A nonlocal two-phase Stefan problem - Archive ouverte HAL
Article Dans Une Revue Differential and integral equations Année : 2013

A nonlocal two-phase Stefan problem

Résumé

We study a nonlocal version of the two-phase Stefan problem, which models a phase transition problem between two distinct phases evolving to distinct heat equations. Mathematically speaking, this consists in deriving a theory for sign-changing solutions of the equation, ut = J ∗ v − v, v = Γ(u), where the monotone graph is given by Γ(s) = sign(s)(|s|−1)+ . We give general results of existence, uniqueness and comparison, in the spirit of [2]. Then we focus on the study of the asymptotic behaviour for sign-changing solutions, which present challenging difficulties due to the non-monotone evolution of each phase.
Fichier principal
Vignette du fichier
two_phase_stefan_problem_final_v4.pdf (363.27 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00841416 , version 1 (04-07-2013)

Identifiants

Citer

Emmanuel Chasseigne, Silvia Sastre-Gomez. A nonlocal two-phase Stefan problem. Differential and integral equations, 2013, 26, pp.1235-1434. ⟨hal-00841416⟩
183 Consultations
261 Téléchargements

Altmetric

Partager

More