Analytical approximations of local-Heston volatility model and error analysis - Archive ouverte HAL
Article Dans Une Revue Mathematical Finance Année : 2018

Analytical approximations of local-Heston volatility model and error analysis

Résumé

This paper consists in providing and mathematically analyzing the expansion of an option price (with bounded Lipschitz payoff) for model combining local and stochastic volatility. The local volatility part has a general form, with appropriate growth and boundedness assumptions. For the stochastic part, we choose a square root process, which is widely used for modeling the behavior of the variance process (Heston model). We rigorously establish tight error estimates of our expansions, using Malliavin calculus, which requires a careful treatment because of the lack of weak differentiability of the model; this error analysis is interesting on its own. Moreover, in the particular case of Call-Put options, we also provide expansions of the Black-Scholes implied volatility which allows to obtain very simple and rapid formulas in comparison to the Monte Carlo approach while maintaining a very competitive accuracy.
Fichier principal
Vignette du fichier
expansion_loc_stoch_vol_v6_final.pdf (654.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00839650 , version 1 (28-06-2013)
hal-00839650 , version 2 (18-03-2015)

Identifiants

Citer

Romain Bompis, Emmanuel Gobet. Analytical approximations of local-Heston volatility model and error analysis. Mathematical Finance, 2018, 28 (3), pp.920-961. ⟨10.1111/mafi.12154⟩. ⟨hal-00839650v2⟩
561 Consultations
671 Téléchargements

Altmetric

Partager

More