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A NONLOCAL TWO PHASE STEFAN PROBLEM

EMMANUEL CHASSEIGNE† AND SILVIA SASTRE-GÓMEZ‡

Abstract. We study a nonlocal version of the two-phase Stefan problem,

which models a phase transition problem between two distinct phases evolving

to distinct heat equations. Mathematically speaking, this consists in deriving

a theory for sign-changing solutions of the equation, ut = J ∗ v − v, v = Γ(u),

where the monotone graph is given by Γ(s) = sign(s)(|s|−1)+. We give general

results of existence, uniqueness and comparison, in the spirit of [2]. Then we

focus on the study of the asymptotic behaviour for sign-changing solutions,

which present challenging difficulties due to the non-monotone evolution of

each phase.

1. Introduction

The aim of this paper is to study the following nonlocal version of the two-phase

Stefan problem in RN

(1)

{
ut = J ∗ v − v, where v = Γ(u),

u(·, 0) = f,

where J is a smooth nonnegative convolution kernel, u is the enthalpy and Γ(u) =

sign(u)
(
|u|−1

)
+

(see below more precise assumptions and explanations). We study

this nonlocal equation in the spirit of [2], but for sign-changing solutions, which

presents very challenging difficulties concerning the asymptotic behaviour.

The two-phase Stefan problem – In general, the Stefan problem is a non-

linear and moving boundary problem which aims to describe the temperature and

enthalpy distribution in a phase transition between several states. The history of

the problem goes back to Lamé and Clapeyron [7], and afterwards [10]. For the

local model can be seen e.g. the monographs [4] and [12] for the phenomenology

and modeling; [5], [8], [9] and [11] for the mathematical aspects of the model.
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The main model uses a local equation under the form ut = ∆v, v = Γ(u) but

recently, a nonlocal version of the one-phase Stefan problem was introduced in [2],

which is equivalent to (1) in the case of nonnegative solutions.

This new mathematical model turns out to be rather interesting from the physi-

cal point of view at an intermediate (mesoscopic) scale, since it explains for instance

the formation and evolution of mushy regions (regions which are in an intermedi-

ate state between water and ice). We are not going to enter into more details

here and refer the reader to [2] for more information about the model and more

bibliographical references.

Let us however mention some basic facts: the one-phase problem models for

instance the transition between ice and water: the “usual” heat equation (whether

local or nonlocal) governs the evolution in the water phase while the temperature

does not evolve in the ice phase, maintained at 0◦. The free boundary separating

water from ice evolves according to how the heat contained in water is used to break

the ice.

In the two-phase Stefan problem, the temperature can also evolve in the second

phase, modeled by a second heat equation with different parameters. In this model,

the temperature v = Γ(u) is the quantity which identifies the different phases: the

region {v > 0} is the first phase, {v < 0} represents the second phase and the

intermediate region, {v = 0} is where the transition occurs, containing what is

called a mushy region.

In all the paper, the function J in equation (1) is assumed to be continuous, non

negative, compactly supported, radially symmetric, with
∫
R J = 1 . We denote by

RJ the radius of the support of J : supp(J) = BRJ
, where BRJ

is the ball centered

in zero with radius RJ . The graph v = Γ(u), is defined generally as follows

(2) Γ(u) =


c1(u− e1), if u < e1

0, if e1 ≤ u ≤ e2

c2(u− e2), if u > e2.

with e1, e2, c1 and c2 real variables, that satisfy that e1 < 0 < e2 and c1, c2 >

0 (see Figure 1 below). After a simple change of units, we arrive at the graph

of equation (1): Γ(u) = sign(u) (|u| − 1)+ , where we denote by s+ the quantity

max(s, 0), as is standard and sign(s) equals −1, +1 or 0 according to s < 0, s > 0,

or s = 0.

Asymptotic Behaviour – In [2], the authors proved several qualitative properties

for the nonlocal one-phase Stefan problem. Most of them are also valid in the two-

phase problem, but the asymptotic behaviour is far from being fully understood

when solutions change sign.
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Figure 1. A typical graph Γ

Actually, up to our knowledge, there are no results for the asymptotic behaviour

of sign-changing solutions even in the local two-phase Stefan problem. The aim of

this paper is to try to provide at least some partial answers.

Going back to the one-phase Stefan problem, it can be shown that there exists a

projection operator P which maps any nonnegative initial data f to Pf , which is the

unique solution to a non-local obstacle problem at level one (see [2, p. 23]). Then

the asymptotic behaviour of the solution u starting with f is given by Pf . Actually,

this can be done exactly this way if, for example, f is compactly supported. Then

P can be extended to all L1 (the space of integrable functions), using a standard

closure theory of monotone operators.

A key argument in the one-phase Stefan problem is the retention property, which

means that once the solution becomes positive at some point, it remains positive

for greater times. In this case, the interfaces are monotone: the positivity sets

(of u and v) grow. With this particular property, the Baiocchi transform gives all

necessary and sufficient information to derive the asymptotic obstacle problem (for

information about the Baiocchi transform, see [1]).

In the case of the two-phase Stefan problem, the situation is far more delicate to

handle, due to the fact that sign-changing solutions do not enjoy a similar retention

property in general: a solution can be positive, but later on it can become negative

due to the presence of a high negative mass nearby. This implies that the Baiocchi

transform is not a relevant variable anymore in general and many arguments fail.

However, we shall study here some situations in which we can still apply, to

some extent, the techniques using the Baiocchi transform and get the asymptotic

behaviour for sign-changing solutions.

Main Results – we first briefly derive a complete theory of existence, uniqueness

and comparison for the nonlocal two-phase Stefan problem, which is based essen-

tially on the same ideas in [2]. Then we concentrate on the asymptotic behaviour
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of sign-changing solutions. Though we do not provide a complete picture of the

question which appears to be rather difficult, we give some sufficient conditions

which guarantee the identification of the limit.

Namely, we first give in Section 3 a criterium which ensures that the positive

and negative phases will never interact. This implies that the asymptotic behaviour

is given separately by each phase, considered as solutions of the one-phase Stefan

problem.

Then we study the case when some interaction between the phases can occur,

but only in the mushy zone, {|u| < 1}. In this case we prove that the asymptotic

behaviour can be described by a bi-obstacle problem, the solution being cut at

levels −1 and +1. We prove that this obstacle problem has a unique solution in

a suitable class, and then we extend the operator which maps the initial data to

the asymptotic limit to more general data by a standard approximation procedure.

Notice that for the local model, such a result would be rather trivial since the mushy

regions do not evolve. However, here those regions do evolve due to the nonlocal

character of the equation.

Finally, we give an explicit example when the enthalpy becomes nonnegative in

finite time even if the initial data is not, so that the asymptotic behaviour is driven

by the one-phase Stefan regime.

Notations – Throughout the paper, we use the following notation: C(RN ;R), or

in shorter form C(RN ) is the space of continuous functions from RN with values in

R. Other spaces we consider:

• BC
(
RN
)

= {ϕ ∈ C
(
RN
)

: ϕ bounded in RN};
• Cc

(
RN
)

= {ϕ ∈ C
(
RN
)

: ϕ compactly supported };
• C∞c

(
RN
)

= {ϕ ∈ C∞
(
RN
)

: ϕ compactly supported };
• C0

(
RN
)

= {ϕ ∈ C
(
RN
)

: ϕ→ 0 as |x| → ∞};
• L1(RN ) = {ϕ : RN → R ,measurable and integrable in RN};
• C

(
[0,∞); L1

(
RN
))

is the space of functions t 7→ u(t) wich are continuous

in time, with values in L1(RN ) for any t ≥ 0;

• L1
(
[0, T ]; L1

(
RN
))

is the space of functions t 7→ u(t) wich are integrable

in time over [0, T ], with values in L1(RN ) for any t ≥ 0.

Recall that throughout the paper, J is nonnegative, radially symetric, compactly

supported with
∫
J = 1 and supp(J) = BRJ

. Finally, we denote by s+ = max(s, 0)

and s− = max(−s, 0).
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2. Basic theory of the model

In this section we will develop the basic theory for the solution of the two-

phase Stefan problem. Some results are already contained in [2] after some obvious

adaptation. This is due to the fact that for the one-phase Stefan model, Γ(u) =

(u−1)+ while here, we deal with a symetric function Γ(u) = sign(u)(u−1)+ which

is very close to the first one.

However, for the sake of completeness, we shall rewrite the proof when the adap-

tation may not be so straightforward, and give the precise reference otherwise.

2.1. L1 theory. We start with the theory for integrable initial data. In this case

the solution is regarded as a continuous curve in L1
(
RN
)
.

Definition 1. Let f ∈ L1
(
RN
)
. An L1-solution of (1) is a function u in C

(
[0,∞); L1

(
RN
))

such that (1) holds in the sense of distributions, or equivalently, if for every t > 0,

u(t) ∈ L1
(
RN
)

and

(3) u(t) = f +

∫ t

0

(J ∗ Γ(u)(s)− Γ(u)(s)) ds, a.e.

Remark 2.1. If u is an L1-solution, then u ∈ L1([0, T ]; L1(RN)). for all T > 0.

Hence, (1) holds, not only in the sense of distributions, but also a.e., and u is said

to be a strong solution. Moreover, since Γ(u) ∈ C
(
[0,∞); L1

(
RN
))

, we also have

u ∈ C1
(
[0,∞); L1

(
RN
))

, and the equation holds a.e. in x for all t ≥ 0.

Theorem 2.2. For any f ∈ L1
(
RN
)
, there exists a unique L1-solution of (1).

Proof. Let Bt0 be the Banach space consisting of the functions u ∈ C
(
[0, t0]; L1

(
RN
))

endowed with the norm,

‖|u‖| = max
0≤t≤t0

‖u(t)‖L1(RN ).

For any given f ∈ L1(RN ), we define the operator Tf : Bt0 → Bt0 through

(Tfu) (t) = f +

∫ t

0

(J ∗ Γ(u)(s)− Γ(u)(s)) ds.

Since Γ(u) is Lipschitz continuous, we have the estimate

‖|Tfu− Tfv‖| ≤
∫ t0

0

∫
RN

(
J ∗

∣∣Γ(u)− Γ(v)
∣∣+ |Γ(u)− Γ(v)|

)
dxds

≤ 2

∫ t0

0

∫
RN

∣∣u− v∣∣ dxds ≤ 2t0‖|u− v‖| .

Hence if t0 < 1/2, the operator Tf turns out to be contractive.

Existence and uniqueness in the time interval [0, t0] follow by using Banach’s

fixed point Theorem. The length of the existence and uniqueness time interval
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does not depend on the initial data, so, we can iterate the argument to extend the

result to all positive times by a standard procedure, and we end up with a solution

in C
(
[0,∞); L1

(
RN
))

. �

Conservation of energy of the L1-solutions.

Theorem 2.3. Let f ∈ L1
(
RN
)
. The L1-solution u to (1) satisfies∫

RN

u(t) =

∫
RN

f, for every t > 0.

Proof. Since u(t) ∈ L1
(
RN
)

for any t ≥ 0, we integrate equation (3) in space:∫
RN

u(t) =

∫
RN

f +

∫ t

0

(∫
RN

J ∗ u−
∫
RN

u

)
ds .

By Fubini’s Theorem,
∫
J ∗ u =

∫
J ·
∫
u =

∫
u (where the integrals are taken over

all RN ), which yields the result. �

L1-contraction property for L1-solutions.

In order to obtain it, we need first to approximate the graph Γ(s) by a sequence

of strictly monotone Γn(s) such that:

(i) there is a constant L independent of n such that |Γn(s)−Γn(t)| ≤ L|s− t|,
for all n ∈ N;

(ii) for all n ∈ N, Γn(0) = 0 and Γn is strictly increasing on (−∞,∞);

(iii) |Γn(s)| ≤ s, for all n ∈ N and s ≥ 0;

(iv) Γn → Γ as n→∞ uniformly in (−∞,∞).

Take for instance

Γn(s) =


(s+ 1), for s < −n−1

n
s

n+ 1
, for −n−1

n ≤ s ≤ n+1
n

(s− 1), for s > n+1
n .

Since Γn is Lipschitz, for any f ∈ L1
(
RN
)

and any n ∈ N there exists a unique

L1-solution un ∈ C
(
[0,∞); L1

(
RN
))

of the approximate problem

(4) ∂tun = J ∗ Γn(un)− Γn(un)

with initial data un(0) = f . The proof is just like the one of Theorem 2.2. Moreover,

Γ(un) ∈ C
(
[0,∞); L1

(
RN
))

, and, hence, un ∈ C1([0,∞); L1
(
RN
)
). Conservation

of energy also holds, the calculations are the same as for L1-solutions above.

Now we state the L1-contraction property for the approximate problem:
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Lemma 2.4. Let un,1 and un,2 be two L1-solutions of (4) with initial data f1, f2 ∈
L1
(
RN
)
. Then,

(5) ‖(un,1 − un,2)(t)‖L1(RN ) ≤ ‖f1 − f2‖L1(RN ), ∀t ≥ 0.

Proof. The proof is done in [2, Lem 2.4]: we begin by proving a contraction property

for the positive part (un,1 − un,2)+. To do so, we subtract the equations for un,1

and un,2 and multiply by 1{un,1>un,2}. Since un,1−un,2 ∈ C1([0,∞); L1(RN )), then

∂t(un,1 − un,2)1{un,1>un,2} = ∂t(un,1 − un,2)+.

On the other hand, since 0 ≤ 1{un,1>un,2} ≤ 1, we have

J ∗ (Γn(un,1)− Γn(un,2))1{un,1>un,2} ≤ J ∗ (Γn(un,1)− Γn(un,2))+.

Finally, since Γn is strictly monotone, 1{un,1>un,2} = 1{Γn(un,1)>Γn(un,2)}. Thus,

(Γn(un,1)− Γn(un,2))1{un,1>un,2} = (Γn(un,1)− Γn(un,2))+.

We end up with

∂t(un,1 − un,2)+ ≤ J ∗ (Γn(un,1)− Γn(un,2))+ − (Γn(un,1)− Γn(un,2))+.

Integrating in space, and using Fubini’s Theorem, which can be applied, since

(Γn(un,1(t))− Γn(un,2(t)))+ ∈ L1(RN ), we get

∂t

∫
RN

(un,1 − un,2)+(t) ≤ 0 ,

which implies ∫
RN

(un,1 − un,2)+ dx ≤
∫
RN

(f1 − f2)+ dx .

Then, a similar computation gives the contraction for the negative parts, so that

the L1-contraction holds. �

Then we deduce the L1-contraction property for the original problem after pass-

ing to the limit:

Corollary 2.5. Let u1 and u2 be two L1-solutions of (1) with initial data f1, f2 ∈
L1
(
RN
)
. Then for every t ≥ 0,

(6) ‖(u1 − u2)(t)‖L1(RN ) ≤ ‖f1 − f2‖L1(RN ) ,

and the same result holds for the positive/negative parts of (u1 − u2).

Proof. Passing to the limit in the approximated problems requires some compact-

ness argument which is obtained through the Fréchet-Kolmogorov criterium. The

details are in [2, Cor. 2.5], and do not depend on the specific form of the function

Γ(·) so we skip the proof. �
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The following Lemma shows that the positive and negative parts of Γ(u) are

subcaloric:

Lemma 2.6. Let f ∈ L1
(
RN
)

and u the corresponding L1-solution. Then the

functions
(
Γ(u)

)
− ,

(
Γ(u)

)
+

and |Γ(u)| all satisfy the inequality:

χt ≤ J ∗ χ− χ a.e. in RN × (0,∞) .

Proof. We do the computation for χ = |Γ(u)|, with the proof being the same for

the other functions. Since u ∈ C1([0,∞); L1
(
RN
)
), we have,

|Γ(u)|t =
(
(|u| − 1)+

)
t

= sign(u)ut

= sign(u) J ∗ Γ(u)− sign(u)Γ(u) a.e.

On the set {|u| ≤ 1} we have |Γ(u)| = |Γ(u)|t= 0 while 0 ≤ J ∗ |Γ(u)|, so that the

following inequality necessarily holds:

|Γ(u)|t ≤ J ∗ |Γ(u)| − |Γ(u)| .

On the set {|u| > 1}, using that | sign(u)| = 1 we get also

|Γ(u)|t = sign(u)J ∗ Γ(u)− sign(u)Γ(u)

≤ J ∗ |Γ(u)| − |Γ(u)| .

Hence in any case, we obtain the result. �

This property allows to estimate the size of the solution in terms of the L∞-norm

of the initial data.

Lemma 2.7. Let f ∈ L1
(
RN
)
∩L∞

(
RN
)
. Then the L1- solution u of (1) satisfies

‖u(t)‖L∞(RN ) ≤ ‖f‖L∞(RN ) for any t > 0. Moreover,

lim sup
t→∞

u(t) ≤ 1 and lim inf
t→∞

u(t) ≥ −1 a.e. in RN .

Proof. The proof follows the same arguments as in [2, Lem 2.7]: first, the result

is obvious if ‖f‖L∞(RN ) ≤ 1, since in this case u(t) = f for any t > 0. So let us

assume that ‖f‖L∞(RN ) > 1. Since χ = |Γ(u)| is subcaloric (by Lemma 2.6), we

may compare it with the solution V of the following problem:

Vt = J ∗ V − V, V (0) = |Γ(f)| ∈ L1(RN ) ∩ L∞(RN ).

We first use the comparison principle in L∞ (see [3, Prop. 3.1]) with constants

(which are solutions): 0 ≤ V (t) ≤ ‖V (0)‖∞ = ‖Γ(f)‖∞. Now, using again the

comparison principle for bounded sub/super solutions, we obtain

0 ≤ ‖χ(t)‖L∞(RN ) ≤ ‖V (t)‖L∞(RN ) ≤ ‖Γ(f)‖L∞(RN ) = ‖f‖L∞(RN ) − 1.
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Therefore, ‖u(t)‖L∞(RN ) ≤ 1 + ‖χ(t)‖L∞(RN ) ≤ ‖f‖L∞(RN ). Moreover, using the

results from [6], we obtain that V , and hence the solution v, goes to zero asymptoti-

cally like ct−N/2, so that Γ(u)→ 0 almost everywhere, which implies the result. �

2.2. BC theory. We now develop a theory in the class BC
(
RN
)

of continuous and

bounded functions whenever the initial data f belongs to that class.

Definition 2. Let f ∈ BC
(
RN
)
. The function u is a BC-solution of (1) if u ∈

BC
(
RN × [0, T ]

)
for all T ∈ (0,∞) and

u(x, t) = f(x) +

∫ t

0

(J ∗ Γ(u)(x, s)− Γ(u)(x, s)) ds,

for all x ∈ RN and t ∈ [0,∞).

In particular, a BC-solution u is continuous in [0,∞) × RN and ut is also con-

tinuous in (0,∞) × RN . Hence equation (1) is satisfied for all x and t, and u is a

classical solution.

Theorem 2.8. For any f ∈ BC
(
RN
)

there exists a unique BC-solution of (1).

Proof. The proof is obtained through a fixed-point argument exactly as for L1-

solutions, except that we consider the operator Tf as acting from BC([0, t0]×RN )

into BC([0, t0]×RN ). The estimates are done using the sup norm in space and time

instead of the sup of the L1-norm but the result is the same: if t0 is small enough,

then we have a contractive operator which allows to construct a unique solution

on [0, t0]. The we iterate the process to get a bounded and continuous solution on

[0, T ]× RN for any T > 0. �

Notice that BC-solutions depend continuously on the initial data, on any finite time

interval:

Lemma 2.9. Let u1 and u2 be the BC-solutions with initial data respectively

f1, f2 ∈ BC
(
RN
)
. Then, for all T ∈ (0,∞) there exists a constant C = C(T )

such that

max
x∈RN

|u1 − u2|(x, t) ≤ C(T ) max
x∈RN

|f1 − f2|(x), t ∈ [0, T ].

Proof. See [2, Lem 2.10]. �

2.3. Free boundaries. In the sequel, unless we say explicitly something different,

we will be dealing with L1-solutions. Since the functions we are handling are in

general not continuous in the space variable, their support has to be considered in

the distributional sense. To be precise, for any locally integrable and nonnegative

function g in RN , we can consider the distribution Tg associated to the function g.

Then the distributional support of g, suppD′(g) is defined as the support of Tg:
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suppD′(g) := RN \O, where O ⊂ RN is the biggest open set such that Tg| O = 0.

In the case of nonnegative functions g, this means that x ∈ suppD′(g) if and only if

∀ϕ ∈ C∞c (RN ), ϕ ≥ 0 and ϕ(x) > 0, happens that

∫
RN

g(y)ϕ(y)dy > 0.

If g is continuous, then the support of g is nothing but the usual closure of the

positivity set, suppD′(g) = {g > 0}.

We first prove that the solution does not move far away from the support of

Γ(u).

Lemma 2.10. Let f ∈ L1
(
RN
)
. Then, suppD′(ut(t)) ⊂ suppD′(Γ(u)(t)) + BRJ

for any t > 0.

Proof. Recall first that the equation holds down to t = 0 so that we may consider

here t ≥ 0 (and not only t > 0). Let ϕ ∈ C∞c (Ac), where A = suppD′(Γ(u)(t)) +

BRJ
. Notice that the support of J ∗Γ(u) (which is a continuous function) lies inside

A, so that ∫
RN

(J ∗ Γ(u))ϕ = 0.

Similarly, the supports of Γ(u) and ϕ do not intersect, so that∫
RN

utϕ =

∫
RN

(J ∗ Γ(u))ϕ−
∫
RN

Γ(u)ϕ = 0,

which means that the support of ut is contained in A. �

The following Theorem gives a control of the support of the solution u(t) and

the corresponding temperature Γ(u)(t).

Theorem 2.11. Let f ∈ L1(RN ) be compactly supported. Then, for any t > 0, the

solution u(t) and the corresponding temperature Γ(u)(t) are compactly supported.

Proof. Estimate of the support of Γ(u). Since |Γ(u)| is subcaloric, we have

that ‖Γ(u)‖L1(Ω) ≤ ‖Γ(f)‖L1(Ω), then

(J ∗ Γ(u))(x, t) ≤ ‖J‖L∞(RN )‖Γ(u)‖L1(RN ) ≤ ‖J‖L∞(RN )‖Γ(f)‖L1(RN ).

We denote c0 = ‖J‖L∞(RN )‖Γ(f)‖L1(RN ). Multiplying (3) by a nonnegative test

function ϕ ∈ C∞c ((suppD′ f)c) and integrating in space and time we have∫
RN

|u(t)|ϕ ≤
∫ t

0

∫
RN

(J ∗ Γ(u))ϕ ≤ c0t
∫
RN

ϕ.

Taking t0 = 1/c0, we get

∫
RN

(|u(t)| − 1)ϕ ≤ 0 for all t ∈ [0, t0]. Using an ap-

proximation ϕχn where χn → sign+(|u| − 1), we deduce that

∫
RN

|Γ(u)|ϕ ≤ 0, so
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that

(7) supp
D′

(Γ(u)(t)) ⊂ supp
D′

(f), for all t ∈ [0, t0].

Estimate of the support of u. Thanks to Lemma 2.10 we know that suppD′(ut(t)) ⊂
suppD′(Γ(u)(t)) + BRJ

⊂ suppD′(f) + BRJ
, for all t ∈ [0, t0]. This means that

for any ϕ ∈ C∞c ((suppD′(f) +BRJ
)c), we have,∫

RN

uϕ =

∫ t

0

∫
RN

utϕ = 0, for all t ∈ [0, t0]

that is,

(8) supp
D′

(u(t)) ⊂ supp
D′

(f) +BRJ
, for all t ∈ [0, t0].

Iteration. Consider now the initial data u0 = u(t0), whose support satisfies that,

supp
D′

(u(t0)) ⊂ supp
D′

(f) +BRJ
,

then, thanks to (7) and (8),

supp
D′

(u(t)) ⊂ supp
D′

(f) + 2BRJ
, for all t ∈ [0, 2 t0].

Iterating this process we arrive to,

supp
D′

(Γ(u)(t)) ⊂ supp
D′

(f) + nBRJ
, with n = bt/t0c,

and

supp
D′

(u(t)) ⊂ supp
D′

(f) + nBRJ
, with n = bt/t0c+ 1,

where bxc is the integer part of x. �

The last results have counterparts for BC-solutions:

Theorem 2.12. Let f ∈ BC(RN ), and let u be the corresponding BC-solution.

Then, noting v = Γ(u) we have:

(i) ut(x, t) = 0 for any x /∈ (supp(v(·, t)) +BRJ
), t ≥ 0.

(ii) If sup|x|≥R |f(x)| < 1 for some R > 0, then v(·, t) is compactly supported for

all t > 0. If moreover f ∈ Cc(RN ), then u(·, t) is also compactly supported

for all t > 0.

Proof. (i) The proof is similar (though even easier, since the supports are under-

stood in the classical sense) to the one for L1-solutions.

(ii) Since χ = |Γ(u)| is subcaloric, we get∣∣∣(J ∗ Γ(u)
)
(x, t)

∣∣∣ ≤ ‖J‖L1(RN )‖Γ(u)(t)‖L∞(RN ) ≤ ‖Γ(f)‖L∞(RN ).
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This estimate comes from comparison in L∞ with constants, exactly as in Lemma 2.7

Therefore, from the integral equation, (3) for |x| ≥ R we have

(9)


u(x, t) ≤ f(x) + t‖Γ(f)‖L∞(RN ) ≤ sup

|x|≥R
|f(x)|+ t‖Γ(f)‖L∞(RN ) ,

u(x, t) ≥ f(x)− t‖Γ(f)‖L∞(RN ) ≥ − sup
|x|≥R

|f(x)| − t‖Γ(f)‖L∞(RN ) .

Thus, for all |x| ≥ R and t ≤ (1− sup|x|≥R |f(x)|)/(2‖Γ(f)‖L∞(RN )) we have −1 <

u(x, t) < 1. Hence, for such x, t, we have v(x, t) = 0. Then, by (i), u(x, t) = f(x)

for all |x| ≥ R + RJ and t = (1 − sup|x|≥R |f(x)|)/(2‖Γ(f)‖L∞(RN )). We finally

proceed by iteration to get the result for all times. �

2.4. L1-solutions that are continuous. As a corollary of the control of the

supports, we will prove that if the initial data is in L1
(
RN
)
∩ C0(RN ), with

C0(RN ) = {ϕ ∈ C(RN ) : ϕ → 0 as |x| → ∞}, then the L1-solution is in fact

continuous. We start by considering the case where f is continuous and compactly

supported, i.e. in Cc(RN ).

Lemma 2.13. Let f ∈ L1
(
RN
)
∩ Cc(RN ). Then the corresponding L1-solution is

continuous in [0,∞)× RN .

Proof. Since a BC-solution with a continuous and compactly supported initial data

remains compactly supported in space for all times (see Theorem 2.12), it is also

integrable in space for all times. Moreover, u ∈ C([0, T ];L1(RN )). Hence, by

uniqueness it coincides with the L1-solution with the same initial data. In other

terms, the L1-solution is continuous. �

We now turn to the general case.

Proposition 2.14. Let f ∈ L1
(
RN
)
∩C0(RN ). Then the corresponding L1-solution

is continuous in [0,∞)× RN .

Proof. Let fn be a sequence of continuous and compactly supported functions such

that

‖fn − f‖L∞(RN ) <
1

n
, ‖fn − f‖L1(RN ) <

1

n
.

Let u1
n, u

1 be the L1-solutions with initial data respectively fn and f , and ucn, u
c

the corresponding BC-solutions. We know by Lemma 2.13 that u1
n = ucn. Then,

using the L1-contraction property for L1-solutions, we have that

‖u1
n − u1‖L1(RN×[0,T ]) → 0

for any T ∈ [0,∞). Moreover, by Lemma 2.9, ‖u1
n−uc‖L∞([0,T ],L∞(RN )) → 0. Hence

we have in the limit u1 = uc which proves the result. �
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3. First results concerning the asymptotic behaviour

In the following three sections we study the asymptotic behaviour of the solutions

of the two-phase Stefan problem, with different sign-changing initial data chosen in

such a way that the solutions, u(t), satisfy either:

(i) the positive and negative part not interact, in any time t > 0;

(ii) the positive and negative temperature v = Γ(u) do not interact, in any

time t > 0;

(iii) the positive and negative part of u interact but the solution is driven by

the one-phase Stefan regime after some time.

In order to describe the asymptotic behaviour, we write the initial data as

f = f+ − f−,

separating the positive and negative parts where we recall the notations f+ =

max(f, 0) and f− = max(−f, 0).

Let us first introduce the following solutions: the solution U+, corresponding to

the initial data U+(0) = f+ and the solution U−, corresponding to the initial data

U−(0) = f− .

Lemma 3.1. The functions U+ and U− are solutions of the one-phase Stefan

problem:

∂tu = J ∗ (u− 1)+ − (u− 1)+ .

Proof. By comparison in L1 for the two-phase Stefan problem, we know that U+ and

U− are nonnegative because their respective initial data are nonnegative. Hence,

for any (x, t) we have in fact Γ(U+(x, t)) = (U(x, t) − 1)+. Thus, the equation for

U+ reduces to the one-phase Stefan problem. The same happens for U−. �

Remark 3.2. Since U+ is a solution of the one-phase Stefan problem, the supports

of U+ and Γ (U+) are nondecreasing

(10)
suppD′(U+(s)) ⊂ suppD′(U+(t)), 0 ≤ s ≤ t
suppD′(Γ (U+) (s)) ⊂ suppD′(Γ (U+) (t)), 0 ≤ s ≤ t.

We denote this property as retention. It is satisfied also for U− and Γ (U−).

Using the results concerning the asymptotic behaviour studied in [2], we know

that in particular if f satisfies the hypothesis of [2, Lem. 3.9.], U+ and U− have

limits as t → ∞ which are obtained by means of the projection operator P. We

recall that this operator maps any nonnegative initial data f to Pf , which is the

unique solution to a non-local obstacle problem at level one (see [2, p. 23]). For

U+, the limit is Pf+ and for U−, the limit is Pf−. Now the link with our problem

is the following:
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Lemma 3.3. For any t > 0, −U−(t) ≤ −u−(t) ≤ u(t) ≤ u+(t) ≤ U+(t) .

Proof. This result follows from a simple comparison result in L1: since initially we

have U+(0) = f+ ≥ u(0), it is clear that for any t > 0, U+(t) ≥ u(t). On the other

hand, since U+(0) = f+ ≥ 0, we have also for any t > 0, U+(t) ≥ 0. Hence for any

t > 0, U+(t) ≥ u+(t).

The other inequalities are obtained the same way. �

This comparison allows us to prove that the asymptotic limit is well-defined:

Proposition 3.4. Let us assume that f ∈ L1(RN) if N ≥ 3, for low dimensions, if

N = 1 or N = 2, J is non increasing in the radial variable, and f+ ≤ g1, f− ≤ g2

for some g1, g2 ∈ L1
(
RN
)
∩ C0(RN ), radial and strictly decreasing in the radial

variable. Then the following limit is defined in L1(RN ):

u∞(x) := lim
t→∞

u(x, t) .

Proof. Integrating the equation (1) in time we get

u(t) = f +

∫ t

0

J ∗ Γ(u)(s) ds−
∫ t

0

Γ(u)(s) ds .

Then we recall that under the hypotheses of this proposition, the integrals∫ t

0

(U+(s)− 1)+ ds and

∫ t

0

(U−(s)− 1)+ ds

converge in L1 as t→∞ (see [2, Cor. 3.10, 3.11]). Using the estimate

|Γ(u)| ≤ max
(
(U+ − 1)+ ; (U− − 1)+

)
,

we deduce that the right-hand side of the integrated equation has a limit as t→∞.

Hence we deduce that u(t) has a limit in L1(RN ) which can be written as:

lim
t→∞

u(t) = f +

∫ ∞
0

J ∗ Γ(u)(s) ds−
∫ ∞

0

Γ(u)(s) ds := u∞(x) .

�

The question is now to identify this limit u∞ and we begin with a simple case

when the positive and negative parts never interact:

Lemma 3.5. Let us assume that J and f satisfy the hypothesis of Proposition 3.4,

and that

dist
(

supp(Pf+), supp(Pf−)
)
≥ r > 0 .

Then for any t > 0, dist
(

supp(u−(t)), supp(u+(t))
)
≥ r .
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Proof. By the retention property (10) for U+ and U−, we first know that for any

t > 0, dist
(

supp(U+(t)), supp(U−(t))
)
≥ r . Then, since 0 ≤ u+(t) ≤ U+(t), the

support of u+(t) is contained inside the one of U+(t). The same holds for u−(t) and

U−(t) so that finally, the supports of u−(t) and u+(t) are necessarily at distance at

least r. �

Theorem 3.6. Let us assume that J and f satisfy the hypothesis of Proposition

3.4 and that

dist
(

supp(Pf+), supp(Pf−)
)
> 2RJ .

Then the solution with initial data f is given by u(t) = U+(t) − U−(t), and the

asymptotic behaviour is given by

u∞(x) = Pf+(x)− Pf−(x) .

Proof. Let us define U := U+ − U−. Since the supports of U+(t) and U−(t) are

always at distance greater that 2RJ , we can write U(t) = U+(t)−U−(t). Moreover,

the convolution J ∗ Γ(U(t)) is either equal to J ∗ Γ(U+(t)), or to −J ∗ Γ(U−(t)),

and those last convolutions have disjoint supports. Hence we can also write

J ∗ Γ(U(t)) = J ∗ Γ(U+(t))− J ∗ Γ(U−(t)) .

This implies that U is actually a solution of the equation:

∂tU = ∂tU+ − ∂tU−

= J ∗ Γ(U+(t))− Γ(U+(t))− J ∗ Γ(U−(t)) + Γ(U−(t))

= J ∗ Γ(U(t))− Γ(U(t)) .

But since U(0) = f+ − f− = f , we conclude by uniqueness in L1 that u ≡ U is the

solution we are looking for. �

4. Asymptotic behaviour when the positive and the negative part of

the temperature do not interact

The aim of this section is to identify the limit u∞ (limit of the solution u when

time goes to infinity) in the case when the positive and negative part of the tem-

perature, Γ(u), never interact, this is,

(11) dist

(
supp
D′

(
Γ(Pf+)

)
, supp
D′

(Γ
(
Pf−)

))
≥ RJ .

We know that there exists the retention property for U+ and U−, i.e., the sup-

ports of U+ and U− are nondecreasing (which holds since these are solutions of the

one-phase Stefan problem). Then we can use the same arguments that have been

used in [2], with the Baiocchi transform, to describe the asymptotic behaviour of

the solution to (1). For more information about the Baiocchi transform, (see [1]).



16 EMMANUEL CHASSEIGNE† AND SILVIA SASTRE-GÓMEZ‡

On the other hand, we can not say that the solution is u(t) = U+(t) − U−(t),

like in the example we have studied in the previous section, because the supports

of U+ and U− have an intersection not empty.

4.1. Formulation in terms of the Baiocchi variable. Our next aim is to de-

scribe the large time behavior of the solutions of the two-phase Stefan problem

satisfying hypothesis (11). We want to make a formulation of the Stefan problem

as a parabolic nonlocal biobstacle problem. To identify the asymptotic limit for u,

we define the Baiocchi variable, like in [2],

w(t) =

∫ t

0

Γ(u)(s) ds.

The enthalpy and the temperature can be recovered from w through the formulas

(12) u = f + J ∗ w − w, Γ(u) = wt,

where the time derivative has to be understood in the sense of distributions.

Lemma 4.1. Under assumption (11), the function Γ(u) satisfies the following re-

tention property: for any 0 < s < t,

(13) supp
D′

(
Γ(u(s))+

)
⊂ supp

D′

(
Γ(u(t))+

)
, supp

D′

(
Γ(u(s))−

)
⊂ supp

D′

(
Γ(u(t))−

)
.

As a consequence, we have for any t > 0:

supp
D′

(
Γ(u(t))+

)
= supp

D′

(
w(t)+

)
, supp

D′

(
Γ(u(t))−

)
= supp

D′

(
w(t)−

)
.

Proof. We use the same ideas as in the previous section. By Lemma 3.3 and the

retention property 10 for Γ(U+) and Γ(U−), we know that for any t > 0, there

holds:

dist
(

supp
D′

(
Γ(u(t))+

)
; supp
D′

(
Γ(u(t))−

))
≥ dist

(
supp
D′

(
Γ(Pf+)

)
; supp
D′

(Γ
(
Pf−)

))
,

and this distance is at least RJ under assumption (11). Take now a nonnega-

tive test function φ ∈ C∞(RN ) (not identically zero) with compact support in

suppD′

(
Γ(u(s))+

)
and consider t > s. Using that ∂tΓ(u)+ = 1{u>0}∂tu, in the

sense of distributions, we get

d

dt

(∫
RN

Γ(u(t))+φ
)

=

∫
RN

(
J ∗ Γ(u(t))

)
φ1{u>0} −

∫
RN

Γ(u(t))φ1{u>0} .

Since for any t > 0, the support of Γ(u(t))+ is at least at distance RJ from the

support of Γ(u(t))−, we have
(
J ∗ Γ(u(t))

)
1{u>0} =

(
J ∗ Γ(u(t))+

)
≥ 0 for any

t > s. Hence
d

dt

(∫
RN

Γ(u(t))+φ
)
≥ −

∫
RN

Γ(u(t))+φ ,

which can be written as h′(t) ≥ −h(t) where h(t) :=
∫
RN Γ(u)(t)+φ. Hence h(t) ≥

h(s)e−(t−s) > 0 which proves the retention property for Γ(u)+. The property for

Γ(u)− is proved the same way.
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Now, take a nonnegative test function φ, not identically zero, with compact

support in suppD′(Γ(u(t))+). We know from the first part that for 0 < s < t, the

support of φ never intersects the support of the negative part of Γ(u(s)), hence∫
RN

w(t)φ =

∫ t

0

∫
RN

Γ(u(s))φdxds =

∫ t

0

∫
RN

Γ(u(s))+φ dx ds ≥ 0 .

Moreover, since the space integrals are continuous in time, we know that the in-

tegral
∫
RN Γ(u(s))+φ dx is not only positive at time t, but also in an open time

interval around t. So, we get
∫
RN w(t)φ > 0 which proves that suppD′

(
Γ(u(t))+

)
⊂

suppD′

(
w(t)+

)
. On the other hand, if φ is a nonnegative test function such that∫

RN Γ(u(t))+φdx = 0, the retention property, (13), implies that this integral is also

zero for all times 0 < s < t, which yields
∫
RN w+(t)φ dx = 0. We conclude that

the distributional support of w+(t) coincides with that of Γ(u(t))+. The proof is

similar for the negative part. �

The Baiocchi variable satisfies a complementary problem, that will be useful to

introduce the nonlocal biobstacle problem.

Lemma 4.2. Under hypothesis (11), the Baiocchi variable, w(t) =

∫ t

0

Γ(u)(s) ds,

satifies the complementary problem almost everywhere

(14)


0 ≤ sign(w) (f + J ∗ w − w − wt) ≤ 1 ,(
f + J ∗ w − w − wt − sign(w)

)
|w| = 0 ,

w(0) = 0 .

Proof. The graph condition Γ(u) = sign(u)(|u| − 1)+ can be written as

0 ≤ sign(u)
(
u− Γ(u)

)
≤ 1,

(
sign(u)

(
u− Γ(u)

)
− 1
)

Γ(u) = 0 ,

almost everywhere in RN × (0,∞) . In order to translate this condition in the w

variable, we first notice that that if sign
(
Γ(u)

)
> 0 then sign(u) > 0 and similarly,

sign
(
Γ(u)

)
< 0 implies sign(u) < 0 (only the condition Γ(u) = 0 does not imply a

sign condition on u). Hence we can also write

0 ≤ sign
(
Γ(u)

)(
u− Γ(u)

)
≤ 1,

(
sign

(
Γ(u)

)(
u− Γ(u)

)
− 1
)

Γ(u) = 0 .

Now we use the retention property of Γ(u), Lemma 4.1, which implies that the dis-

tributional supports of Γ(u) and w coincide for all times. Then replacing everything

in terms of w, in (12), we have0 ≤ sign(w) (f + J ∗ w − w − wt) ≤ 1 ,

(sign(w) (f + J ∗ w − w − wt)− 1)w = 0.

Therefore, we obtain that w solves a.e. the complementary problem (14). �
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4.2. A non-local elliptic biobstacle problem. If

∫ ∞
0

‖Γ(u)(t)‖L1RN dt < ∞,

the function w(t) converges monotonically in L1
(
RN
)

as t→∞ to

w∞ =

∫ ∞
0

Γ(u)(s) ds ∈ L1
(
RN
)
.

Thus, thanks to (12), u(·, t) converges point-wisely and in L1
(
RN
)

to

f̃ = f + J ∗ w∞ − w∞.

Passing to the limit as t→∞ in (14), we get that w∞ is a solution with data f to

the nonlocal biobstacle problem:

(BOP)


Given a data f ∈ L1

(
RN
)
, find a function w ∈ L1

(
RN
)

such that

0 ≤ sign(w) (f + J ∗ w − w) ≤ 1 ,(
f + J ∗ w − w − sign(w)

)
|w| = 0.

This problem is called “biobstacle” since the values of the solution are cut at both

levels +1 and −1. Under some conditions we have existence:

Lemma 4.3. Let f ∈ L1(RN ) satisfy the hypothesis (11). If N = 1 or N = 2,

assume moreover that J is non increasing in the radial variable, and f+ ≤ g1,

f− ≤ g2 for some g1, g2 ∈ L1
(
RN
)
∩ C0(RN ), radial and strictly decreasing in the

radial variable. Then, problem (BOP) has at least a solution w∞ ∈ L1(RN ).

Proof. Given the assumptions, we construct the solution u of (1) associated to the

initial data f . Then we use the estimate

|Γ(u)| ≤ max
(
(U+ − 1)+ ; (U− − 1)+

)
.

If N ≥ 3, we use [2, Cor. 3.11] to get ‖Γ(u(t))‖L1(RN ) = O(t−N/2). For di-

mensions N = 1, 2, we use the extra assumption and [2, Cor. 3.10] which im-

plies ‖Γ(u(t))‖L1(RN ) ≤ Ce−κt for some C, κ > 0. In both cases, we obtain that∫∞
0

Γ(u(s)) ds converges in L1(RN ) to some function w∞, and passing to the limit

in (14) we see that w∞ is a solution of (BOP). �

We now have a more general uniqueness result (without extra assumptions in

lower dimensions).

Proposition 4.4. Given any function f ∈ L1(RN ), the problem (BOP) has at

most one solution w ∈ L1(RN ).

Proof. The proof follows the same arguments as in [2, Thm 5.3]. For the sake of

completeness we reproduce here the argument: the solutions of (BOP) satisfy,

f̃ = f + J ∗ w − w , f̃ ∈ β(w) a.e. ,
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where β(·) is the graph of the sign function: β(w) = sign(w) if w 6= 0, and β({0}) =

[−1, 1]. We take two solutions wi, i = 1, 2 of (BOP) associated with the data f and

let f̃i be the associated projections. Since f̃i ∈ β(wi) we have

0 ≤ (f̃1 − f̃2)1{w1>w2} =
(
J ∗ (w1 − w2)− (w1 − w2)

)
1{w1>w2} a.e. .

We then use a nonlocal version of Kato’s inequality, valid for locally integrable

functions:

(J ∗ w − w)1{w>0} ≤ J ∗ w+ − w+ a.e.,

which implies

(w1 − w2)+ ≤ J ∗ (w1 − w2)+ .

We end by using [2, Lem 6.2], from which we infer that (w1−w2)+ = 0. Reversing

the roles of w1 and w2 we get uniqueness. �

Combining the results above, we can now give our main theorem concerning the

asymptotic behaviour for solutions of (1).

Theorem 4.5. Let f ∈ L1
(
RN
)
, satisfying the assumptions of Lemma 4.3, if

N = 1 or 2. If u is the unique solution to the problem (1) and w∞ is the unique

solution of the problem (BOP), we have

u(t)→ f̃ := f + J ∗ w∞ − w∞ in L1
(
RN
)

as t→∞ .

4.3. Asymptotic limit for general data. Up to now we have been able to prove

the existence of a solution of (BOP) for any f ∈ L1
(
RN
)

only if N ≥ 3. For low

dimensions, N = 1, 2, we have needed to add the hypotheses of Lemma 4.3. Hence,

for lower dimensions the projection operator P which maps f to f̃ is in principle

only defined under these extra assumptions.

However, P is continuous, in the L1-norm, in the subset of L1
(
RN
)

of functions

satisfying the hypotheses of Lemma 4.3. Since the class of functions satisfying those

hypotheses is dense in L1
(
RN
)
, we can extend the operator to all L1 by a standard

procedure.

Theorem 4.6. Let f ∈ L1
(
RN
)

and u the corresponding solution to problem (1).

Let Pf be the projection of f onto f̃ . Then u(·, t)→ Pf in L1
(
RN
)

as t→∞.

Proof. Given f , let {fn} ⊂ L1
(
RN
)

be a sequence of functions satisfying the hy-

potheses of Lemma 4.3 which approximate f in L1
(
RN
)
. Take for instance a

sequence of compactly supported functions. Let un be the corresponding solutions

to the non-local Stefan problem. We have,

‖u(t)−Pf‖L1(RN ) ≤ ‖u(t)−un(t)‖L1(RN )+‖un(t)−Pfn‖L1(RN )+‖Pfn−Pf‖L1(RN ).
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Using Corollary 2.5, which gives the contraction property for the non-local Stefan

problem, and Theorem 4.5, that states the large time behavior for bounded and

compactly supported initial data, we obtain

lim sup
t→∞

‖u(t)− Pf‖L1(RN ) ≤ ‖f − fn‖L1(RN ) + ‖Pfn − Pf‖L1(RN ).

Letting n→∞ we get the result. �

Remark 4.7. A similar result would be valid for the local Stefan problem, assuming

that the distance between Pf+ and Pf− is strictly positive. Notice that the projected

data f̃ is a non-local mesa, see [2].

5. Solutions losing one phase in finite time.

In this section we we give some partial results on the asymptotic behaviour of

solutions for which either u or Γ(u) becomes nonnegative (or nonpositive) in finite

time.

In this case, we can prove that the asymptotic behaviour is driven by the one-

phase Stefan regime, however we cannot identify the limit exactly.

5.1. A theoretical result.

Theorem 5.1. Let f ∈ L1(RN ) satisfy (11) and let u be the corresponding solution.

Assume that for some t0 ≥ 0, there holds f∗ := u(t0) ≥ −1 in RN . then the

asymptotic behaviour is given by: u(t)→ Pf∗.

Proof. We just have to consider u∗(t) := u(t−t0) for t ≥ t0. Then u∗ is the solution

associated to the initial data f∗ which satisfies (11). Hence we know that as t→∞,

u∗(t)→ Pf∗. Therefore, the same happens for u(t). �

Of course a similar result holds if Γ(u) becomes nonpositive in finite time. How-

ever, the problem remains open as to identify Pf∗ since we do not know what is

exactly f∗.

In the rest of the section, we give two examples where such a phenomenon occurs.

One for which v = Γ(u) becomes positive in finite time, and the other for which u

becomes positive in finite time.

5.2. Sufficient conditions to lie above level −1 in finite time. In this sub-

section we assume for simplicity that the initial data f is continuous and compactly

supported, and that J is nonincreasing in the radial variable. We assume f+ ≤ g1

and f− ≤ g2, for some g1, g2 ∈ L1
(
RN
)
∩C0(RN ) radial and strictly decreasing in

the radial variable. Moreover, Thanks to [2, Lem 3.9], there exists R = R(g1, g2)



A NONLOCAL TWO PHASE STEFAN PROBLEM 21

such that supp
(
v(u)(t)

)
⊂ BR for any t ≥ 0 (recall that we denote by v = Γ(u)).

Notice that R does not depend on J , only on the L1-norm of g1 and g2.

We make first the following important assumption:

(15) α(v0, J) := inf
x∈BR

∫
J(x− y)v+(y, 0)dy > 0

(see in the Remark 5.3 below some comments on this assumption).

Let us also denote

β(J) := sup
x∈B2R

J(x).

Then we shall also assume that the negative part of v0 := v(0) is “small” compared

to the positive part in the following sense:

(16) ‖v−(0)‖L1(RN ) <
α(v0, J)

β(J)
.

In such a situation, we first define

η̄ := α(v0, J)− β(J)‖v−(0)‖L1(RN ) > 0 .

Then, for η ∈ (0, η̄) we introduce the following function

ϕ(η) := η ln

(
α(v0, J)

η + β(J)‖v−(0)‖L1(RN )

)
> 0

and set

κ := max
{
ϕ(η) : η ∈ (0, η̄)

}
> 0.

Since actually, κ depends only on J and the mass of the positive and negative parts

of v(0), we denote it by κ(v0, J).

We are then ready to formulate our result:

Proposition 5.2. Assume (16) and moreover that the negative part of f is con-

trolled in the sup norm as follows

‖f−‖∞ ≤ 1 + κ(v0, J) .

Then in a finite time t1 = t1(f), the solution satisfies u(x, t1) ≥ −1 for all x ∈ RN .

Proof. By our assumptions, for all x we have f(x) ≥ −1 − κ(v0, J). Then for any

x ∈ BR,

J ∗ v(x, 0) =

∫
{v>0}

J(x− y)v(y, 0)dy +

∫
{v<0}

J(x− y)v(y, 0)dy

≥ α(v0, J)− β(J)‖v−(0)‖L1(RN ) > 0.

Remember that for the points x /∈ BR, we have v0(x) = 0 and also v(x, t) = 0 for

any time t ≥ 0 (though we may —and will— have mushy regions, {|v| < 1}, outside

BR of course).
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Thanks to the continuity of u (and v), the following time is well-defined:

t0 := sup{t ≥ 0 : J ∗ v(x, t) > 0 for any x ∈ BR} > 0 .

This implies that

ut ≥ −v, in BR × (0, t0),

so that

∂tv+ = 1{v>0}∂tu ≥ −v1{v>0} = −v+ .

Hence, in BR × (0, t0), v+ enjoys the following retention property:

(17) v+(x, t) ≥ e−tv+(x, 0), ∀t ∈ [0, t0).

This implies in particular that if v(x, 0) is positive at some point, v(x, t) remains

positive at this point at least until t0.

Now, let us estimate t0. For any x ∈ BR and t ∈ (0, t0), we have

J ∗ v(x, t) ≥
∫
{v>0}

J(x− y)v(y, t)dy +

∫
{v<0}

J(x− y)v(y, t)dy

≥ e−t
∫
{v>0}

J(x− y)v(y, 0)dy − β(J)‖v−(t)‖L1(RN )

≥ α(v0, J)e−t − β(J)‖v−(0)‖L1(RN ) ,

where we have used Corollary 2.5, which gives the L1-contraction property for v−,

deriving from the fact that it is subcaloric. So, if we take η reaching the max of

ϕ(η) = κ and set

t1(η) := ln

(
α(v0, J)

η + β(J)‖v−(0)‖L1(RN )

)
,

then for any t ∈ (0, t1), we have α(v0, J)e−t − β(J)‖v−(0)‖L1(RN ) > η > 0. This

proves that t0 ≥ t1.

Since v+ has the retention property in (0, t0), the points in

C+ := {x ∈ RN : v(x, 0) > 0}

remain in this set at least until t0.

Then, for any x ∈ C− := {x ∈ RN : v(x, 0) ≤ 0}, we define

t(x) := sup{t > 0 : v(x, t) ≤ 0}.

If t(x) = 0, this means that v(x, t) becomes positive immediately and will remain

as such at least until t1 so we do not need to consider such points. We are left with

assuming t(x) > 0 (or infinite).

Then in this last case, we shall prove that t(x) ≤ t1 by contradiction: let us

assume that t(x) > t1 and let us come back to the previous estimate. We then

have, for any t ∈ (0, t1):

ut(x, t) = J ∗ v(x, t)− v(x, t) ≥ J ∗ v(x, t) > η > 0 .
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Thus, integrating the equation in time at x yields

u(x, t) > −1− κ(v0, J) + η · t, ∀t ∈ [0, t1].

By our choice we have precisely κ(v0, J) = ϕ(η) = η · t1(η). Therefore, at least for

t = t1, we have

u(x, t1) > −1− κ(v0, J) + η · t1 > −1 ,

which is a contradiction with the fact that t(x) > t1. Hence t(x) ≤ t1, which means

that at such points, the solution becomes equal to or above level −1 before t1.

So, combining everything, we have finally obtained that for any point x ∈ RN ,

u(x, t) becomes greater than or equal to −1 before the time t1, which ends the

proof. �

Remark 5.3. Hypothesis (15) expresses that for any x ∈ BR, there is some positive

contribution in the convolution with the positive part of v0. So, this implies that at

least the following condition on the intersection of the supports should hold:

∀x ∈ BR ,
(
x+BRJ

(0)
)
∩ supp

(
(v0)+

)
6= ∅ .

Actually, if the radius RJ is big enough to contain all the support of v0 this is

satisfied. But even if it is not so big, it there are positive values of v0 which spread

in many directions, this condition can be satisfied.

Then, (16) is a condition on the negative part, which should not be too big so

that all the possible points such that v(x, 0) < 0 will enter into the positive set for

v in finite time. The exact control is a mix between the mass and the infinite norm

of the various quantities.
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