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SOME SPECIAL SOLUTIONS TO THE HYPERBOLIC NLS EQUATION

LAURENT VUILLON, DENYS DUTYKH∗, AND FRANCESCO FEDELE

Abstract. The Hyperbolic Nonlinear Schrödinger equation (HypNLS) arises as a model

for the dynamics of three–dimensional narrowband deep water gravity waves. In this study,

the Petviashvili method is exploited to numerically compute bi-periodic time-harmonic

solutions of the HypNLS equation. In physical space they represent non-localized standing

waves. Non-trivial spatial patterns are revealed and an attempt is made to describe them

using symbolic dynamics and the language of substitutions. Finally, the dynamics of a

slightly perturbed standing wave is numerically investigated by means a highly acccurate

Fourier solver.

Key words and phrases: Hyperbolic equations; NLS equation; wave patterns; deep

water waves
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1. Introduction

The celebrated cubic Nonlinear Schrödinger (NLS) equation is one of the most important
equations in nonlinear science [53]. For example, it arises in plasma physics [46] and in
normally dispersive optical waveguide arrays modeling [13, 35]. In the context of water
waves the HypNLS equation is the leading order model of the wave envelope evolution.
It was derived for the first time by V. Zakharov (1968) [61] and rediscovered later by
several other authors [11, 29]. In one dimension (1-D), the NLS equation for unidirectional
water waves is integrable [62] and of focusing type. As a result, a steady or periodic
balance of the cubic nonlinearities and wave dispersion can be attained, and this yields
the formation of localized traveling waves (solitons) or homoclinic orbits to a plane wave
(breathers). Analytical solutions for solitons follow via the inverse scattering transform [62,
17, 1, 42] and breathers can be easily obtained via the Darboux transformation [40]. The
two-dimensional (2-D) propagation of deep water narrowband waves is instead governed
by the 2-D Hyperbolic NLS equation [1, 60, 53, 43]. In this case, energy can spread along
the transversal direction to the main propagation. A consequence of this defocusing is that
localized traveling waves cannot occur. Indeed, their non-existence was proved in ([28], see
also [27]). However, this does not exclude the existence of nontrivial nonlocalized travelling
wave patterns that may arise due to a balance between nonlinearities and wave dispersion
in both directions under toric constraints.

An extended HypNLS equation was derived by Trulsen & Dysthe (1996) [55] and
additionally to the classical hyperbolic (D’Alembert) operator, it contains also higher order
dispersive and nonlinear terms. The generalization to the finite depth case leads to the
Davey–Stewartson equations [5, 15, 26]. Several important analytical solutions to the the
Davey–Stewartson model were derived in [20, 19, 59, 32].

For mathematical/numerical studies it is often convenient to restrict the attention to a
particular class of solutions. For example, the very first mathematical description of plane
permanent waves is known at least since G. Stokes (1847) [52]. Permanent waves can be
periodic or localized in space. In this study we focus on bi-periodic time-harmonic solutions
of the form A = F (x−cgt, y)e

iωt, where A is the complex envelope and F a complex function
of its argument. These are stationary solutions in the frame of reference moving with the
group speed cg. In the physical domain, the associated wave surface displacements is that
of standing waves, which have been the subject of many studies. In particular, radial
standing solutions of the HypNLS equation were investigated in [34]. The existence of
standing waves in deep waters were proved in [31]. In the shallow-water regime standing
wave patterns have been found in the context of the Boussinesq equations by M. Chen &
G. Iooss [8, 9, 10]. 2-D bi-periodic travelling wave solutions to the Euler equations were
studied by W. Craig & D. Nicholls (2002) [14]. Recently, 2-D wave patterns of the free
surface were investigated experimentally by D. Henderson et al. (2010) [30] along with
a theoretical stability analysis.

In this work, symbolic dynamics and associated techniques of substitutions are exploited
to investigate the structure of standing wave patterns (see [39, 37, 6]). In physics, their
application in studies of dynamical systems led to unveiling the structure of quasi-periodic
tilings (see [47]). Symbolic dynamics allows coding the nonlinear behavior of a complex
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system and pattern formation by means of 1-D or 2-D words of a finite alphabet. Such
approach was applied to code the non-periodic trajectories on a unit circle with a particular
partition on two intervals (see [39]). Coding of finite, periodic and non-periodic infinite
patterns using 2-D words and tilings was done in [6, 16]. The numerical standing waves
investigated in this work are periodic in space, thus the associated patterns are described
up to toric constraints. This is the first step for developing a theory for the description
of periodic or quasi-periodic patterns associated to trajectories {an(t)} of the HypNLS
dynamics in the infinite phase space spanned by, for example, generalized Fourier basis
φn(x, y) associated to the formal series for A(x, y, t) =

∑

n an(t)φn(x, y) on a periodic
domain.

The present study is organized as follows. First, the HypNLS equation is introduced in
the context of deep water waves. Then, the Petviashvili method [44] used to compute a
class of special standing wave solutions is presented. Symbolic dynamics is then applied to
describe the associated spatial patterns using words and substitutions. Finally, a highly ac-
curate Fourier-based solver is exploited to investigate the dynamics of a perturbed standing
wave.

2. The Mathematical Model

Consider a three-dimensional fluid domain with a free surface. The water is assumed
to be infinitely deep. The Cartesian coordinate system Oxyz is chosen such that the
undisturbed water level corresponds to z = 0, and the free surface elevation is z = η(x, y, t).

The Euler equations that describe the irrotational flow of an ideal incompressible fluid
of infinite depth with a free surface are of fundamental relevance in fluid mechanics, ocean
sciences and both pure and applied mathematics (see for example, [51, 61, 33]). The
structure of the Euler equations is given in terms of the free-surface elevation η(x, y, t) and
the velocity potential ϕ(x, y, t) = φ(x, y, z = η(x, y, t), t) evaluated at the free surface of
the fluid. In late 70s Dysthe used the method of multiple scales to derive from the Euler
equations a modified Nonlinear Schrödinger (NLS) equation [18] for the time evolution of
the unidirectional narrowband envelope A of the velocity potential ϕ with carrier wave
ei(k0x−ω0t), k0 and ω0 being, respectively, the wavenumber and frequency of the carrier
wave. The equation for A can be formulated in a frame moving with the group velocity
cg = ω0/(2k0) as follows. Define ε as a small parameter, a0 as a characteristic wave
amplitude and rescale space, time and the envelope as x → k0x − cgt, y → k0y, t → ω0t
and A → εa0A respectively. Then, the 2-D Dysthe equation for A is given by [55]:

iAt =
1

8
Axx −

1

4
Ayy +

1

2
|A|2A

− iε
( 1

16
Axxx −

3

8
Axyy −

3

2
|A|2Ax +

1

4
A2A⋆

x − iAH[|A|2]
)

, (2.1)

where H is the Hilbert transform and the subscripts At = ∂tA, Ax = ∂xA denote partial
derivatives with respect to x, y and t respectively, and A⋆ denotes complex conjugation.
The envelope of the free surface η relates to A by a simple transformation that involves
only A and its derivatives (see [18]). To O(1) in ε, the 2-D Dysthe equation (2.1) reduces
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to the HypNLS equation:

iAt =
1

8
Axx −

1

4
Ayy +

1

2
|A|2A. (2.2)

By rescaling A → 2A, x → 2
√
2x and the transverse coordinate y → 2y, (2.2) takes the

form [53, 43]:

iAt = Axx − Ayy + 2A|A|2. (2.3)

This equation admits the three invariants H, A and M, which have the meaning of energy,
wave action and momentum respectively:

H =

¨

R2

{

|Ay|2 − |Ax|2 + |A|4
}

dx dy,

A =

¨

R2

|A|2 dx dy,

M =
i

2

¨

R2

{

A∇A⋆ + A⋆
∇A

}

dx dy.

Note that the total energy H is also the Hamiltonian for the HypNLS equation. In the
following, we will solve for a special class of standing wave solutions to (2.3).

2.1. Standing wave patterns

Consider the ansatz for standing wave solutions that oscillate harmonically in time

A(x, y, t) = e−iωtB(x, y),

where the real function B describes the spatial pattern of a standing wave. According to
the unscaled HypNLS equation (2.3), B satisfies the following real nonlinear hyperbolic
PDE

ωB +Bxx − Byy = 2B3, (2.4)

which can be solved numerically using the classical Petviashvili method [44, 41, 36]. To do
so, (2.4) is rewritten in the operator form

L · B = N(B), L := ω + ∂xx − ∂yy, N(B) := 2B3.

and the iteration scheme is given by

Bn+1 = S
γ
L

−1 ·N(Bn), S =
〈Bn,L · Bn〉
〈Bn,N(Bn)〉

,

where S is the so-called stabilyzing factor and the exponent γ is usually defined as a
function of the degree of nonlinearity p (p = 3 for the HypNLS equation). The rule of
thumb prescribes the following formula γ = p

p−1
. The scalar product is defined in the L2

space. The inverse operator L−1 can be efficiently computed in Fourier space using the
Fast Fourier Transform (FFT) (see, for example, [22]), and spatial periodicity across the
2D computational box boundaries is implicitly imposed. The iterative process converges
for a large class of smooth initial guesses1. Convergence is attained when the L∞ norm

1In our computations we just took an initial localized bump in the center of the domain and the iterative

method turned it into a pattern.
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between two successive iterations is less than a prescribed tolerance ε (usually of the order
of machine precision). Additionally, the residual error Er in approximating the nonlinear
equation is checked by substituting in (2.4) the converged numerical solution. In the
present work, the convergence of the algorithm is checked numerically in the extended
floating point arithmetics using 30 significant digits [21].

For example, consider the domain Ω := [−ℓx/2, ℓx/2]× [−ℓy/2, ℓy/2] ⊂ R
2 to be a square

with the side length equal to 210 (Ω = [−105, 105]2). For ω = 0.012, the Petviashvili
method on a 1024 × 1024 Fourier grid yields the strictly periodic regular pattern shown
in Figure 1(a). The convergence is attained in N ∼ 80 iterations as clearly seen in Fig-
ure 1(b) and the associated error L∞ ∼ O(10−33), and the residual Er ∼ O(10−32). Note
that L∞ ∼ e−0.095N decays exponentially in agreement with the theoretical geometric
convergence rate [3]. For the sake of efficiency, the numerical solutions presented below
are computed on the same Fourier grid using standard double-precision arithmetics. It is
verified that residual errors are within the prescribed tolerance parameter ε ∼ 10−15 and
never exceed 10ε.
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Figure 1. (a) A bi-periodic wave pattern B(x, y), Ω = [−105, 105]2 and ω =
0.012, 1024 × 1024 Fourier modes. The box delimits the elementary

3× 3 discrete pattern identified to describe B by substitutions on the
two-letter alphabet {r, b} used to code red spots (negative values far
from zero), blue spots (positive values far from zero)respectively (b)

Convergence test of the Petviashvili scheme in multi-precision arith-
metics: (Solid line) L∞ norm between two successive iterations and
(dash line) exponential fit e−0.095N .
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Figure 2. A bi-periodic wave pattern B(x, y), Ω = [−30, 30]× [−15, 15] and ω =
0.18. B can be described by the 1× 4 discrete pattern E = t(r, b, r, b)

on the two-letter alphabet {r, b} (red spots code negative values far
from zero and blue spots refer to positive values far from zero).

Figure 3. A bi-periodic wave pattern B(x, y), Ω = [−30, 30]2 and ω = 0.18. The

box delimits the elementary 6× 10 discrete pattern of blue (b), red (r)
and white (w, denoting the values around zero) spots identified to
describe B by substitutions on the three-letter alphabet {r, b, w}. For

symbolic coding see caption of Figure 1.
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σ(b) σ(a)

σ(c) σ(d)

σ(b̄) σ(ā)

σ(ā) σ(b̄)

σ(d) σ(c)

σ(a) σ(b)

Figure 4. A bi-periodic wave pattern B(x, y), Ω = [−30, 30] × [−20, 20] and
ω = 0.18. The box delimits the elementary 32 × 22discrete pattern
of blue (b) red (r) and white (w) spots identified to describe B by
substitutions on the three-letter alphabet {r, b, w}. For symbolic coding

see caption of Figure 2.
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Figure 5. A bi-periodic wave pattern B(x, y), Ω = [−30, 30] × [−60, 60] and
ω = 0.18. The box delimits the elementary 32 × 66 discrete pattern
of blue (b) red (r) and white (w) spots identified to describe B by
substitutions on the three-letter alphabet {r, b, w}. For symbolic coding

see Figure 1.
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Figure 6. A bi-periodic wave pattern B(x, y), Ω = [−55
2 ,

55
2 ]× [−89

2 ,
89
2 ] and ω = 0.51.
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Figure 7. (Right) a bi-periodic wave pattern B(x, y), Ω = [−105, 105]2 and ω =
1.3295; (Left) zoom on the sub-region [−40,−10] × [30, 80].
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3. Symbolic coding

The theory of bi-dimensional words and tilings (see [6, 16]) can be exploited to describe
standing wave patterns of the HypNLS equation. The key tool in tiling theory is the
substitution operation that consists in replacing letters by group of letters and constructing
iteratively words on a finite alphabet. For example, the Fibonacci substitution σ(a) = ab
and σ(b) = a constructs a fixed point (limit of infinite substitutions) with a non-periodic
structure ([4, 37, 2]. This word constitutes a model for 1-D quasicrystals in physics (see
[47]) and a coding of a discrete line with irrational slope in discrete geometry (see [57]).

The method of substitutions empowers the construction of either non-periodic or periodic
words G as fixed points of the mapping G = σn(G) as n → +∞ (see [37]). On the one hand,
non-periodic infinite words can be constructed iteratively by the use of morphism properties.
In particular, a substitution σ applied to a word w = w1w2 · · ·wn is in fact the image of
the substitution applied to each letter of w, that is σ(w1w2 · · ·wn) = σ(w1)σ(w2) · · ·σ(wn),
where wi are letters of the alphabet. As an example, the first few iterations on the letter
a using the Fibonacci substitution are given by σ1(a) = σ(a) = ab, σ2(a) = σ(σ(a)) =
σ(ab) = σ(a)σ(b) = aba, σ3(a) = σ(σ2(a)) = σ(aba) = σ(a)σ(b)σ(a) = abaab, and so on
(see [4, 57]). Note that each word σn(a) is the beginning of the next word σn+1(a). Thus,
as n → +∞, a non-periodic fixed point is constructed, viz.

σ(F ) = F = abaababaabaababaababaabaababaabaababaababaabaababaababaabaababaaba · · · .

On the other hand, a periodic word can be constructed by means of the substitution
σ(a) = ab and σ(b) = ab by repetition of the pattern ab.. Indeed σ1(a) = σ(a) = ab,σ2(a) =
σ(σ(a)) = σ(ab) = σ(a)σ(b) = abab, σ3(a) = σ(σ2(a)) = σ(abab) = σ(a)σ(b)σ(a)σ(b) =
abababab, and so on. The fixed point is periodic and given by

σ(P ) = P = abababababababababababababababababababababababababababa · · · .

In order to code periodic spatial patterns of the HypNLS equation, one can exploit bi-
dimensional words (see [23, 6, 37]) and proper substitutions (see [4, 6, 23]). For example,
the bi-dimensional Thue–Morse substitution (see [2]) is defined by

σ(a) =

(

a b
b a

)

and σ(b) =

(

b a
a b

)

.

One can just iterate a finite number of substitutions, viz. σj(a) with j finite, and obtain
a finite world. For example, the first two iterations of the Thue-Morse substitution yield,
respectively, the two words

σ1(a) = σ(a) =

(

a b
b a

)

and

σ2(a) = σ

(

a b
b a

)

=

(

σ(a) σ(b)
σ(b) σ(a)

)

=









a b b a
b a a b
b a a b
a b b a
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In the limit of infinite iterations, an infinite word is obtained in the form of the non-
periodic fixed point

σ(M) = M =























a b b a b a · · ·
b a a b a b · · ·
b a a b a b · · ·
a b b a b a · · ·
b a a b a b · · ·
a b b a b a · · ·
...

...
...

...
...

...
. . .























Hereafter, a discrete description of several spatial patterns B(x, y) of the HypNLS equa-
tion obtained via the Petviashvili method is presented. Each continuous pattern is coded
on a finite alphabet using proper substitutions iterated on a discrete elementary pattern
of letters.

Consider the bi-periodic pattern B of the HypNLS equation shown in Figure 1. This
can be easily described by repetition of the elementary 3x3 discrete pattern delimited by
a box in the same Figure. To do so, coding with a three–letter alphabet is used since the
pattern is characterized by a discrete structure with three different elementary spots. The
letters r,b and w are used to code red spots (negative values far from zero), blue spots
(positive values far from zero) and white spots (values around zero) respectively.

As clearly seen in Figure 1, the three spots are arranged on a rectangular sub-region
of the Z

2 grid. Thus, the continuous periodic pattern B can be easily described by bi-
dimensional words constructed using the two simple substitutions

σ(r) =

(

r b
b r

)

and σ(b) =

(

r b
b r

)

.

By iterating the above substitutions yields the strictly periodic word

σ(R) = R =















r b r b · · ·
b r b r · · ·
r b r b · · ·
b r b r · · ·
...

...
...

...
. . .















which describes the continuous wave pattern of Figure 1.
Consider now the wave pattern solutions for B(x, y) obtained for ω = 0.18 on various

rectangular grid sizes. For Ω = [−30, 30]× [−15, 15], B can be described by a 1×4 discrete
pattern delimited by a box in Figure 2 and coded as E = t(r, b, r, b), where the superscript
t denotes matrix transposition. E can be decomposed as σ(e) = t(r, b) and the initial
pattern E is given by the substitution σ applied to E = t(e, e) that is:

σ(E) = t
(

σ(e), σ(e)
)

= t
(

r, b, r, b
)

.

For Ω = [−30, 30]× [−30, 30], the associated continuous pattern B is shown in Figure 3.
A box delimits the elementary 6× 10 discrete pattern F that can describe B by successive
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substitutions, viz.

F =

































b w b w b w
r w r w r w
b r b r b r
r b r b r b
w r w r w r
w b w b w b
w r w r w r
r b r b r b
b r b r b r
r w r w r w

































.

This discrete pattern can be decomposed as

σ(f) = t

(

w w r b r b r b r w
b r b r w w w r b r

)

.

As a result, the initial pattern F is given by the substitution σ applied to F = (f f f),
that is

σ(F ) =
(

σ(f) σ(f) σ(f)
)

=

































b w b w b w
r w r w r w
b r b r b r
r b r b r b
w r w r w r
w b w b w b
w r w r w r
r b r b r b
b r b r b r
r w r w r w

































.

For the larger domain Ω = [−30, 30] × [−20, 20], the associated standing wave pattern
B(x, y) is reported in Figure 4. An elementary 32 × 22 discrete pattern of blue (b), red
(r) and white (w) spots is identified and delimited by a box to describe B. This can be
obtained by four iterations of the following 6 substitutions on the three-letter alphabet
{r, b, w}, that is

σ(a) =









r w r w r w r w
w r w r w r w w
r w r w r w r w
w w w w w w w w









,

σ(ā) =









w r w r w r w w
r w r w r w r w
w r w r w r w w
w w w w w w w w









,

σ(b) =









w b w b w b w w
b w b w b w b w
w b w b w b w w
w w w w w w w w









,
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σ(b̄) =









b w b w b w b w
w b w b w b w w
b w b w b w b w
w w w w w w w w









,

σ(c) =





r w r w r w r w
w r w r w r w w
r w r w r w r w





σ(d) =





w b w b w b w w
b w b w b w b w
w b w b w b w w





As described above, this substitution is applied four times under toric constraints starting
from the finite 4× 6 pattern G given by

G =

















b a b a
c d c d
b̄ ā b̄ ā
ā b̄ ā b̄
d c d c
a b a b

















.

Here, the difference between σ(a) and σ(ā) resides in the interchange of the letters r and
w in the first 3 rows of the pattern except the last column, and similarly for σ(b) and
σ(b̄). This switching between components is exactly the typical dynamical property that
we expect for symbolic coding of patterns. For example, the first iteration σ(G) yields

σ(G) = σ

















b a b a
c d c d
b̄ ā b̄ ā
ā b̄ ā b̄
d c d c
a b a b

















=

















σ(b) σ(a) σ(b) σ(a)
σ(c) σ(d) σ(c) σ(d)
σ(b̄) σ(ā) σ(b̄) σ(ā)
σ(ā) σ(b̄) σ(ā) σ(b̄)
σ(d) σ(c) σ(d) σ(c)
σ(a) σ(b) σ(a) σ(b)

















.
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The whole discrete description of the continuous pattern B(x, y) follows after four iterations
as

σ(G) =



























































w b w b w b w w r w r w r w r w · · ·
b w b w b w b w w r w r w r w w · · ·
w b w b w b w w r w r w r w r w · · ·
w w w w w w w w w w w w w w w w · · ·
r w r w r w r w w b w b w b w w · · ·
w r w r w r w w b w b w b w b w · · ·
r w r w r w r w w b w b w b w w · · ·
b w b w b w b w w r w r w r w w · · ·
w b w b w b w w r w r w r w r w · · ·
b w b w b w b w w r w r w r w w · · ·
w w w w w w w w w w w w w w w w · · ·
w r w r w r w w b w b w b w b w · · ·
r w r w r w r w w b w b w b w w · · ·
w r w r w r w w b w b w b w b w · · ·
w w w w w w w w w w w w w w w w · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . .



























































For Ω = [−30, 30] × [−60, 60], the associated water pattern B can be described by the
elementary 32× 66 discrete pattern K delimited by a box and shown in Figure 5. In this
case, the symbolic description of K follows from the substitution K = σ(H), where σ is
defined as

σ(a) =









r w r w r w r w
w r w r w r w w
r w r w r w r w
w w w w w w w w









,

σ(ā) =









w r w r w r w w
r w r w r w r w
w r w r w r w w
w w w w w w w w









,

σ(b) =









w b w b w b w w
b w b w b w b w
w b w b w b w w
w w w w w w w w









,

σ(b̄) =









b w b w b w b w
w b w b w b w w
b w b w b w b w
w w w w w w w w









,

σ(c) =





r w r w r w r w
w r w r w r w w
r w r w r w r w
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σ(d) =





w b w b w b w w
b w b w b w b w
w b w b w b w w





and applied to the following 4× 12 pattern H under toric constraints, viz.

H =

(

G
G

)

= t









a d ā b̄ c b a d ā b̄ c b
b c b̄ ā d a b c b̄ ā d a
a d ā b̄ c d a d ā b̄ c b
b c b̄ ā d a b c b̄ ā d a









Note that H is made of two copies of the discrete structure G identified for the pattern
B(x, y) relative to the domain Ω = [−30, 30] × [−20, 20], see Figure 4. Thus, σ(H) is
exactly the substitution applied to two copies of G, viz. σ(H) = t

(

σ(G), σ(G)
)

. This
suggests that for a given value of ω the patterns associated to various domains Ω have in
common the same substitutions. These capture the structure of the discrete patterns and
the nature of the dynamical system.

Future research aims at finding a sequence of increasing domain sizes whose associated
discrete patterns share the same substitution. This leads to construct periodic orbits
and fixed points of the dynamics. For example, Figure 6 shows a patterns that may be
generated by substitutions of elementary cell patterns. Moreover, for given domain size, one
could explore which frequencies ω gives the same kind of substitutions and try to explain
this regularity by the arithmetic nature of ω. More precisely, suppose that for a given ω
one identifies two discrete patterns generated by repeated substitutions σk(g) and σℓ(g),
respectively, with k and ℓ as the number of repeations. Then, one may find a sequence of
increasing domain sizes (Ωi)i∈I and try to associate substitutive patterns of the form σi(g).
This could yield characteristic scales with invariance of patterns and could suggest that
the dynamics is given by a coding of iterated substitutions of the form (σi(g)))i∈I . A fixed
point G such that σ(G) = G could then exist (see [39, 37]). Furthermore, note that there
is a link between the complexity of the patterns and the decomposition in prime factors
of the domain Ω size. For example, the domain Ω = [−ℓ/2, ℓ/2]× [−ℓ/2, ℓ/2] with length
ℓ = 2× 3× 5× 7 = 210 is the product of the four first prime numbers and the associated
complex pattern can be seen in Figure 7. The apparent complexity of the solution may
be explained by a combinations of well chosen substitutions. One expects that the larger
domain Ω with length ℓ = 2×3×5×7×11 = 2310 leads to even more complicated pattern
solutions. Indeed, this decomposition in prime factors increases the number of divisors of
the pattern size and the complexity of patterns. To summarize, this part presents the first
step for a symbolic dynamic coding of patterns arising from non linear waves. We will use
in next works these substitutions in order to understand the complexity of such patterns.

4. Dynamics of pertubed standing waves

4.1. Pseudo-spectral scheme

A highly accurate Fourier-type pseudo-spectral method [54, 7] will be used to solve
the unsteady HypNLS equation (2.3) in order to investigate the dynamics of a perturbed
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standing wave pattern. To do so, equation (2.3) is recast in the following form:

At + iL · A = N(A), (4.1)

where the operators L and N are defined such as:

L := ∂xx − ∂yy, N(A) = −2i|A|2A.
With this setting, (4.1) is discretized by applying the 2-D Fourier transform in the spatial
variables (x, y). The nonlinear terms are computed in physical space, while spatial deriva-
tives are computed spectrally in Fourier space. The standard 3/2 rule is applied for anti-

aliasing [54, 12, 24]. The transformed variables will be denoted by Â(t,k) = F{A(t, x, y)},
with k = (kx, ky) being the Fourier transform parameter.

In order to improve the stability of the time discretization procedure, the linear part of
the operator is integrated exactly by a change of variables [38, 24] that yields

Ât = e(t−t0)L ·N
{

e−(t−t0)L · Â
}

, Â(t) := e(t−t0)L · Â(t), Â(t0) = Â(t0).

The exponential matrix L̂ is explicitly computed in Fourier space as

e(t−t0)L̂ = e−i(k2x−k2y)(t−t0).

Finally, the resulting system of ODEs is discretized in space by the Verner’s embedded
adaptive 9(8) Runge–Kutta scheme [56]. The step size is chosen adaptively using the so-
called H211b digital filter [49, 50] to meet the prescribed error tolerance, set as of the order
of machine precision.

4.2. Numerical results

Consider the bi-periodic pattern computed for Ω = [−30, 30]2 and ω = 0.30 and shown
in Figure 8. To simulate the dynamics the pseudo-spectral method described above is used
with 256 × 256 Fourier modes. The numerical solver independently confirmed that the
time-harmonic standing wave A(x, y, t) = B(x, y)e−iωt associated to the spatial pattern
B(x, y) of Figure 8 computed using the Petviashvili scheme is effectively a solution of
the original HypNLS equation (2.3). Then, another experiment was performed where the
initial condition for the solver was set as A(x, y, 0) = B(x, y) + w(x, y), where w(x, y) is
approximatively a 7% double-periodic perturbation with the wavelength four times smaller
than that of the unperturbed pattern B(x, y). The simulations were carried out up to the
dimensionless time T = 14.0. The energy (Hamiltonian) H and action A were conserved
with 12 digits accuracy during the whole simulation. The momentum M was preserved to
machine precision. On short time scales slight oscillations around the unperturbed solution
occur. However, on a much longer time scale a transition to another solution is observed,
which is quite similar in shape to the B(x, y), but slightly shifted in space. A few snapshots
taken from the dynamical simulation are depicted in Figure 9 (see also video [58]).

To visualize the dynamics, A is projected onto the subspace S = span
{

φ1, φ2, φ3

}

spanned by the first three leading Karhunen–Loève (KL) eigenmodes φj, j = 1, . . . , 3 (see,
for example [25]). These are estimated from the numerical simulations using the method of
snapshots (see [48, 45]) after the time average is removed. The associated trajectory γ(t)



Special solutions of the hyperbolic NLS equation 19 / 25

Figure 8. A bi-periodic wave pattern, Ω = [−30, 30]2 and ω = 0.30.

in S and the three KL modes are shown in Figure 9. The first two modes represent the
most energetic structures of the imposed perturbation, whereas the 3 rd mode arises due
to the nonlinear interaction between the unperturbed standing wave and the perturbation.
Note that γ lies approximately on a cylindrical manifold. The motion is circular on the
x1–x2 plane with oscillations in the vertical x3 axis. In physical space the dynamical wave
patterns smoothly vary between the 1 st and 2 nd KL mode in a periodic fashion while being
modulated by the 3 rd mode. A new dynamical state is reached, which is not a standing
wave.



L. Vuillon, D. Dutykh & F. Fedele 20 / 25

(a) t = 1.60 (b) t = 8.01

(c) t = 11.0 (d) t = 14.0

Figure 9. Snapshots taken from the dynamic simulation of the periodic pattern
represented in Figure 8.
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simulated dynamics of Figure 8 (b) first, (c) second and (d) third
KL mode.
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5. Conclusions

In this study a class of special solutions to the hyperbolic NLS equation (2.2) have been
investigated. In particular, bi-periodic standing waves are obtained numerically using the
iterative Petviashvili scheme [44, 41, 36]. Non-trivial wave patterns are revealed by varying
the computational domain Ω and the frequency ω of the standing wave. These are described
by means of symbolic dynamics and the language of substitutions. For given value of ω,
the patterns associated to different domains Ω have in common the same substitution rule
σ. The dynamics of a perturbed standing wave is also numerically investigated by means
a highly acccurate Fourier solver in the reduced state space S spanned by the first three
dominant KL eigenmodes. The trajectory in S lies approximately on a cylindrical manifold
and in physical space the wave pattern appears to vary both in space and time. The discrete
symbolic construction is the first step for developing a whole theory of description of
periodic patterns of the Hyperbolic NLS (HypNLS) equations. The theoretical explanation
of steady and unsteady wave patterns via coding remains a major challenge and also a
perspective opened by this study.
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land and LAMA, UMR 5127 CNRS, Université de Savoie, Campus Scientifique, 73376 Le

Bourget-du-Lac Cedex, France

E-mail address : Denys.Dutykh@ucd.ie

URL: http://www.denys-dutykh.com/

School of Civil and Environmental Engineering & School of Electrical and Computer

Engineering, Georgia Institute of Technology, Atlanta, USA

E-mail address : fedele@gatech.edu

URL: http://www.ce.gatech.edu/people/faculty/511/overview/


	Introduction
	The Mathematical Model
	Standing wave patterns

	Symbolic coding
	Dynamics of pertubed standing waves
	Pseudo-spectral scheme
	Numerical results

	Conclusions
	References

