Model selection via worst-case criterion for nonlinear bounded-error estimation - Archive ouverte HAL
Article Dans Une Revue IEEE Instrumentation and Measurement Magazine Année : 2000

Model selection via worst-case criterion for nonlinear bounded-error estimation

Résumé

In this paper the problem of model selection for measurement purpose is studied. A new selection procedure in a deterministic framework is proposed. The problem of nonlinear bounded-error estimation is viewed as a set inversion procedure. As each candidate model structure leads to a specific set of admissible values of the measurement vector, the worts-case criterion is used to select the optimal model. The selection procedure is applied to a real measurement problem, grooves dimensioning using Remote Field Eddy Current (RFEC) inspection.
Fichier principal
Vignette du fichier
IEEEmodelSelect_LISA2000.pdf (1.07 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00844852 , version 1 (16-07-2013)

Identifiants

  • HAL Id : hal-00844852 , version 1

Citer

S. Brahim-Belhouari, Michel Kieffer, G. Fleury, Luc Jaulin, Eric Walter. Model selection via worst-case criterion for nonlinear bounded-error estimation. IEEE Instrumentation and Measurement Magazine, 2000, 49 (3), pp.653-658. ⟨hal-00844852⟩
205 Consultations
246 Téléchargements

Partager

More