.2 and 1.3 generalize to this setting without further changes. Let us indicate
the main adjustments that must be made to the proof.

6.2.1 Changes in the compactness step

The proof of Proposition 2.1.a relies on Lemma 2.1. In rescaled variables, (6.1) reads ∇·σ(ε)≡ µε
in Ω(ε). Proceeding as in the original proof of Lemma 2.1 and taking into account this modifica-
tion, the identity (2.7) is replaced by the inequality

∣∣∣∣
∫

∂ O
σ(ε) ·ν − S

εd−1

∣∣∣∣ ≤ ε |µ |H d(Ω(ε)∩O).

Continuing the proof of the lemma and performing straightforward modifications to treat the
above right hand side, we conclude to a weaker version of Proposition 2.1.a : we have to sub-

stitute C6ε(ε + ε(d−1)/2) for C6εε in the estimate of Proposition 2.1.a. This only concerns the case
d = 2 and does not affect the rest of the paper — in fact we only need this term to go to 0 as ε ↓ 0.

For the construction of the hypersurface Σε , the definition of the harmonic extension u(ε) of
Section 2.2 does not change. However, the proof of the inequality

∫

Rd
|∇u(ε)−∇t(ε)|2 ≤ C6εε3−d (6.2)
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is more involved. Indeed, Lemma 2.2 was based on the fact that u(ε) was a minimizer of J(ϕ) =∫
Rd |∇ϕ −σ |2 in the set of W 1,2-functions equal to t(ε) on F(ε),δ . Now, we have to consider the

functional

J̃(ϕ) :=
∫

Rd
|∇ϕ −σ(ε)|2 −2µε

∫

O(ε),δ

(ϕ − t(ε)).

The inequality J̃(u(ε))≤ J̃(t(ε)) yields

∫

Rd
|∇u(ε)−σ(ε)|2 ≤ C6εε3−d +2|µ |ε

∫

O(ε),δ

|u(ε)− t(ε)|. (6.3)

To bound the last term, we first use the maximum principle which implies |u(ε)− t(ε)| ≤ 4 and the

bound H d(Ω(ε))≤C6εε1−d . This leads to the weaker estimate

∫

Rd
|∇u(ε)−∇t(ε)|2 ≤ C6εε2−d. (6.4)

To improve this estimate, we notice that Ω(ε) is ideally a set of width 2 for which the following
Poincaré inquality should hold:

∫

Ω(ε)

|ψ|2 ≤ C6ε

∫

Ω(ε)

|∇ψ|2 for every ψ ∈W
1,2
0 (Ω(ε)).

Applying such Poincaré inequality to ψ = u(ε)−t(ε) to estimate the right hand side of (6.3) would
lead to

∫

Rd
|∇u(ε)−σ(ε)|2 ≤ C6εε3−d +C6ε |µ |ε

√
H d(Ω(ε))

(∫

Rd
|∇u(ε)−σ(ε)|2

)1/2

.

We could conclude to the desired estimate:
∫

Rd
|∇u(ε)−σ(ε)|2 ≤ C6εε3−d . (6.5)

Unfortunately, the domain Ω(ε) may contain large balls and the above Poincaré inequality does
not hold in general. Our strategy is to apply the Poincaré inequality in good cylinders.
As in the original proof, we introduce the local energy

E (O) :=

∫

O∩Ω(ε)

[
f0(σ(ε),∇t(ε))+ |∇u(ε)−∇tε |2

]
.

We also still set Σ 0
(ε) := [u(ε) = 0]. For x ∈ Σ 0

(ε) and y ∈ Rd , we introduce the vector field:

σ̃ x
(ε)(x+ y) = σ(ε)(x+ y)−µεy ·ν(ε)(x)ν(ε)(x).

This vector field is divergence free in Ω(ε) and will be used in place of σ(ε) to derive slightly
modified versions of the “cylinder” lemmas 2.4, 2.5 and 2.6. For this, we define a new local
energy:

E
x
(ε)(O) :=

∫

O∩Ωε

[
f0(σ̃

x
(ε),∇t(ε))+ |∇u(ε)−∇tε |2

]
.

We have Ẽ x
ε (B3(x)) ≤ Eε(B3(x)) +Cε2|µ |2, so that for ε > 0 small enough and β > 0 small

enough, we deduce from Lemma 2.4 applied to (σ̃ x
(ε),∇t(ε),Ω(ε)) that if x ∈ Σ 0

(ε) is such that

E (B3(x))< β then

D := x+D
1−1/20
1 (n(ε)(x))⊂ Ω(ε),
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and t(ε)(z) = u(ε)(z) for every z ∈ D such that |(z− x) ·n(ε)(x)| > 9/10.
Applying the Poincaré inequality to u(ε)− t(ε) in such cylinder D, we get

∫

D
|u(ε)− t(ε)|2 ≤C

∫

D
|∇u(ε)−∇t(ε)|2. (6.6)

Now, from (6.4), the total energy E(ε)(R
d) is bounded by C6εε2−d . Hence, the volume of bad points

such that E (B3(x))≥ β is also bounded by C6εε2−d . Using a covering argument and applying (6.6)
in good cylinders and the rough bound |u(ε)− t(ε)| ≤ 4 in the bad set, we deduce (6.5) from (6.3).

No major difficulties appears in the remaining parts of the proof of Theorem 1.1. The other
changes concern the use of σ̃ x

(ε) to derive adapted versions of the “cylinder” lemmas.

6.2.2 Changes in the upper and lower bound steps

In the proof of the upper bound, we have to modify the construction of the vector field σ
defined in a neighborhood of Σ0. As in [12] (heuristic section I.1.4.), we substitute for (3.5), the
formula

σ(y) :=




1+µ
∫ s

0
det(Id +rDν0(π0(y))dr

det(Id +Z(y)Dν0(π0(y)))


ν0(y).

This yields the expansion σ(x+sπ0(x))−µν0(x) = ν0(x)−sh0(x)ν0(x)+O(s2). The rest of the
proof is not modified.

For the proof of the upper bound, no modifications are required until the definition of the local
problem: we still define the approximate mean curvature as in Definition 5.2 and the proof of
Proposition 5.1 is still valid.
The local optimization problem introduced in Definition 5.3 is modified as follows. We now set,

cζ ,η ,α( f ) :=
1

H d−1(D′
1)

inf

{
F #

α(a
#)

|ĥ# −µ#|2(a#)
: a# ∈ S

#
η , ĥ#(a#) 6= 0

}
,

where the infimum now ranges over quintuplets a# = (σ #,µ#, t#,u#,Σ #) with µ# ∈ R and where
the divergence free condition on σ # is replaced by

∇ ·σ # ≡ µ# in [|t#|< 1].

With this definition (5.15) becomes

|ĥ(ε)−µε |2(x) ≤ 1

cζ ,η ,α( f )

1

H d−1(D′
1)

F(ε),α(x).

In place of (5.16), we now deduce,

cζ ,η ,α( f )Wµ(V0) ≤ 1

H d−1(D′
1)

liminf
ε↓0

εd−3
∫

Γ(ε),η

F(ε),α (x)dH
d−1(x).

To conclude we have to solve the new optimization problem.
We claim that Lemma 5.1 is still valid. Indeed proceeding as above, we consider a minimizing
sequence

(a#
k) = (σ #

k ,µ
#
k , t

#
k ,u

#
k,Σ

#
k ).



An anisotropic nonlinear elasticity model for vesicles. II. 57

The normalizing factor is now define as

ℏk := ĥ#
ζ (a

#
k)−µ#

k → 0.

We expand σ #
k and t#

k around ed and after extraction of a subsequence, we obtain the same limit

objects σ ♭
∞, ∇t♭∞, ∇ψ♭

∞ with the same properties except that σ ♭
∞ is now subjected to the constraint,

∇ ·σ ♭
∞ = µ♭

∞ in D
2ξ
1−2ξ

, (6.7)

where µ♭
∞ ∈ R is the limit normalized spontaneous curvature. Passing to the limit in the linear

constraint, the identity (5.27) now becomes

−
∫

Rd
σ ♭

∞ · (ζ⊥∇yζ//)(y;ed) dy−µ♭
∞ = 1.

Integrating by parts in the horizontal hyperplanes and using (6.7) we obtain (5.28) as before. The
proof then continues without further changes.
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