Some special solutions to the Hyperbolic NLS equation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Some special solutions to the Hyperbolic NLS equation

Résumé

The Hyperbolic Nonlinear Schrodinger equation (HypNLS) arises as a model for the dynamics of three-dimensional narrowband deep water gravity waves. In this study, the Petviashvili method is exploited to numerically compute bi-periodic time-harmonic solutions of the HypNLS equation. In physical space they represent non-localized standing waves. Non-trivial spatial patterns are revealed and an attempt is made to describe them using symbolic dynamics and the language of substitutions. Finally, the dynamics of a slightly perturbed standing wave is numerically investigated by means a highly acccurate Fourier solver.
Fichier principal
Vignette du fichier
LV_DD_FF-2014.pdf (1.16 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00846801 , version 1 (20-07-2013)
hal-00846801 , version 2 (25-02-2014)
hal-00846801 , version 3 (06-06-2017)

Identifiants

Citer

Laurent Vuillon, Denys Dutykh, Francesco Fedele. Some special solutions to the Hyperbolic NLS equation. 2014. ⟨hal-00846801v2⟩
1307 Consultations
567 Téléchargements

Altmetric

Partager

More