Segre embeddings, Hilbert series and Newcomb's problem - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Segre embeddings, Hilbert series and Newcomb's problem

Marcel Morales
  • Fonction : Auteur
  • PersonId : 855791

Résumé

Monomial ideals and toric rings are closely related. By consider a Grobner basis we can always associated to any ideal $I$ in a polynomial ring a monomial ideal ${\rm in}_\prec I$, in some special situations the monomial ideal ${\rm in}_\prec I$ is square free. On the other hand given any monomial ideal $I$ of a polynomial ring $S$, we can define the toric $K[I]\subset S$. In this paper we will study toric rings defined by Segre embeddings, we will prove that their $h-$ vectors coincides with the so called Simon Newcomb number's in probabilities and combinatorics. We solve the original question of Simon Newcomb by given a formula for the Simon Newcomb's numbers involving only positive integer numbers.
Fichier principal
Vignette du fichier
morales-segre-newcomb-janvier2014.pdf (211.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00839652 , version 1 (28-06-2013)
hal-00839652 , version 2 (16-01-2014)

Identifiants

Citer

Marcel Morales. Segre embeddings, Hilbert series and Newcomb's problem. 2013. ⟨hal-00839652v2⟩

Collections

CNRS FOURIER INSMI
155 Consultations
249 Téléchargements

Altmetric

Partager

More