Segre embeddings, Hilbert series and Newcomb's problem - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Segre embeddings, Hilbert series and Newcomb's problem

Marcel Morales
  • Fonction : Auteur
  • PersonId : 855791

Résumé

Monomial ideals and toric rings are closely related. By consider a Grobner basis we can always associated to any ideal $I$ in a polynomial ring a monomial ideal ${\rm in}_\prec I$, in some special situations the monomial ideal ${\rm in}_\prec I$ is square free. On the other hand given any monomial ideal $I$ of a polynomial ring $S$, we can define the toric $K[I]\subset S$. In this paper we will study toric rings defined by Segre embeddings, we will prove that their $h-$ vectors coincides with the so called Simon Newcomb number's in probabilities and combinatorics. We can prove by elementary means previous results founded by using probability theory on Markov process. We also get informations about Betti numbers and Mark Green's invariant for Segre embeddings.
Fichier principal
Vignette du fichier
morales-segre-newcomb-janvier2013.pdf (195.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00839652 , version 1 (28-06-2013)
hal-00839652 , version 2 (16-01-2014)

Identifiants

Citer

Marcel Morales. Segre embeddings, Hilbert series and Newcomb's problem. 2013. ⟨hal-00839652v1⟩
155 Consultations
249 Téléchargements

Altmetric

Partager

More