First time to exit of a continuous It\^{o} process: general moment estimates and $L_1$-convergence rate for discrete time approximations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

First time to exit of a continuous It\^{o} process: general moment estimates and $L_1$-convergence rate for discrete time approximations

Résumé

We establish general moment estimates for the discrete and continuous exit times of a general It\^{o} process in terms of the distance to the boundary. These estimates serve as intermediate steps to obtain strong convergence results for the approximation of a continuous exit time by a discrete counterpart, computed on a grid. In particular, we prove that the discrete exit time of the Euler scheme of a diffusion converges in the $L_1$ norm with an order $1/2$ with respect to the mesh size.
Fichier principal
Vignette du fichier
BGG-final.pdf (298.95 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00844887 , version 1 (16-07-2013)
hal-00844887 , version 2 (09-09-2014)

Identifiants

Citer

Bruno Bouchard, Stefan Geiss, Emmanuel Gobet. First time to exit of a continuous It\^{o} process: general moment estimates and $L_1$-convergence rate for discrete time approximations. 2013. ⟨hal-00844887v1⟩
763 Consultations
405 Téléchargements

Altmetric

Partager

More