Model selection via worts-case criterion for nonlinear bounded-error estimation - Archive ouverte HAL
Communication Dans Un Congrès Année : 1999

Model selection via worts-case criterion for nonlinear bounded-error estimation

Résumé

In this paper the problem of model selection for measurement purpose is studied. A new selcetion procedure in a deterministic framework is proposed. The problem of nonlinear bounded-error estimation is viewed as a set inversion procedure. As each candidate model structure leads to a specific set of admissible values of the measurement vector, the worts-case criterion is used to select the optimal model. The selection procedure is applied to a real measurement problem, grooves dimensioning using Remote Field Eddy Current (RFEC) inspection.
Fichier principal
Vignette du fichier
IEEEmodelSelect_LISA1999.pdf (1.87 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00844628 , version 1 (15-07-2013)

Identifiants

  • HAL Id : hal-00844628 , version 1

Citer

S. Brahim-Belhouari, Michel Kieffer, G. Fleury, Luc Jaulin, Eric Walter. Model selection via worts-case criterion for nonlinear bounded-error estimation. 16th IEEE Instrumentation and Measurement, May 1999, Venise, Italy. pp.1075-1080. ⟨hal-00844628⟩
326 Consultations
918 Téléchargements

Partager

More