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ANALYTICAL APPROXIMATIONS OF LOCAL-HESTON VOLATILITY MODEL
AND ERROR ANALYSIS∗

R. BOMPIS† AND E. GOBET‡

Abstract. This paper consists in providing and mathematically analyzing the expansion of an option price
(with bounded Lipschitz payoff) for model combining local and stochastic volatility. The local volatility part has a
general form, with appropriate growth and boundedness assumptions. For the stochastic part, we choose a square
root process, which is widely used for modeling the behavior of the variance process (Heston model). We rigorously
establish tight error estimates of our expansions, using Malliavin calculus, which requires a careful treatment because
of the lack of weak differentiability of the model; this error analysis is interesting on its own. Moreover, in the
particular case of Call-Put options, we also provide expansions of the Black-Scholes implied volatility which allows
to obtain very simple and rapid formulas in comparison to the Monte Carlo approach while maintaining a very
competitive accuracy.

This version: March 18, 2015.
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1. Introduction.
B Formulation of the problem. We aim at providing analytical approximations of

E [h(XT )] (1.1)

for a bounded Lipschitz function h : R 7→ R, a fixed maturity T > 0, where X is modeling the
log-price of an asset, which dynamics are

dXt = σ(t,Xt)
√
VtdWt −

1

2
σ2(t,Xt)Vtdt, X0 = x0 ∈ R, (1.2)

dVt = αtdt+ ξt
√
VtdBt, V0 = v0 > 0, (1.3)

d〈W,B〉t = ρtdt,

where (Wt, Bt)0≤t≤T is a two-dimensional correlated Brownian motion defined on a filtered prob-
ability space (Ω,F , (Ft)0≤t≤T ,P) with the usual assumptions on the filtration. This problem is
motivated by option pricing: in this framework, asset and option prices are forward prices or
equivalently, interest-rates and dividends are set to 0. In the model (1.2)-(1.3), σ(., .) is the time-
dependent local volatility function, (Vt)t∈[0,T ] is a square root process (a.k.a. CIR process), which
models the stochastic variance; the non-negative drift (αt)t, the non-negative volatility of volatility
(ξt)t and the correlation (ρt)t are bounded measurable functions of time. Because the stochastic
variance (1.3) is of the Heston form, we call this model local-Heston volatility model. Actually, our
parametrization is equivalent to the usual "mean-reverting" form dṼt = (αt− κtṼt)dt+ ξt

√
ṼtdBt
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2 R. BOMPIS AND E. GOBET

(with deterministic (κt)t) and dXt = σ(t,Xt)
√
ṼtdWt − 1

2σ
2(t,Xt)Ṽtdt: indeed by setting Vt =

Ṽt exp(
∫ t

0
κsds), observe that (X,V ) solves a system of the form (1.2)-(1.3) with straightforward

modifications of σ, ξ, α. Our parametrization is more convenient for the subsequent analysis.
Models combining local and stochastic volatilities have emerged in the last decade to offer

more flexibility in the skew and smile management: see for instance the well-known SABR model
by Hagan etal. [HKLW02], the CEV-Heston model studied by Forde and Pogudin [FP13]. In view
of the rather general form (1.2)-(1.3), the pricing (and thus the model calibration) is challenging,
in particular because of the lack of closed-form formulas and because PDE or Monte-Carlo based
numerical methods are too much time-consuming for real-time uses. In this work, we address this
issue by deriving an expansion formula for E [h(XT )] within the family of correlated local-Heston
model. We do not argue that this is the best model to fit market data, nevertheless this is very
popular among practitioners since it has the flavor to encompass the local volatility model and the
Heston one. For works related to calibration, see [EKO11]. The interest of this work is not only
the expansion formula but also the rigorous treatment of error estimates, an issue which is often
not handled in the literature (sometimes computations are formal). In our case of square root
process (little smooth), Lipschitz payoffs and pointwise ellipticity of local volatility, we develop
a strategy of proof which is interesting on its own. The reader could argue that by smoothing
data, expanding the modified E [h(XT )] at a given order and then passing to the limit w.r.t. the
smoothing parameter, we could avoid these technicalities. This may be incorrect: for instance in
[FPSS04], this strategy applied to non-smooth data leads to a loss of theoretical accuracy (see
the error estimates in [FPSS04, Theorem 3 and Lemma 1] in the context of call- option pricing).
Even worse, in [GP14] about Backward Stochastic Differential Equations, the authors prove that
the irregularity in the coefficients may discard any possibility of expansion at a given order. With
these examples in mind, we believe that proving rigorous error estimates when coefficients/functions
are not smooth is a serious mathematical issue which can not be avoided and which, once done,
brings confidence in the derived expansion and sheds light on the needed assumptions.

B Methodology. We follow the proxy approach initiated in [BGM09], by employing Malliavin
calculus to compute expansion terms and to derive tight error estimates as a function of the most
important model and payoff parameters (non-asymptotic error analysis). Inspired by [BGM09,
BGM10b], we choose the following Gaussian proxy:{

dXP
t = σ(t, x0)

√
vtdWt − 1

2σ
2(t, x0)vtdt, XP

0 = x0,

vt = v0 +
∫ t

0
αsds.

(1.4)

Such an approximation can be justified if the volatility of volatility ξ is small (thus Vt ≈ vt) and if
one of the two following situations holds, both justifying σ(t,Xt) ≈ σ(t, x0): i) the local volatility
function σ(t, ·) has small variations; ii) the local part of the diffusion component is small (i.e. |σ|∞
small), which implies Xt ≈ x0. Besides we expect to have even more accurate approximations
for small maturities (leading to Xt ≈ x0 and Vt ≈ v0, t ∈ [0, T ]). These features are encoded in
the error bounds of Theorems 2.4, 4.2 and 4.4, that read as multi-parameter error estimates. The
above assumptions are rather realistic in practice, or nonetheless they define a domain of validity
of our approximations.

In spite of the inspiration by [BGM10b], the mathematical analysis of error estimates must be
quite different since the model (1.2)-(1.3) is not smooth enough in the Malliavin sense (because of
the CIR process, see [AE08, De 11]). We briefly explain how we overcome this major problem, the
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arguments are interesting on their own and could be transposed to other studies: we use Malliavin
calculus for a suitably perturbed payoff hδ and a suitably perturbed random variable XT , this is
inspired by [Fou08] but in a different context. Let us consider the Gaussian regularization hδ(x) :=

E
[
h(x+ δWT )

]
for an independent Brownian motionW and a small parameter δ > 0 (fixed later);

we use the splitting-noise property hδ(x) = E
[
hδ/
√

2(x+ δW T
2

)
]
. Write the decomposition

E [h(XT )] ≈ E
[
hδ(XT )

]
≈ E

[
hδ(X

P
T )
]

+ E
[
h′δ(X

P
T )(XT −XP

T )
]

+ . . .

i) Since h is Lipschitz, the first approximation is easily justified if δ is small enough and if
XT and XT are close enough in Lp-sense.

ii) The last expectation is computed (up to an error) using the techniques of [BGM09,
BGM10b], and although cumbersome, the computations may be considered now as stan-
dard and yield the existence of explicit coefficients (Ck)k such that

E
[
h′δ(X

P
T )(XT −XP

T )
]

=
∑
k

Ck∂
k
xkE

[
hδ(X

P
T + x)

]
|x=0 + error

=
∑
k

Ck∂
k
xkE

[
h(XP

T + x)
]
|x=0 + other error.

iii) The tough part of the analysis is related to the global error control, which enlightens the
right choice of δ and XT . To account for non-smooth payoffs we use an integration by parts
formula, which relies on the non-degeneracy of the interpolated random variable Xλ :=

λXT +(1−λ)XP
T (for any fixed λ ∈]0, 1[). Note that this excludes to take XT = XT that is

not sufficiently Malliavin differentiable. Alternatively, we select a XT ∈ D∞ which on the
one hand, is close enough toXT in Lp, and which, on the other hand, is such thatXλ is non-
degenerate with high probability under the sole assumption

∫ T
0
σ(t, x0)2vtdt > 0 (which we

call (Hx0) and which reads as a pointwise ellipticity assumption). The non-degeneracy of
Xλ on a subset of Ω is not sufficient for an integration-by-parts formula for E

[
∂kxhδ(X

λ)Y
]

(Y is an arbitrary random variable): but due to the splitting-noise property, the above
expectation is equal to E

[
∂kxhδ/

√
2(Xλ + δW T

2
)Y
]
, moreover Xλ + δW T

2
is uniformly

non-degenerate, with nice estimates provided that δ is not too small.
The precise tuning of δ and the construction of XT are detailed in Section 3. The final approxi-
mation formula (Theorem 2.4) takes the form of an explicit Gaussian representation

E [h(XT )] = E
[
h(XP

T )
]

+
∑
k

Ck∂
k
xkE

[
h(XP

T + x)
]
|x=0 + error.

where the above derivatives write as Greeks within the Gaussian model.
To summarize, the main strengths of our work are fourfold: (1) explicit expansions for bounded

Lipschitz payoffs and for the implied volatility, (2) allowing time-dependent parameters and asset-
volatility correlation, (3) non-asymptotic error analysis (dependence of error with respect to multi-
parameters) under a local non-degeneracy condition (Hx0

), (4) rigorous error analysis taking into
account that V has a non-smooth coefficient.

B Comparison with the literature. In the two last decades, numerous papers have been devoted
to the analytical approximation of financial models. For an overview, see [BG12, Gul12, FGG+15]
among others. Here, we mention the works that are the most related to our setting, and we
emphasize the main differences compared to our works (keeping in mind the above main features).
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Firstly, some authors focus on small maturity asymptotics and use geodesic tools to compute
the main expansion terms: see [BBF04, Hen08, Lew07] where short maturity implied volatility
approximations are obtained. First expansion terms are derived for general local and stochastic
volatilities models in [FJ11] but under the assumptions of null correlation and under rather strong
hypotheses of the volatility coefficients (excluding the CIR process). The asymptotic expansion of
the density function in the SABR model is investigated in [JT11]. Similar results are derived using
PDE (parametrix, adjoint expansion) and Fourier arguments by Pascucci etal. [PP13] for general
time-independent local-Heston volatility models, however the error analysis is not handled; exten-
sions to general stochastic volatility models are performed in [LPP14] under stronger smoothness
assumptions (excluding the CIR process) and uniform ellipticity conditions (stronger than in our
setting, where we assume only that the initial volatility is not 0 and the correlation is arbitrary in
[−1, 1]). Observe that our non-degeneracy pointwise condition (Hx0

) does not imply that the law
of XT has a density or that related PDEs have solution in the classical sense, which illustrates the
difference with the setting of [LPP14].

Secondly, regarding long maturity asymptotics, Forde and Pogudin in [FP13] study the cases
of SABR and CEV-Heston models in different strike regimes, but mainly assuming null-correlation.

Thirdly, the homogenization/multiscales approach by Fouque etal. [FPSK11] is developed in
[FL11] to perform an asymptotic expansion w.r.t. a fast mean reversion parameter of the CIR
volatility, in a model of type (1.2)-(1.3) with time-independent parameters. So far, the aforemen-
tioned works (except [LPP14]) assume time-independent parameters.

Fourthly, following the asymptotic expansion method of Watanabe, Takahashi and co-authors
provide in a series of works small noise approximations of financial models (see [TY12] about
general stochastic volatility models): however, their results can not apply to the current local-
Heston volatility model since it is not smooth in Malliavin sense.

B Outline of the paper. The paper is organized as follows. In Section 2 we state a third order
price approximation formula with error bounds (Theorem 2.4), which is the main result. Section
3 is devoted to the proof, which constitutes the technical core of the paper, interesting on its
own. For the sake of clarity, we first give an outline of the proof, in a rather heuristic way,
to highlight the main steps, the major difficulties and to sketch arguments to overcome them.
The explicit calculus of the expansion coefficients is postponed to Appendix B. In Section 4 we
apply our expansion formula to the particular case of Call/Put payoffs to derive implied volatility
expansions with local volatility frozen at spot and at mid-point (between strike and spot). Results
are stated in Theorems 4.2 and 4.4. Section 5 gathers numerical experiments illustrating the
approximation formula accuracy, taking as a benchmark the Monte Carlo method. In Appendix,
we give intermediate and complementary results.

2. Main Result.

2.1. Notations and definitions.
B Extremes of deterministic functions. For measurable and bounded functions f : [0, T ]→ R and

g : [0, T ]×R→ R, we define finf := ess inf
t∈[0,T ]

ft, fsup := ess sup
t∈[0,T ]

ft, |g|∞ := ess sup
t∈[0,T ],x∈R

|g(t, x)|.

B Differentiation and integration. We denote by C∞b (R), the space of real-valued infinitely dif-

ferentiable functions, bounded with bounded derivatives. For a sufficiently smooth function ψ :

[0, T ] × R 7→ R, we write: ψ(i)
t (x) = ∂ixiψ(t, x). When considering the spatial point x0, we often
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use the notations ψt = ψt(x0) and ψ(i)
t = ψ

(i)
t (x0) whenever unambiguous.

Definition 2.1. The integral operator ωT and its n-times iteration are defined as follows:
for any integrable functions l, l1, · · · , ln and any t ∈ [0, T ],

ω(l)Tt :=

∫ T

t

ludu and ω(l1, · · · , ln)Tt := ω(l1ω(l2, · · · , ln)T. )Tt .

Definition 2.2. For h : R 7→ R a payoff function with exponential growth, the i-th Greek
for XP

T and h is defined1 by

Ghi := ∂ixiE
[
h(XP

T + x)
] ∣∣
x=0

. (2.1)

Given appropriate smoothness assumptions on h, one has Ghi = E
[
h(i)(XP

T )
]
.

B Assumptions on σ(.) and (Vt)t≤T .
(Hx0

): σ(.) is a bounded measurable function of (t, x) ∈ [0, T ]× R and three times continuously
differentiable w.r.t. x with bounded derivatives. Set

M1(σ) = max
1≤i≤3

|∂ixiσ(.)|∞ andM0(σ) = max
0≤i≤3

|∂ixiσ(.)|∞.

In addition, we assume the pointwise ellipticity condition
∫ T

0
σ2
t vtdt > 0 where we recall

σt = σ(t, x0).
(P): α and ξ are measurable, bounded on [0, T ] and positive, with ξinf > 0 and 2( αξ2 )inf ≥ 1.

Because there exists a unique process (Vt)t≤T satisfying the SDE (1.3), (Hx0
) guarantees the

existence and the uniqueness of a solution for (1.2), considering generalized stochastic integration
w.r.t. semi-martingales (see [Pro04, Theorem 6 p. 249]). Remind (see [BGM10b, Lemma 4.2]) that
(P) implies that P(∀t ∈ [0, T ] : Vt > 0) = 1. Additionally, the asset price process is a martingale,
which is proved in Appendix A.

Proposition 2.3. Under (Hx0) and (P), (eXt)0≤t≤T is a martingale.
This property will be used in Subsection 2.3 and Section 4.

B Assumptions on the payoff function. For realistic interesting applications in finance, we consider
the space Lipb(R) of Lipschitz bounded functions h, i.e. satisfying

Ch := sup
x∈R
|h(x)| < +∞, Lh := sup

x 6=y,(x,y)∈R2

∣∣∣∣h(y)− h(x)

y − x

∣∣∣∣ < +∞. (2.2)

This space includes the classical Put payoff function x → (K − ex)+ with strike K. Relaxing
the boundedness assumption may lead to ill-posedness problems since the model (1.2)-(1.3) may
be such that E

[
(eXT )p

]
= +∞ for some p > 1 (see [AP07]). Nevertheless, our approximation

formula extends to the Call payoff owing to the Call/Put relation (valid in view of Proposition
2.3): E

[
(eXT −K)+

]
= ex0 −K + E

[
(K − eXT )+

]
.

B Generic constants and upper bounds. We keep the same notation c for all non-negative constants
depending on: universal constants, on a number p ≥ 1 arising in Lp estimates, in a non decreasing
way on ξsup,M0(σ),M1(σ), T , |σ|2∞T∫ T

0
σ2
t vtdt

, v0, 1/v0 and αsup. We frequently use the short notation

A ≤c B for positive A which means that A ≤ cB for a generic constant c. Similarly "A = O(B)"
means that |A| ≤ cB for a generic constant c.
B Miscellaneous. The Lp-norm (p ≥ 1) of a random variable is denoted by ||.||p.

1well-defined, even if h is not smooth, as soon as the variance
∫ T
0 σ2

t vtdt of the Gaussian random variable XP
T

is positive, i.e. our assumption (Hx0).
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2.2. Third order approximation price formula. We state the main result of the paper:
Theorem 2.4 (3rd order approximation price formula). Assume (Hx0) and (P). Then for

any h ∈ Lipb(R), we have:

E [h(XT )] = E
[
h(XP

T )
]

+

6∑
i=1

ηi,TGhi + Error3,h, (2.3)

where:

η1,T :=
Cl1,T

2
−
Cl2,T

2
−
Cl3,T

4
−
Cl4,T

2
− Cls1,T ,

η2,T := −
3Cl1,T

2
+
Cl2,T

2
+

5Cl3,T
4

+
7Cl4,T

2
+

(Cl1,T )2

8
−
Cs1,T

2

+
Cs3,T

4
+ Cls1,T +

Cls2,T
2

+
Cls3,T

2
+ Cls4,T +

Cls5,T
2

+
Cls6,T

4
,

η3,T := Cl1,T − 2Cl3,T − 6Cl4,T −
3(Cl1,T )2

4
+
Cs1,T

2
−
Cs2,T

2
−
Cs3,T

2

−
3Cls2,T

2
−

3Cls3,T
2
−

5Cls4,T
2
− Cls5,T −

3Cls6,T
4
−
Cl1,TC

s
1,T

4
,

η4,T := Cl3,T + 3Cl4,T +
13(Cl1,T )2

8
+
Cs2,T

2
+
Cs3,T

4
+ Cls2,T

+ Cls3,T +
3Cls4,T

2
+
Cls5,T

2
+
Cls6,T

2
+

(Cs1,T )2

8
+ Cl1,TC

s
1,T ,

η5,T := −
3(Cl1,T )2

2
−

(Cs1,T )2

4
−

5Cl1,TC
s
1,T

4
,

η6,T :=
(Cl1,T )2

2
+

(Cs1,T )2

8
+
Cl1,TC

s
1,T

2
,

and:

Cl1,T := ω(σ2v, σσ(1)v)T0 , Cl2,T := ω(σ2v, ((σ(1))2 + σσ(2))v)T0 ,

Cl3,T := ω(σ2v, σ2v, ((σ(1))2 + σσ(2))v)T0 , Cl4,T := ω(σ2v, σσ(1)v, σσ(1)v)T0 ,

Cs1,T := ω(ρξσv, σ2)T0 , Cs2,T := ω(ρξσv, ρξσ, σ2)T0 ,

Cs3,T := ω(ξ2v, σ2, σ2)T0 ,

Cls1,T := ω(ρξσv, σσ(1))T0 , Cls2,T := ω(ρξσv, σ2v, σσ(1))T0 ,

Cls3,T := ω(σ2v, ρξσv, σσ(1))T0 , Cls4,T := ω(ρξσv, σ2, σσ(1)v)T0 ,

Cls5,T := ω(ρξσv, σσ(1)v, σ2)T0 , Cls6,T := ω(σ2v, ρξσ(1)v, σ2)T0 .

Then the approximation error is estimated as follows:

Error3,h = O
(
Lh|σ|∞[ξ3

sup +M1(σ)(M0(σ) + ξsup)2]T 2
)
. (2.4)

The notations Cl. , Cs. , Cls. refer to the dependency of the coefficients w.r.t. the local volatility
only, to the stochastic one, or to both (see explanations in Subsection 2.3).

We make several additional remarks. Firstly, note that contrary to [BGM10b, Theorem 2.2],
we do not assume anymore that the correlation is bounded away from −1 and 1. This is a nice
improvement.
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Secondly, the error bound (2.4) justifies the label of third order approximation formula because
using the notation M = max(M0(σ), ξsup), we readily have Error3,h = O

(
(M
√
T )4
)
. Besides,

making reference to the introduction, we retrieve that if |σ|∞ = 0 or max(M1(σ), ξsup) = 0 or
T = 0, the approximation formula (2.3) is exact (the model and the proxy coincide and the C
coefficients vanish). Obviously if Lh = 0 (i.e. constant h), the error and sensitivities are equal to
zero.

Thirdly, if one prefers to restrict to a second order approximation, it simply writes:

E [h(XT )] =E
[
h(XP

T )
]

+ Cl1,T

[
1

2
Gh1 −

3

2
Gh2 + Gh3

]
+ Cs1,T

[
−G

h
2

2
+
Gh3
2

]
+O

(
Lh|σ|∞[ξ2

sup +M1(σ)(M0(σ) + ξsup)]T
3
2

)
.

We let the reader verify that the additional corrective terms of the expansion (2.3) are bounded
(up to generic constants) by Lh|σ|∞[ξ2

sup +M1(σ)(M0(σ)+ξsup)]T
3
2 using standard upper bounds

for the derivatives of the Gaussian density and for the neglected coefficients C ..,T .

2.3. Corollaries.
B Particular cases of pure local volatility model and pure Heston model.

a) When ξsup is equal to zero, the coefficients Cs and Cls are null: then we exactly retrieve
the expansion of the pure local volatility model proposed in [BGM10a]. The terms Cl therefore
read as purely local volatility contributions.

b) IfM1(σ) = 0 (case of pure Heston model), all the coefficients Cl and Cls are equal to zero:
we can retrieve the expansion derived in [BGM10b], by taking into account our parametrization of
V and by transforming the sensitivities w.r.t. the total variance in [BGM10b, Theorem 2.2] into
sensitivities w.r.t. the log-spot.

c) Finally we interpret the coefficients Cls as a contribution related to the mixture of both the
local and stochastic parts of the volatility. All these terms notably depend on the correlation. In
case of independent W and B, all the coefficients are equal to 0 except the Cl terms and Cs3,T .

B Applications to Call payoff function. One can directly apply this theorem for the Put payoff
function h(x) = (K−ex)+. The reader should remark that the above expansion formula is exact for
the particular payoff function h(x) = exp(x): indeed E [h(XT )] = E

[
h(XP

T )
]

= Gexp(.)
i = ex0 and

the sum of the corrective terms is equal to zero,
∑6
i=1 ηi,TG

exp(.)
i = ex0

∑6
i=1 ηi,T = 0. Therefore

the expansion remains valid for the Call payoff function h(x) = (ex −K)+ although h 6∈ Lipb(R),
and furthermore, the Call/Put parity relationship (valid owing to Proposition 2.3) is preserved
within these approximations.

3. Error analysis.

3.1. Outline of the proof. To relate the initial process (1.2)-(1.3) to the proxy process (1.4),
we introduce a two-dimensional parameterized process given by:

dXη
t =σ(t, ηXη

t + (1− η)x0)
√
V ηt dWt −

1

2
σ2(t, ηXη

t + (1− η)x0)V ηt dt, Xη
0 = x0, (3.1)

dV ηt =αtdt+ ηξt

√
V ηt dBt, V

η
0 = v0, (3.2)

where η is an interpolation parameter lying in the range [0, 1], so that on the one hand for η = 1,
X1
t = Xt and V 1

t = Vt, and on the other hand for η = 0, X0
t = XP

t and V 0
t = vt. This param-

eterization is a tricky interpolation between models, which goal is to derive successive corrective
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processes in order to obtain a tractable explicit approximation formula. In addition (P) implies
that ∀η ∈ [0, 1], P(∀t ∈ [0, T ] : V ηt > 0) = 1 (see [BGM10b, Lemma 4.2]).

We define the stochastic volatility process:
Definition 3.1. Ληt =

√
V ηt , ∀t ∈ [0, T ], ∀η ∈ [0, 1].

In addition, we introduce (λt)t∈[0,T ] defined for any t ∈ [0, T ] by:

λt = Λη=0
t =

√
V 0
t =

√
vt =

√
v0 +

∫ t

0

αsds. (3.3)

We present here a sketch of proof in order to fix the main ideas and to highlight the main difficulties.
The strategy of approximation has been globally explained in introduction.
B 1st step. We construct corrective processes to approximate XT in Lp. Consider the parameter-
ized process defined in (3.1)-(3.2). We recall that the Gaussian proxy process (XP

t )t∈[0,T ] defined
in (1.4) is obtained by setting η = 0. The following corrective processes (Xi,t)t∈[0,T ]-(Vi,t)t∈[0,T ]-
(Λi,t)t∈[0,T ] for i ∈ {1, 2} are obtained by a formal i-times differentiation of (3.1)-(3.2) w.r.t. η
and by taking η = 0 thereafter. For the first corrective processes, we obtain:

dX1,t =[(XP
t − x0)σ

(1)
t λt + Λ1,tσt](dWt − σtλtdt), X1,0 = 0, (3.4)

V1,t =

∫ t

0

ξsλsdBs, (3.5)

Λ1,t =
V1,t

2λt
. (3.6)

The second corrective processes are:

dX2,t =
{
λt[(X

P
t − x0)2σ

(2)
t + 2X1,tσ

(1)
t ] + 2(XP

t − x0)Λ1,tσ
(1)
t

}
(dWt − σtλtdt) (3.7)

+
{

Λ2,tσtdWt − [(XP
t − x0)V1,tσ

(1)
t σt + (XP

t − x0)2(σ
(1)
t )2vt +

V2,t

2
σ2
t ]dt

}
, X2,0 = 0

V2,t =

∫ t

0

ξs
V1,s

λs
dBs, (3.8)

Λ2,t =
V2,t

2λt
−

V 2
1,t

4(λt)3
. (3.9)

Under (Hx0
), these corrective processes (Xi,t)t∈[0,T ]-(Vi,t)t∈[0,T ]-(Λi,t)t∈[0,T ] for i ∈ {1, 2} are well

defined.
B 2nd step. We compute the corrective terms. To start with, assume that h ∈ C∞b (R) and
perform a third order Taylor expansion for the function h at x = XT around x = XP

T :

E [h(XT )] =E
[
h(XP

T )
]

+ E
[
h(1)(XP

T )(XT −XP
T )
]

+
1

2
E
[
h(2)(XP

T )(XT −XP
T )2
]

+ E
[
(XT −XP

T )3

∫ 1

0

h(3)(XP
T + η(XT −XP

T ))
(1− η)2

2
dη

]
(3.10)

=E
[
h(XP

T )
]

+ E
[
h(1)(XP

T )X1,T

]
+ E

[
h(1)(XP

T )
X2,T

2

]
+

1

2
E
[
h(2)(XP

T )X2
1,T

]
+ Error3,h,

(3.11)

Error3,h =E

h(1)(XP
T )(XT −

2∑
j=0

Xj,T

j!
)

+
1

2
E
[
h(2)(XP

T )(XT −XP
T −X1,T )(XT −XP

T +X1,T )
]
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+ E
[
(XT −XP

T )3

∫ 1

0

h(3)(XP
T + η(XT −XP

T ))
(1− η)2

2
dη

]
, (3.12)

with the conventionXP
T = X0

T = X0,T . Then we transform the terms E
[
h(1)(XP

T )X1,T

]
, E
[
h(1)(XP

T )
X2,T

2

]
and 1

2E
[
h(2)(XP

T )X2
1,T

]
into a weighted sum of sensitivities, yielding the sum in (2.3). To achieve

this transformation, we apply a key lemma which proof is postponed to Appendix B:
Lemma 3.2. Let ϕ be a C∞b (R) function and (ft)t be a measurable and bounded deterministic

function. Let N ≥ 1 be fixed, and consider measurable and bounded deterministic functions t 7→ li,t
for i = 1, . . . , N . Then, using the convention dW 0

t = dt, dW 1
t = dWt and dW 2

t = dBt, for any
(I1, . . . , IN ) ∈ {0, 1, 2}N we have:

E

[
ϕ(

∫ T

0

ftdWt)

∫ T

0

lN,tN

∫ tN

0

lN−1,tN−1 . . .

∫ t2

0

l1,t1dW I1
t1 . . . dW

IN−1

tN−1
dW IN

tN

]

= ω(l̂1, . . . , l̂N )T0 ∂
#{k:Ik 6=0}
x#{k:Ik 6=0}E

[
ϕ(

∫ T

0

ftdWt + x)

] ∣∣∣
x=0

, (3.13)

where l̂k,t :=


lk,t if Ik = 0,

ftlk,t if Ik = 1,

ftρtlk,t if Ik = 2.
Details of the complete derivation of the corrective terms appearing in (2.3) is given in Ap-

pendix B. Remind that these sensitivities are well defined even if h is not smooth.
B 3rd step: error analysis. Last but not least, one has to estimate the residual terms. In the
smooth case for h, owing to (3.10), it is sufficient to estimate the Lp norms of the residual processes

XT −
i∑

j=0

Xj,T

j!
for i ∈ {1, 2} and there is no other difficulties in order to conclude. Under the sole

assumption that h ∈ Lipb(R), the previous decomposition doesn’t apply (because of h(2) and h(3)).
To get rid off the derivatives of h, a natural idea is first to smooth h, second to employ Malliavin
integration by parts formulas, and then to take the smoothing parameter to 0. But this strategy
applied to the representation (3.10) fails because the random variable XP

T + η(XT −XP
T ) does not

belong to the space D∞ for η 6= 0: indeed, the coefficient function of the square root model does
not satisfy the standard assumptions. Malliavin differentiability is studied by hand in [AE08] up
to the second order.

To overcome these difficulties, the trick is twofold:
1. we replace XT by the smooth random variable (in Malliavin sense) XP

T +X1,T +
X2,T

2 close
to XT in Lp,

2. we apply a Gaussian regularization to h, giving a new payoff hδ (defined later in (3.32))
which will support the Malliavin calculus computations (inspired by [GM14]).

Therefore E [h(XT )] is approximated by E [hδ(XT )] which can be decomposed as follows (with
similar arguments as (3.12)):

E [hδ(XT )] =E
[
hδ(X

P
T +X1,T +

X2,T

2
)

]
+ E

(XT −
2∑
j=0

Xj,T

j!
)

∫ 1

0

h
(1)
δ ((1− η)

2∑
j=0

Xj,T

j!
+ ηXT )dη


=E

[
hδ(X

P
T )
]

+ E
[
h

(1)
δ (XP

T )(X1,T +
X2,T

2
)

]
+

1

2
E
[
h

(2)
δ (XP

T )X2
1,T

]
+ Error3,hδ ,

(3.14)
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Error3,hδ =E

(XT −
2∑
j=0

Xj,T

j!
)

∫ 1

0

h
(1)
δ ((1− η)

2∑
j=0

Xj,T

j!
+ ηXT )dη


+

1

2
E

[
h

(2)
δ (XP

T )(X1,TX2,T +
X2

2,T

4
)

]

+ E
[
(X1,T +

X2,T

2
)3

∫ 1

0

(1− η)2

2
h

(3)
δ (XP

T + η(X1,T +
X2,T

2
))dη

]
. (3.15)

Observe that the equations (3.11) and (3.14) are the same (up to the modification of h into hδ)
but the representations of error (3.12) and (3.15) differ. The latter will be that to use in our
analysis with Malliavin calculus. As h ∈ Lipb(R), the first term of (3.15) involving only h(1)

δ can
be handled directly. Integration by parts from Malliavin calculus should be applied to the two last
terms of (3.15), which contain higher derivatives of hδ with the random variables XP

T , X1,T and
X2,T belonging to D∞, but XP

T + η(X1,T +
X2,T

2 ) suffers from degeneracy (in the Malliavin sense)
for η 6= 0. This is where Gaussian regularization plays an important role: it allows to integrate
by parts w.r.t. the random variable XP

T + η(X1,T +
X2,T

2 ) + Gaussian r.v., which is now non
degenerate. Details are explained in Subsection 3.3.

The complete analysis of the error estimate (2.4) is given in the following subsection, along
several steps:

1. Lp norms estimates of the residuals processes,
2. small Gaussian noise perturbation to smooth the function h,
3. careful use of Malliavin integration by parts formulas to achieve the proof.

3.2. Approximation of X, V , Λ and error estimates.

Approximation of V , Λ and related error estimates.
Definition 3.3. Assume (P). We introduce for i ∈ {0, 1, 2} the Λ-residual processes defined

by (t ∈ [0, T ])

RΛ
i,t := Λt −

i∑
j=0

Λj,t
j!

where by convention Λ0,t = λt and the corrective processes (Λ1,Λ2) are defined in (3.6)-(3.9). By
replacing Λ by V , we define similarly the V -residual processes using the notation RV .

Proposition 3.4. Assume (P). Then for any p ≥ 1, we have:

√
v0 ≤ λinf ≤ λsup ≤

√
v0 + Tαsup, (3.16)

sup
t∈[0,T ]

||Λi,t||p ≤c (ξsup

√
T )i, ∀i ∈ {1, 2}, (3.17)

sup
t∈[0,T ]

||RΛ
i,t||p ≤c (ξsup

√
T )i+1, ∀i ∈ {0, 1, 2}. (3.18)

Proof. (3.16) is obvious in view of (3.3). The proofs of (3.17) and (3.18) can be found in
[BGM10b, Propositions 4.6, 4.7 and 4.8] replacing in the quoted paper κ by 0 and κθt by αt.

Corollary 3.5. Assume (P). Then for any p ≥ 1 we have

v0 ≤ vinf ≤ vsup ≤v0 + Tαsup, (3.19)
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sup
t∈[0,T ]

||Vt||p ≤c1 + v0, (3.20)

sup
t∈[0,T ]

||Vi,t||p ≤c(ξsup

√
T )i, ∀i ∈ {1, 2}, (3.21)

sup
t∈[0,T ]

||RVi,t||p ≤c(ξsup

√
T )i+1, ∀i ∈ {0, 1, 2}. (3.22)

Proof. The proofs of (3.19) and (3.20) are easy. The inequality (3.21) is readily obtained
thanks to (3.5), (3.8) and (3.17). The proof of (3.22) is available in [BGM10b, Corollary 4.9].

Approximation of X and related error estimates.
Definition 3.6. Assume (Hx0). We introduce for i ∈ {0, 1, 2} the X-residual processes

defined by (t ∈ [0, T ])

RXi,t := Xt −
i∑

j=0

Xj,t

j!
,

where by convention X0,t = X0
t = XP

t and the corrective processes (X1, X2) are defined in (3.4)-
(3.7). When writing a Taylor expansion of σt(.) at x = Xt around x = x0, we denote by Rn,σ(Xt)

the nth Taylor residual:

Rn,σ(Xt) := σt(Xt)−
n∑
i=0

(Xt − x0)i

i!
σ

(i)
t . (3.23)

Replacing σ by σ2, we use the similar notation Rn,σ2(Xt).
Let p ≥ 2, standard computations involving Burkholder-Davis-Gundy and Holder inequalities

yield:

||Xt − x0||pp ≤ct
p
2−1

∫ t

0

||σs(Xs)
√
Vs||

p

pds+ tp−1

∫ t

0

||σ2
s(Xs)Vs||

p

pds

≤ct
p
2−1|σ|p∞

∫ t

0

E
[
V p/2s

]
ds+ tp−1|σ|2p∞

∫ t

0

E [V ps ] ds ≤c (|σ|∞
√
T )p, (3.24)

where we have applied the estimate (3.20) at the last inequality. Observe that the above estimate
is valid also for p ∈ [1, 2) by using ‖.‖p ≤ ‖.‖q for p ≤ q.

We now aim at handling X-residual processes, and the next results are intermediate steps.
Lemma 3.7. Assume (Hx0) and (P). For any p ≥ 1:

sup
t∈[0,T ]

||XP
t − x0||p ≤c |σ|∞

√
T , (3.25)

sup
t∈[0,T ]

||Xi,t||p ≤c |σ|∞[ξisup +M1(σ)(M0(σ) + ξsup)i−1]T
i+1
2 , ∀i ∈ {1, 2}. (3.26)

Proof. It is enough to prove the inequalities for p ≥ 2: thus, now consider such a p. The proof
of (3.25) is similar to (3.24). For (3.26) i = 1: starting from (3.4), the same computations as before
give:

||X1,t||p ≤cM1(σ)
√
T (1 +M0(σ)

√
T ) sup

t∈[0,T ]

||XP
t − x0||p



12 R. BOMPIS AND E. GOBET

+ |σ|∞
√
T (1 +M0(σ)

√
T ) sup

t∈[0,T ]

||V1,t||p.

We conclude using (3.25) and (3.21). For (3.26) i = 2, one has from (3.7):

||X2,t||p ≤cM1(σ)
√
T (1 +M0(σ)

√
T )( sup

t∈[0,T ]

||(XP
t − x0)2||p + sup

t∈[0,T ]

||X1,t||p)+

+ |σ|∞
√
T (1 +M0(σ)

√
T ) sup

t∈[0,T ]

||V2,t||p + |σ|∞
√
T sup
t∈[0,T ]

||V 2
1,t||p

+M1(σ)
√
T (1 +M0(σ)

√
T ) sup

t∈[0,T ]

||XP
t − x0||2p sup

t∈[0,T ]

||V1,t||2p.

We conclude using (3.25), (3.26) i = 1 and (3.21).
The following Lemma provides the explicit equations solved by the X-residual processes, in a

form appropriate for tight Lp estimates.
Lemma 3.8. Assume (Hx0

) and (P). One has:

dRX0,t =[λtR0,σ(Xt) + σt(Xt)R
Λ
0,t]dWt −

1

2
[vtR0,σ2(Xt) + σ2

t (Xt)R
V
0,t]dt, R

X
0,0 = 0, (3.27)

dRX1,t =[λtR1,σ(Xt) + Λ1,tR0,σ(Xt) + σt(Xt)R
Λ
1,t + λtσ

(1)
t RX0,t]dWt

− 1

2
[vtR1,σ2(Xt) + V1,tR0,σ2(Xt) + σ2

t (Xt)R
V
1,t + 2vtσtσ

(1)
t RX0,t]dt, R

X
1,0 = 0, (3.28)

dRX2,t =[λtR2,σ(Xt) + Λ1,tR1,σ(Xt) +
Λ2,t

2
R0,σ(Xt) + σt(Xt)R

Λ
2,t + λtσ

(1)
t RX1,t + λt

σ
(2)
t

2
RX0,t(Xt +XP

t −2x0)

+ Λ1,tσ
(1)
t RX0,t]dWt −

1

2
[vtR2,σ2(Xt) + V1,tR1,σ2(Xt) +

V2,t

2
R0,σ2(Xt) + σ2

t (Xt)R
V
2,t + 2vtσtσ

(1)
t RX1,t

+ vt((σ
(1)
t )2 + σ

(2)
t σt)R

X
0,t(Xt +XP

t −2x0) + 2V1,tσtσ
(1)
t RX0,t]dt, R

X
2,0 = 0. (3.29)

Proof. The verification of these identities is tedious but without mathematical difficulties. For
convenience, we detail some computations. To obtain (3.27), start from (1.2)-(1.3) and (1.4) and
write:

dRX0,t =[σt(Xt)Λt − σtλt]dWt −
1

2
[σ2
t (Xt)Vt − σ2

t vt]dt

=[λt(σt(Xt)− σt) + σt(Xt)(Λt − λt)]dWt −
1

2
[vt(σ

2
t (Xt)− σ2

t ) + σ2
t (Xt)(Vt − vt)]dt

=[λtR0,σ(Xt) + σt(Xt)R
Λ
0,t]dWt −

1

2
[vtR0,σ2(Xt) + σ2

t (Xt)R
V
0,t]dt.

Similarly for (3.28), using (3.27) and (3.4), we get:

dRX1,t =dRX0,t − dX1,t

=[λtR0,σ(Xt) + σt(Xt)R
Λ
0,t]dWt −

1

2
[vtR0,σ2(Xt) + σ2

t (Xt)R
V
0,t]dt

− [(XP
t − x0)σ

(1)
t λt + Λ1,tσt](dWt − σtλtdt)

=[λtR0,σ(Xt) + Λ1,tR0,σ(Xt) + σt(Xt)R
Λ
1,t]dWt −

1

2
[vtR0,σ2(Xt) + V1,tR0,σ2(Xt) + σ2

t (Xt)R
V
1,t]dt

− (XP
t − x0)σ

(1)
t λt(dWt − σtλtdt)
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=[λtR1,σ(Xt) + Λ1,tR0,σ(Xt) + σt(Xt)R
Λ
1,t + λtσ

(1)
t RX0,t]dWt

− 1

2
[vtR1,σ2(Xt) + V1,tR0,σ2(Xt) + σ2

t (Xt)R
V
1,t + 2vtσtσ

(1)
t RX0,t]dt.

Now consider (3.29). Start from (3.28)-(3.7) and write:

dRX2,t =dRX1,t −
1

2
dX2,t

=[λtR1,σ(Xt) + Λ1,tR0,σ(Xt) + σt(Xt)R
Λ
1,t + λtσ

(1)
t RX0,t]dWt

− 1

2
[vtR1,σ2(Xt) + V1,tR0,σ2(Xt) + σ2

t (Xt)R
V
1,t + 2vtσtσ

(1)
t RX0,t]dt

− 1

2

{
λt[(X

P
t − x0)2σ

(2)
t + 2σ

(1)
t X1,t] + 2(XP

t − x0)Λ1,tσ
(1)
t

}
(dWt − σtλtdt)

− 1

2

{
Λ2,tσtdWt − [(XP

t − x0)V1,tσ
(1)
t σt + (XP

t − x0)2(σ
(1)
t )2vt +

V2,t

2
σ2
t ]dt

}
=[λtR1,σ(Xt) + Λ1,tR0,σ(Xt) +

Λ2,t

2
R0,σ(Xt) + σt(Xt)R

Λ
2,t + λtσ

(1)
t RX1,t]dWt

− 1

2
[vtR1,σ2(Xt) + V1,tR0,σ2(Xt) +

V2,t

2
R0,σ2(Xt) + σ2

t (Xt)R
V
2,t + 2vtσtσ

(1)
t RX1,t]dt

− 1

2

{
λt(X

P
t − x0)2σ

(2)
t + 2(XP

t − x0)Λ1,tσ
(1)
t

}
(dWt − σtλtdt)

+
1

2
[(XP

t − x0)V1,tσ
(1)
t σt + (XP

t − x0)2(σ
(1)
t )2vt]dt

=[λtR2,σ(Xt) + Λ1,tR0,σ(Xt) +
Λ2,t

2
R0,σ(Xt) + σt(Xt)R

Λ
2,t + λtσ

(1)
t RX1,t + λt

σ
(2)
t

2
RX0,t(Xt +XP

t −2x0)]dWt

− 1

2
[vtR2,σ2(Xt) + V1,tR0,σ2(Xt) +

V2,t

2
R0,σ2(Xt) + σ2

t (Xt)R
V
2,t + vt((σ

(1)
t )2 + σ

(2)
t σt)R

X
0,t(Xt +XP

t −2x0)

+ 2vtσtσ
(1)
t RX1,t]dt− (XP

t − x0)Λ1,tσ
(1)
t (dWt − σtλtdt) +

1

2
(XP

t − x0)V1,tσ
(1)
t σtdt

=[λtR2,σ(Xt) + Λ1,tR1,σ(Xt) +
Λ2,t

2
R0,σ(Xt) + σt(Xt)R

Λ
2,t + λtσ

(1)
t RX1,t + λt

σ
(2)
t

2
RX0,t(Xt +XP

t −2x0)

+ Λ1,tσ
(1)
t RX0,t]dWt −

1

2
[vtR2,σ2(Xt) + V1,tR1,σ2(Xt) +

V2,t

2
R0,σ2(Xt) + σ2

t (Xt)R
V
2,t + 2vtσtσ

(1)
t RX1,t

+ vt((σ
(1)
t )2 + σ

(2)
t σt)R

X
0,t(Xt +XP

t −2x0) + 2V1,tσtσ
(1)
t RX0,t]dt.

Another intermediate result is the estimates of Rn,σ(Xt) and Rn,σ2(Xt). In view of (Hx0
),

we have |Rn,σ(Xt)| ≤c |Xt − x0|n+1M1(σ) and |Rn,σ2(Xt)| ≤c |Xt − x0|n+1M0(σ)M1(σ) for
n = 0, 1, 2. Combined with (3.24), this readily gives ∀p ≥ 1 and ∀j ∈ {0, 1, 2}:

sup
t∈[0,T ]

||Rj,σ(Xt)||p ≤c (|σ|∞
√
T )j+1M1(σ), sup

t∈[0,T ]

||Rj,σ2(Xt)||p ≤c (|σ|∞
√
T )j+1M0(σ)M1(σ).

(3.30)

We are now in a position to estimate the residuals processes, by taking advantage of the explicit
representation of Lemma 3.8.

Proposition 3.9. Assume that (Hx0
) and (P) hold. Then for any p ≥ 1, we have:

sup
t∈[0,T ]

||RXj,t||p ≤c |σ|∞
{
ξj+1
sup +M1(σ)(M0(σ) + ξsup)j

}
T
j
2 +1, ∀j ∈ {0, 1, 2}. (3.31)
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Proof. As before, it is enough to consider p ≥ 2. We begin with RX0,t. Starting from (3.27) and
using standard inequalities, it readily follows:

||RX0,t||p ≤c
√
T [sup
t≤T
||R0,σ(Xt)||p + |σ|∞sup

t≤T
||RΛ

0,t||p] + T [sup
t≤T
||R0,σ2(Xt)||p + |σ|2∞sup

t≤T
||RV0,t||p].

We conclude using (3.30)-(3.18)-(3.22). Similarly for RX1,t given in (3.28), we obtain:

||RX1,t||p ≤c
√
T
{

sup
t≤T
||R1,σ(Xt)||p + sup

t≤T
||Λ1,tR0,σ(Xt)||p + |σ|∞sup

t≤T
||RΛ

1,t||p +M1(σ)sup
t≤T
||RX0,t||p

}
+ T

{
sup
t≤T
||R1,σ2(Xt)||p + sup

t≤T
||V1,tR0,σ2(Xt)||p + |σ|2∞sup

t≤T
||RV1,t||p + |σ|∞M1(σ)sup

t≤T
||RX0,t||p

}
.

Then, by plugging in the above upper bound the estimates (3.17)-(3.18)-(3.21)-(3.22)-(3.30)-(3.31)
i = 0, we complete the proof of (3.31) for i = 1. Finally for RX2,t, starting from (3.29), we readily
have:

||RX2,t||p ≤c
√
T
{

sup
t≤T
||R2,σ(Xt)||p + sup

t≤T
||Λ1,tR1,σ(Xt)||p + sup

t≤T
||Λ2,tR0,σ(Xt)||p + |σ|∞sup

t≤T
||RΛ

2,t||p

+M1(σ)sup
t≤T
||RX1,t||p +M1(σ)sup

t≤T
||RX0,t(Xt +XP

t −2x0)||
p

+M1(σ)sup
t≤T
||Λ1,tR

X
0,t||p

}
+ T

{
sup
t≤T
||R2,σ2(Xt)||p + sup

t≤T
||V1,tR1,σ2(Xt)||p + sup

t≤T
||V2,tR0,σ2(Xt)||p + |σ|2∞sup

t≤T
||RV2,t||p

+ |σ|∞M1(σ)sup
t≤T
||RX1,t||p +M1(σ)M0(σ)sup

t≤T
||RX0,t(Xt +XP

t −2x0)||
p

+ |σ|∞M1(σ)sup
t≤T
||V1,tR

X
0,t||p

}
.

The proof is completed as before using (3.17)-(3.18)-(3.21)-(3.22)-(3.30)-(3.31) i = 0 and 1.

3.3. Regularization of the function h by adding a small noise perturbation. As
explained in Subsection 3.1, in order to compensate the lack of smoothness of the payoff function h
and to overcome some problems of degeneracy in the Malliavin sense, we introduce an extra scalar
Brownian motion W independent of W and B. Let h be a bounded payoff, then define:

hδ(x) = E
[
h(x+ δWT )

]
(3.32)

for a small parameter δ > 0. Clearly the function hδ is of class C∞b (R) thanks to the smooth
Gaussian density and remarkably we notice that

hδ(x) = E
[
hδ/
√

2(x+ δW T
2

)
]
. (3.33)

In addition h ∈ Lipb(R)⇒ hδ ∈ Lipb(R) and we have Chδ ≤ Ch and Lhδ ≤ Lh (remind (2.2)). The
next lemma quantifies the error in terms of δ induced by considering hδ instead of h in expectations
and sensitivities appearing in Theorem 2.4.

Lemma 3.10. Let δ > 0. Assume that h ∈ Lipb(R) and that (Hx0
) is satisfied. Then we have:∣∣E [h(XT )]− E [hδ(XT )]

∣∣+
∣∣E [h(XP

T )
]
− E

[
hδ(X

P
T )
] ∣∣ ≤cLhδ√T ,∣∣∂ixiE [h(XP

T + x)
]
|x=0 − ∂ixiE

[
hδ(X

P
T + x)

]
|x=0

∣∣ ≤cLh δ
√
T

(
∫ T

0
σ2
t vtdt)

i/2
, ∀i ≥ 1.
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Proof. The first estimate directly follows from the Lipschitz property of h. For the second one,
write:

E
[
hδ(X

P
T + x)

]
=

∫
R
E

[
h(y −

∫ T
0
σ2
t vtdt

2
+ δWT )

]
e
− (y−x)2

2
∫T
0 σ2t vtdt√

2π
∫ T

0
σ2
t vtdt

dy,

to obtain:

∂ixiE
[
h(XP

T + x)
]
|x=0 − ∂ixiE

[
hδ(X

P
T + x)

]
|x=0

=

∫
R
E

[
h(y −

∫ T
0
σ2
t vtdt

2
+ δWT )− h(y −

∫ T
0
σ2
t vtdt

2
)

]
∂ixi

 e
− (y−x)2

2
∫T
0 σ2t vtdt√

2π
∫ T

0
σ2
t vtdt


∣∣∣
x=0

dy.

Then we easily complete the proof using again that h is Lipschitz and standard upper bounds for
the derivatives of the Gaussian density.

In view of the magnitudes of the coefficients Cli,T , C
s
i,T and Clsi,T defined in Theorem 2.4,

Lemma 3.10 readily yields

∣∣Error3,h

∣∣ =
∣∣E [h(XT )]− E

[
h(XP

T )
]
−

6∑
i=1

ηi,TGhi
∣∣

≤
∣∣E [h(XT )]− E [hδ(XT )]

∣∣+
∣∣E [hδ(XP

T )
]
− E

[
h(XP

T )
] ∣∣

+

6∑
i=1

|ηi,T |
∣∣Ghi − Ghδi ∣∣+

∣∣Error3,hδ

∣∣ ≤c Lh δ√T +
∣∣Error3,hδ

∣∣.
Assume now without loss of generality that ξsup 6= 0 (valid under (P)). We may prove the
advertised error estimate (2.4) provided that we choose

δ = |σ|∞[ξ3
sup +M1(σ)(M0(σ) + ξsup)2] T

3
2 (3.34)

and that, for such a δ, we show

|Error3,hδ | ≤c Lh|σ|∞[ξ3
sup +M1(σ)(M0(σ) + ξsup)2]T 2. (3.35)

This is the purpose of the next subsection, where we will consider the representation (3.15) for
Error3,hδ .

3.4. Malliavin integration by part formula and proof of estimate (3.35). We write
Wt =

∫ t
0
ρsdBs +

∫ t
0

√
1− ρ2

sdB
⊥
s where (B⊥t )0≤t≤T is a Brownian motion independent of Bt and

we consider the calculus of stochastic variations w.r.t. the three-dimensional Brownian motion
(B,B⊥,W ), the Malliavin derivative operator w.r.t. B,B⊥ and W being respectively denoted
by D(.) = (D1

t (.), D
2
t (.), D

3
t (.))t∈[0,T ]. For the second derivatives, we use the obvious notation

(Di,j(.))s,t∈[0,T ] for i, j ∈ {1, 2, 3} and so on for the higher derivatives. We freely adopt the
notations of [Nua06] for the Sobolev space Dk,p associated to the norm ||.||k,p.
In the following lemma, we provide estimates of the Malliavin derivatives of XP

t , X1,t and X2,t for
t ∈ [0, T ].

Lemma 3.11. Assume that (Hx0) and (P) hold. Then, ∀t ∈ [0, T ], XP
t , X1,t, X2,t, V1,t, and

V2,t ∈ D3,∞. Moreover, we have the following estimates, ∀p ≥ 1, uniformly in q, r, s, t ∈ [0, T ]:

||D1
sX

P
t ||p + ||D2

sX
P
t ||p ≤c |σ|∞, (3.36)
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||D1
sΛn,t||p + ||D1

sVn,t||p ≤c ξ
n
supT

n−1
2 , ∀n ∈ {1, 2}, (3.37)

||D1
sXn,t||p + ||D2

sXn,t||p ≤c |σ|∞[ξnsup +M1(σ)(M0(σ) + ξsup)n−1]T
n
2 , ∀n ∈ {1, 2} (3.38)

||D1,1
r,sΛ2,t||p + ||D1,1

r,sV2,t||p ≤c ξ
2
sup, (3.39)∑

i,j∈{1,2}

||Di,j
r,sXn,t||p ≤c |σ|∞[ξnsup +M1(σ)(M0(σ) + ξsup)n−1]T

n−1
2 , ∀n ∈ {1, 2}, (3.40)

∑
i,j,k∈{1,2}

||Di,j,k
q,r,sX2,t||p ≤c |σ|∞[ξ2

sup +M1(σ)(M0(σ) + ξsup)]. (3.41)

Proof. All the 5 variables are clearly in D3,∞ because they are defined as iteration and smooth
composition of Wiener integrals (see (1.4)-(3.4)-(3.7)-(3.5)-(3.8)). Then the calculus of the deriva-
tives and the Lp-estimates is classical and is left to the reader. In particular, all the derivatives
w.r.t. the third Brownian motion W are null as well as the derivatives of V1,t, Λ1,t, V2,t and Λ2,t

w.r.t. B⊥.
We now state the crucial result related to integration by parts formulas which is proved later.
Proposition 3.12. Assume (Hx0

) and (P). For any η ∈ [0, 1], we define the random variable
Gηδ := XP

T + η(X1,T +
X2,T

2 ) + δWT/2. Let i ∈ {2, 3}, for any Y in Di−1,∞, there exist random
variables Yi,η ∈ ∩p≥1L

p such that

E
[
Y h

(i)

δ/
√

2
(Gηδ )

]
=E

[
Yi,ηh

(1)

δ/
√

2
(Gηδ )

]
, (3.42)

where, for any p ≥ 1,

sup
η∈[0,1]

||Yi,η||p ≤c ||Y ||i−1,p+ 1
2
(

∫ T

0

σ2
t vtdt)

− (i−1)
2 . (3.43)

We are now in a position to achieve the proof of (3.35). Consider Error3,hδ explicitly written
in (3.15). The first term of (3.15) is easily handled using (3.31) j = 2, in addition we notice
that |h(1)

δ/
√

2
|∞ ≤ Lh. For the second term of (3.15), use (3.33) and apply Proposition 3.12 with

Y = X1,TX2,T +
X2

2,T

4 : thus using (3.26)-(3.38), we obtain:∣∣∣∣∣E
[
h

(2)
δ (XP

T )(X1,TX2,T +
X2

2,T

4
)

]∣∣∣∣∣ =
∣∣∣E [h(2)

δ/
√

2
(G0

δ)Y
]∣∣∣ =

∣∣∣E [h(1)

δ/
√

2
(G0

δ)Y1,0

]∣∣∣
≤cLh||Y ||1,2(

∫ T

0

vtσ
2
t dt)−1/2 ≤c Lh|σ|∞[ξ3

sup +M1(σ)(M0(σ) + ξsup)2]T 2.

The last term of (3.15) is handled similarly; apply Proposition 3.12 with Y = (X1,T +
X2,T

2 )3 and
use (3.26)-(3.38)-(3.40)-(3.41) to obtain the announced result. To summarize, the proof of Theorem
2.4 is now complete provided that we establish Proposition 3.12, which is done in the following
subsection.

3.5. Proof of Proposition 3.12. XP
T is a non degenerate random variable with Malliavin

covariance matrix equal to
∫ T

0
σ2
t vtdt > 0 thanks to (Hx0

) but Gη = XP
T + η(X1,T +

X2,T

2 ) may
be degenerate for η > 0 and this is the second reason to have introduced the small perturbation
δWT/2. Consider the random variable Gηδ = Gη + δWT/2 defined in Proposition 3.12: clearly
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it belongs to D3,∞ (even to D∞,∞ but higher regularity will not be used here). Its Malliavin
covariance matrix is invertible since

γGηδ =

2∑
i=1

∫ T

0

(Di
tG

η)2dt+ δ2T

2
= γGη + δ2T

2
≥ δ2T

2
> 0.

Then in view of (3.34)-(3.36)-(3.38)-(3.40)-(3.41) it readily comes for i ∈ {1, 2} and any p ≥ 1:

||(D1Gηδ , D
2Gηδ , D

3Gηδ )||i,p ≤c|σ|∞
√
T . (3.44)

Hence, applying [Nua06, Proposition 1.5.6 and Proposition 2.1.4] and using (3.44) we get the
existence of Y2,η and Y3,η such that for any i ∈ {2, 3} and any p ≥ 1:

||Yi,η||p ≤c||Y ||i−1,p+ 1
2
||DGηδ ||

i−1
i−1,2p(2p+1)||γ

−1
Gηδ
||i−1
i−1,2p(2p+1) (3.45)

≤c||Y ||i−1,p+ 1
2
(|σ|∞

√
T )i−1||γ−1

Gηδ
||i−1
i−1,2p(2p+1).

It remains to finely estimate the norms related to the inverse of the Malliavin covariance matrix
γGηδ . First notice that using the definitions of Gη and γGη we have:

γGη =

∫ T

0

σ2
t vtdt+ η2

∫ T

0

|Dt(X1,T +
X2,T

2
)|2dt

+ 2η

∫ T

0

σt
√
vt (ρt,

√
1− ρ2

t , 0) ·Dt(X1,T +
X2,T

2
)dt.

Therefore, from estimates (3.36)-(3.38), (Hx0
) and (P), we easily obtain

sup
η∈[0,1]

∣∣∣∣γGη − ∫ T

0

σ2
t vtdt

∣∣∣∣
p
≤c |σ|2∞(ξsup +M1(σ))T

3
2 , (3.46)

for any p ≥ 1. This intermediate estimate allows to prove the next lemma.
Lemma 3.13. Assume (Hx0) and (P). Then (γGηδ )−1 ∈ D2,∞ and we have for any p ≥ 1:

sup
η∈[0,1]

||(γGηδ )−1||p ≤c(
∫ T

0

σ2
t vtdt)

−1, (3.47)

sup
t∈[0,T ], η∈[0,1]

∑
i∈{1,2}

||Di
t(γGηδ )−1||p ≤c(M1(σ) + ξsup)(

∫ T

0

σ2
t vtdt)

−1, (3.48)

sup
s,t∈[0,T ], η∈[0,1]

∑
i,j∈{1,2}

||Di,j
s,t(γGηδ )−1||p ≤c[ξ2

sup +M1(σ)(M0(σ) + ξsup)](

∫ T

0

σ2
t vtdt)

−1. (3.49)

Proof. For the sake of brevity, we only prove (3.47) and (3.48) because there is no extra
difficulties for (3.49). For (3.47), we have for any p ≥ 1 and q ≥ 1:

E
[
(γGηδ )−p

]
= E

[
(γGηδ )−p1γGη≤ 1

2

∫ T
0
σ2
t vtdt

]
+ E

[
(γGηδ )−p1γGη> 1

2

∫ T
0
σ2
t vtdt

]
≤ (δ2T

2
)−pP(

∫ T

0

σ2
t vtdt− γGη ≥

∫ T
0
σ2
t vtdt

2
) +

(1

2

∫ T

0

σ2
t vtdt

)−p
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≤c (δ2T )−p
( ∫ T

0

σ2
t vtdt

)−q∣∣∣∣γGη − ∫ T

0

σ2
t vtdt

∣∣∣∣q
q

+
( ∫ T

0

σ2
t vtdt

)−p
≤c
( ∫ T

0

σ2
t vtdt

)−p [
(δ2T )−p

( ∫ T

0

σ2
t vtdt

)−q+p∣∣∣∣γGη − ∫ T

0

σ2
t vtdt

∣∣∣∣q
q

+ 1

]
,

where we have used the Markov inequality at the third line. Then choosing q = 6p and using
(3.34)-(3.46), we readily obtain:

||(γGηδ )−1||p ≤c(
∫ T

0

σ2
t vtdt)

−1

×
[
(|σ|∞[ξ3

sup +M1(σ)(M0(σ) + ξsup)2]T 2)−2(T |σ|2∞)−5(|σ|2∞[ξsup +M1(σ)]T
3
2 )6 + 1

]
≤c(
∫ T

0

σ2
t vtdt)

−1.

The inequality (3.48) is a straightforward consequence of [Nua06, Lemma 2.1.6], which writes

Di
t(γGηδ )−1 = −

Di
tγGηδ
γ2
Gηδ

= −2

∫ T
0

[D1
uG

ηDi,1
t,uG

η +D2
uG

ηDi,2
t,uG

η]du.

γ2
Gηδ

, i ∈ {1, 2}, t ∈ [0, T ].

Then using (3.36)-(3.38)-(3.40)-(3.47) we readily get, ∀p ≥ 1,

sup
t∈[0,T ]

||Di
t(γGηδ )−1||p ≤c T |σ|2∞(M1(σ) + ξsup)(

∫ T

0

σ2
t vtdt)

−2,

which leads to (3.48).
Now plug (3.47)-(3.48)-(3.49) in (3.45) to complete the proof of (3.43) and thus Proposition

3.12.

4. Expansion formulas for the implied volatility. Now we have at hand an expansion
formula for the price E [h(XT )] (recall that we consider discounted asset so that risk-free rate
is set to 0) with an expansion which takes the form of Black-Scholes model price plus weighted
sensitivities, we are in a position to derive expansion formulas for the (Black-Scholes) implied
volatilities. Indeed we know that direct implied volatility expansions may be more accurate than
the corresponding price formulas, moreover they are usually simpler.

This derivation follows a more or less standard computational routine (see for instance [BG12,
LPP14]) by taking advantage of the relations between sensitivities w.r.t. the log-spot and those
w.r.t. volatility. Computations being quite standard (but tedious), we only state the approximation
formulas on implied volatilities without proof and we refer to [Bom13] for the full details.

Actually we provide two expansions of implied volatility, one when the local volatility is com-
puted at the log-spot x0 (see Subsection 4.2), one when it is computed at the average point between
spot and strike, which is known to be more symmetric and accurate (see Subsection 4.3). Remind
that the asset price model is martingale, and as explained in Subsection 2.3, this allows to apply
our main theorem to the Call payoff h(x) = (ex −K)+.

4.1. Notations.

Call options. We denote by Call(S0, T,K) the price at time 0 of a Call option with spot S0 =

ex0 , maturity T and strikeK, written on the asset S = eX that is Call(S0, T,K) = E
[
(eXT −K)+

]
.

As usual, ATM (At The Money) Call refers to S0 ≈ K, ITM (In The Money) to S0 � K, OTM
(Out The Money) to S0 � K.
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Black-Scholes Call price function. For the sake of completeness, we give the Black-Scholes
Call price function depending on log-spot x, total variance y and log-strike k:

CallBS(x, y, k) = exN (d1(x, y, k))− ekN (d2(x, y, k)) (4.1)

where:

N (x) =

∫ x

−∞
N ′(u)du, N ′(u) =

e−u
2/2

√
2π

,

d1(x, y, k) =
x− k
√
y

+
1

2

√
y, d2(x, y, k) = d1(x, y, k)−√y.

In the following, x0 = log(S0) will represent the log-spot, k = log(K) the log-strike, xavg = (x0 +

k)/2 = log(
√
S0K) the mid-point between the log-spot and the log-strike, m = x0−k = log(S0/K)

the log-moneyness. The value CallBS(x0,
∫ T

0
σ2
t vtdt, k) = E

[
(eX

P
T − ek)+

]
equals Call(S0, T,K) =

E
[
(eXT −K)+

]
when M1(σ) = ξsup = 0. For (x, T, k) given, the implied Black-Scholes volatility

of a price Call(ex, T, ek) is the unique non-negative volatility parameter σI(x, T, k) such that:

CallBS
(
x, σ2

I (x, T, k)T, k
)

= Call(ex, T, ek). (4.2)

Quadratic mean of the volatility on [0, T ]. For any spatial point z ∈ R, we denote by σz
the quadratic mean on [0, T ] of (σt(z)

√
vt)t∈[0,T ] defined by:

σz =

√
1

T

∫ T

0

σ2
t (z)vtdt. (4.3)

This notation is frequently used for the points x0 and xavg. When applied in x0, we simply write
σ̄ if unambiguous.

4.2. Implied volatility expansions at spot. We introduce new corrective coefficients useful
for the implied volatility expansions:

Definition 4.1. Assume (Hx0). We define the following corrective coefficients:

γ0a,T =σ̄ +
Cs1,T
4σ̄T

,

γ0b,T =
Cl5,T

2σ̄3T 2
−

Cl6,T
4σ̄3T 2

−
3Cl6,T
σ̄5T 3

+
Cs2,T
8σ̄T

−
Cs2,T

2σ̄3T 2
−
Cs3,T
16σ̄T

−
Cs3,T

4σ̄3T 2
+

3(Cs1,T )2

8σ̄5T 3

+
Cls7,T
σ̄3T 2

−
Cls4,T
8σ̄T

−
3Cls4,T
2σ̄3T 2

−
Cls5,T
8σ̄T

−
Cls5,T

2σ̄3T 2
−

Cls6,T
2σ̄3T 2

+
(Cl1,TC

s
1,T )

8σ̄3T 2
+

3(Cl1,TC
s
1,T )

2σ̄5T 3
,

γ1a,T =−
Cl1,T
σ̄3T 2

−
Cs1,T

2σ̄3T 2
,

γ1b,T =−
Cs2,T

2σ̄3T 2
+

3(Cs1,T )2

8σ̄5T 3
−
Cls2,T + Cls3,T

2σ̄3T 2
−

Cls4,T
2σ̄3T 2

−
Cls6,T

4σ̄3T 2
+

3(Cl1,TC
s
1,T )

4σ̄5T 3
,

γ2,T =
Cl3,T
σ̄5T 3

−
3Cl4,T
σ̄5T 3

+ 6
Cl6,T
σ̄7T 4

+
Cs2,T

2σ̄5T 3
+

Cs3,T
4σ̄5T 3

−
3(Cs1,T )2

4σ̄7T 4
+
Cls2,T + Cls3,T

σ̄5T 3

+
3Cls4,T
2σ̄5T 3

+
Cls5,T

2σ̄5T 3
+

Cls6,T
2σ̄5T 3

−
3(Cl1,TC

s
1,T )

σ̄7T 4
,
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where (Cli,T )1≤i≤4-(Csi,T )1≤i≤3-(Clsi,T )1≤i≤6 are defined in Theorem 2.4 and Cl5,T -C
l
6,T -C

ls
7,T are

defined by:

Cl5,T =ω(σ2v, ((σ(1))2 + σσ(2))v, σ2v)T0 , Cl6,T =ω(σ2v, σσ(1)v, σσ(1)v, σ2v)T0 ,

Cls7,T =ω(ρξσv, σσ(1), σ2v)T0 .

Our first implied volatility expansion states that the implied volatility writes as a quadratic
function w.r.t. the log-moneyness m with coefficients defined by γ.

Theorem 4.2 (3rd order expansion of the implied volatility). Assume (Hx0
) and (P). We

have:

σI(x0, T, k) =γ0a,T + γ0b,T + (γ1a,T + γ1b,T )m+ γ2,Tm
2 + ErrorI

3,x0
. (4.4)

In addition, for any Cm > 0 and any |m| ≤ Cm|σ|∞
√
T , the error is estimated as

|ErrorI
3,x0
| ≤c |σ|∞[ξ3

sup +M1(σ)(M0(σ) + ξsup)2]T
3
2 ,

where the generic constant depends in an increasing way of Cm (but not m).

Several remarks and corollaries follow from the above result.
B Short maturity skew and smile behaviors. We analyse the behavior of the approximation
formula (4.4) at the money (i.e. m ≈ 0) and for short maturity (i.e. T � 1). In view of (4.4) and
the various coefficients Cl, Cs, Cls and γ (see Definition 4.1 and Theorem 2.4), assuming that σt,
σ

(1)
t and σ(2)

t are continuous at t = 0, we obtain the level, the slope and the curvature ATM:

[σI(x0, T, k)]|k=x0 ≈ γ0a,T + γ0b,T ≈ σ0
√
v0,

∂k[σI(x0, T, k)]|k=x0
≈− γ1a,T − γ1b,T ≈ −γ1a,T ≈

σ
(1)
0

√
v0

2
+

ρ0ξ0
4
√
v0
, (4.5)

∂2
k2 [σI(x0, T, k)]|k=x0

≈ 2γ2,T =
σ

(2)
0

√
v0

3
−

[σ
(1)
0 ]2
√
v0

6σ0
− 5ρ2

0ξ
2
0

24σ0v
3
2
0

+
ξ2
0

12σ0v
3
2
0

, (4.6)

where we have used |γ0a,T + γ0b,T − σ̄| + |γ1b,T | ≤c T, and consequently neglected these terms
considered as maturity bias. We have several observations.

i) In case of null correlation, our approximation coincides with [FJ11, Theorem 4.1]. The slope
of ATM implied volatility depends on both the correlation and the slope of local volatility, which
are therefore interpreted as skew parameters. There might be a competition between σ(1)

0 and ρ in
the calibration procedures.

ii) For pure local volatility models (i.e. ξsup = 0), we retrieve the results of [BG12, Theorem
22].

iii) For pure Heston models (i.e. M1(σ) = 0), we recover the expansion given in [FJ09,
Theorem 2.5]. In the case of zero correlation, the approximation formula (4.4) becomes for short
maturity:

σI(x0, T, k) ≈ σ̄ −
Cs3,T
16σ̄T

−
Cs3,T

4σ̄3T 2
+

Cs3,T
4σ̄5T 3

m2 ≈ σ̄ − ξ2
0σ0T

24
√
v0

[
σ2

0v0T

4
+ 1] +

ξ2
0

24σ0v
3
2
0

m2.

We have retrieved that an uncorrelated Heston model induces symmetric smile w.r.t. the money-
ness. The implied volatility is smaller ATM and becomes larger ITM or OTM, the smile increasing
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with the volatility of volatility ξ0. If we consider a negative correlation, in view of (4.5) (the slope
becomes negative and increases in absolute value with |ρ0|) and (4.6) (the curvature is decreasing
until reaching zero for |ρ0| =

√
2/5 ≈ 0.63, see [FJ09, Remark 2.1]), the center of the short matu-

rity smile is shifted to the right and the smile changes from a symmetric shape to a negative skew.
The converse is realized for a positive correlation.
B Calibration issues for time independent parameters. Generally the local volatility func-
tion is completely determined by the level and slope parameters identified respectively with the
local volatility and its first derivative ATM. This is for instance the case of the CEV model (ex-
posed in (5.1)). For general local and stochastic volatility models, the level of the volatility can
be fixed throughout the local volatility function whereas the stochastic variance process can be
normalized with an initial value v0 equal to 1. We have seen that for an uncorrelated local and
stochastic volatility model:
i) The level parameter of the local volatility is linked to the short time implied volatility ATM,
ii) The skew parameter of the local volatility is linked to the short time slope of the implied volatil-
ity ATM,
iii) Once the local volatility function is identified, the volatility of volatility parameter is linked to
the short time curvature of the implied volatility ATM.
These features allow us to suggest good surrogates for these three parameters in view of a cali-
bration procedure by simply estimate the market implied volatility curve for short maturity. But
we have observed that the correlation modifies the short term skew and it is well known that the
mean reversion parameter of a CIR process is in competition with the volatility of volatility. Thus
we can find models having different parameters but reproducing the same smile for one maturity
or several maturities, which cause problems for calibration.

4.3. Implied volatility expansions at mid-point. It has been observed in [BG12] through-
out numerical experiments that for the pure local volatility case, expansions with local volatility
function frozen at mid-point xavg = (x0 + k)/2 give better results. Actually this is a commonly
admitted fact and we aim at extending this idea to the current setting. First we introduce new
notations and definitions.
B Corrective coefficients frozen at mid-point. The coefficients Cl, Cs, Cls and γ were defined
in Theorem 2.4 and Definition 4.1 for the local volatility function σ at log-spot x0. To consider
the same coefficients but with local volatility function frozen at point z (where z is generally equal
to xavg or x0), we use the notations Cli,T (z), Csi,T (z),Clsi,T (z) and γi,T (z).
B New ellipticity assumption at xavg. We define similarly (Hxavg) and (Hx0) by replacing
x0 by xavg The generic constant in the further estimates will depend in an increasing way on

|σ|2∞T∫ T
0
σ2
t (xavg)vtdt

.

B Time reversal. For the coefficients Cli,T (xavg), we introduce the notation C̃li,T (xavg) which
means that we have inverted the order of integration of the integrands. For example C̃l1,T (xavg) =

ω(σ(xavg)σ
(1)(xavg)v, σ

2(xavg)v)T0 instead of Cl1,T (xavg) = ω(σ2(xavg)v, σ(xavg)σ
(1)(xavg)v)T0 .

Definition 4.3. Assume (Hxavg). We define the following corrective coefficients:

π0a,T (xavg) =γ0a,T (xavg),

π0b,T (xavg) =γ0b,T (xavg),

π1a,T (xavg) =
C̃l1,T (xavg)− Cl1,T (xavg)

2σ̄3
xavgT

2
−
Cs1,T (xavg)

2σ̄3
xavgT

2
,
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π1b,T (xavg) =γ1b,T (xavg) +
Cls1,T (xavg)

4σ̄xavgT
+
Cls8,T (xavg)

8σ̄xavgT
−
Cls4,T (xavg) + Cls5,T (xavg) + Cls9,T (xavg)

8σ̄3
xavgT

2
,

π2,T (xavg) =
C̃l3,T (xavg) + Cl3,T (xavg)

2σ̄5
xavgT

3
−

3(C̃l4,T (xavg) + Cl4,T (xavg))

2σ̄5
xavgT

3
−
Cl7,T (xavg)

8σ̄xavgT
+
Cl8,T (xavg)

4σ̄3
xavgT

2

+ 6
Cl6,T (xavg)

σ̄7
xavgT

4
+
Cs2,T (xavg)

2σ̄5
xavgT

3
+
Cs3,T (xavg)

4σ̄5
xavgT

3
−

3(Cs1,T (xavg))
2

4σ̄7
xavgT

4
+
Cls2,T (xavg) + Cls3,T (xavg)

σ̄5
xavgT

3

+
3Cls4,T (xavg)

2σ̄5
xavgT

3
+
Cls5,T (xavg)

2σ̄5
xavgT

3
+
Cls6,T (xavg)

2σ̄5
xavgT

3
−

3(Cl1,TC
s
1,T )(xavg)

σ̄7
xavgT

4
−
Cls1,T (xavg)

2σ̄3
xavgT

2
−
Cls8,T (xavg)

4σ̄3
xavgT

2

+ 3
Cls4,T (xavg) + Cls5,T (xavg) + Cls9,T (xavg)

4σ̄5
xavgT

3
,

where Cl7,T (xavg), Cl8,T (xavg), Cls8,T (xavg) and Cls9,T (xavg) are defined by:

Cl7,T (xavg) =ω(((σ(1))2 + σσ(2))(xavg)v)T0 , Cl8,T (xavg) =ω(σ(xavg)σ
(1)(xavg)v, σ(xavg)σ

(1)(xavg)v)T0 ,

Cls8,T (xavg) =ω(ρξσ(1)(xavg)v, σ
2(xavg))

T
0 , Cls9,T (xavg) =ω(σ(xavg)σ

(1)(xavg)v, ρξσ(xavg)v, σ
2(xavg))

T
0 .

Then a tedious analysis about approximating the expansion (4.4) using xavg instead of x0 leads
to the following result. Details are in [Bom13].

Theorem 4.4 (3rd order expansion of the implied volatility at mid-point). Assume (Hx0
),

(Hxavg) and (P). We have:

σI(x0, T, k) =π0a,T (xavg) + π0b,T (xavg) + (π1a,T (xavg) + π1b,T (xavg))m

+ π2,T (xavg)m
2 + ErrorI

3,xavg , (4.7)

where the corrective coefficients π are defined in Definition 4.3, and where ErrorI
3,xavg is estimated

as in Theorem 4.2.

5. Numerical experiments.

5.1. Model and benchmark. Here we give numerical examples of the accuracy of our im-
plied volatility approximation formula with local volatility at mid-point (see (4.7) in Theorem 4.4).
We consider a time-independent CEV-Heston model:

dSt =µSβt
√
YtdWt, S0 = ex0 , (5.1)

dYt =κ(θ − Yt)dt+
√
YtξdBt, Y0 = v0,

d〈W,B〉t =ρdt.

In our setting, it is related to local volatility function σ(x) = µe(β−1)x. Using Proposition C.2 in
Appendix C, the implied volatility formula (4.7) writes explicitly:

σI(x0, T, k) ≈µ(S0K)
β−1
2

√
v
{

1 +
ρξµ(S0K)

β−1
2 Rs1T

8v
(5.2)

+
(β − 1)2µ2(S0K)β−1vT

24
(1− µ2(S0K)β−1vT

4
)
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+
ρ2ξ2T

v2 [
3(Rs1)2

32v
+Rs2(

µ2(S0K)β−1vT

48
− 1

12
)]− ξ2TRs3

v2 [
1

24
+
µ2(S0K)β−1vT

96
]

+
ρξ(β − 1)µ(S0K)

β−1
2 T

v
[
Rs1
8

+ µ2(S0K)β−1vT (
Rls2
48v
− Rs1

32
)]

+
ρξ

µ(S0K)
β−1
2 v2

[−R
s
1

4
+ (β − 1)µ2(S0K)β−1vT (

Rs1
16
− Rls2

24v
)] log(

S0

K
)

+
ρ2ξ2T

v2 [
3(Rs1)2

32v
− Rs2

12
] log(

S0

K
)− (β − 1)2

24
log2(

S0

K
)

+
ρ2ξ2

µ2(S0K)β−1v3 [
Rs2
12
− 3(Rs1)2

16v
] log2(

S0

K
) +

ξ2Rs3
24µ2(S0K)β−1v3 log2(

S0

K
)
}
,

where the coefficients v, Rs1, Rs2, Rs3 and Rls2 are defined in Proposition C.1. Note that if the
correlation is equal to zero, many terms vanish and the formula becomes very simple.
As a benchmark, we use Monte Carlo methods with a variance reduction technique. The simulated
random variable is (ST − K)+ using an Euler scheme (see [Gla03, Section 3.4]) and in order
to reduce the statistical error, we use the Heston control variate (SH

T − K)+ − E
[
(SH
T −K)+

]
where (SHt )t∈[0,T ] follows (5.1) with β fixed at 1. The latter expectation is computed using the
Lewis formula [Lew00]. In [BGM10b], the authors have studied the numerical accuracy of price
approximations w.r.t. κ, θ, ξ and ρ in the context of Heston models whereas the influence of the
parameters β and µ has been considered in details in [BG12] in the case of pure local volatility
models. This is the reason why we decide to freeze at realistic values the set of model parameters
(with an important negative skew) and allow the maturity and the strike to vary in order to study
the global accuracy. In all the tests we use the values:

S0 = 1, µ = 0.25, β = 0.5, v0 = 1, θ = 1.2, κ = 3, ξ = 1.5, ρ = −70%, (5.3)

and we perform the Monte Carlo simulations with 107 sample paths and a time discretization
of 300 steps by year. Using the Heston control variate, this number of simulations allows to
obtain confidence intervals with a width reduced to a few bps2 for a large range of strikes and
maturities. All the following computations are performed using C++ on a Intel(R) Core(TM) i5
CPU@2.40GHz with 4 GB of ram.

5.2. Accuracy of the implied volatility formula (4.7). In Tables 5.1, 5.2, 5.3, 5.4, 5.5
and 5.6 (corresponding to the maturities 6M, 1Y , 2Y , 3Y , 5Y and 10Y ) we give for various strikes
the Black-Scholes implied volatilities estimated by Monte Carlo (MC), the bounds of the 95%-
confidence interval of the Monte Carlo estimator (MC- and MC+) and the implied volatilities
given by the approximation formula (5.2) (AF(xavg)). We use the parameters as in (5.3) and
the strikes are chosen to be approximately equal to S0e

qµ
√
θT where q takes the value of various

quantiles of the standard Gaussian law (1%-5%-10%-20%-30%-40%-50%-60%-70%-80%-90%-95%-
99%) which allows to cover far ITM and far OTM options. For the sake of completeness, we report
the computational time to perform the Monte Carlo simulations (for the analytical approximations,
the evaluation is instantaneous).
Regarding the results, we see that our approximation formula (5.2) is very accurate, giving errors
on implied volatilities smaller than 20 bps for a large range of strikes and maturities. The results
for ATM options are truly excellent but we nevertheless observe inaccuracies for extreme strikes,

21 bp (basis point) is equal to 0.01%.



24 R. BOMPIS AND E. GOBET

especially for OTM options (however for such strikes the accuracy of the Monte Carlo estimates is
less good) and for short maturity. This asymmetry in the errors is probably due to the important
correlation. Higher errors for short maturities is a counterintuitive fact with our error estimate
(2.4). It was already observed in [BGM10b] for Heston models and it may be explained by the
convergence of the stochastic variance to its stationary regime for long maturities whereas the
skew is very important for short maturities due to correlation. Thus we observe a maximal error
for the whole range of strikes and maturities of approximately 150 bps in Table 5.1 realized for
the maturity 6M and the extreme strike 1.50. For long maturities (3Y , 5Y and 10Y ), errors on
implied volatility are smaller than 15 bps if we except the largest strike for which the Monte Carlo
estimate is questionable (wide confidence interval). For instance we report ND in the tabulars
corresponding to the maturities 5Y and 10Y meaning that the corresponding prices are outside
the arbitrage bounds.
Last but not least, regarding the computational time, we observe that we need approximately
2m30s per month of the maturity for the Monte Carlo simulations (4h54m27s for the maturity
10Y !), whereas the whole set of implied volatilities is computed in less than 1 ms with the implied
volatility approximation formula. This is a very significant advantage allowing real-time pricing
and calibration procedures.
To conclude, our implied volatility approximation provides very good accuracy with real-time
computations and it is able to handle general time-dependent local volatility functions.

Table 5.1
Implied Black Scholes volatilities (%) for the Monte Carlo simulations (execution time: 17m02s) and the

approximation AF(xavg) expressed as a function of strikes for T = 6M .

Strikes 0.65 0.75 0.80 0.85 0.90 0.95 1 1.05 1.10 1.20 1.25 1.35 1.50

MC 34.86 31.86 30.49 29.18 27.94 26.74 25.61 24.52 23.50 21.64 20.82 19.45 18.01
MC- 34.85 31.86 30.49 29.18 27.93 26.74 25.61 24.52 23.50 21.64 20.82 19.44 17.95
MC+ 34.87 31.87 30.49 29.18 27.94 26.75 25.61 24.53 23.50 21.64 20.83 19.46 18.07
AF(xavg) 35.04 31.93 30.52 29.19 27.93 26.74 25.60 24.52 23.48 21.53 20.61 18.86 16.45

Table 5.2
Implied Black-Scholes volatilities (%) for the Monte Carlo simulations (execution time: 31m33s) and the

approximation AF(xavg) expressed as a function of strikes for T = 1Y .

Strikes 0.55 0.65 0.75 0.80 0.90 0.95 1 1.05 1.15 1.25 1.40 1.50 1.80

MC 36.36 33.49 31.01 29.89 27.85 26.91 26.02 25.17 23.61 22.22 20.43 19.44 17.32
MC- 36.34 33.48 31.01 29.89 27.84 26.90 26.01 25.17 23.61 22.22 20.43 19.43 17.16
MC+ 36.37 33.49 31.02 29.90 27.85 26.91 26.02 25.17 23.62 22.23 20.44 19.45 17.47
AF(xavg) 36.56 33.58 31.05 29.92 27.85 26.90 26.00 25.15 23.57 22.12 20.16 18.97 15.83

Appendix A. Martingale property: proof of Proposition 2.3. The process (eXt)0≤t≤T
is a positive local martingale, thus a supermartingale and E

[
eXt
]
≤ ex0 < +∞. The announced

martingale property is proved if we show E
[
eXT

]
= ex0 .

For n ∈ N∗, define the stopping time τn = inf{t ∈ [0, T ] : Vt ≥ n} (with the convention
τn = +∞ if the set is empty) and set

dX
(n)
t = σ(t,Xt)

√
Vt ∧ n dWt −

1

2
σ2(t,Xt)(Vt ∧ n)dt, Xn

0 = x0. (A.1)
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Table 5.3
Implied Black-Scholes volatilities (%) for the Monte Carlo simulations (execution time: 1h4m11s) and the

approximation AF(xavg) expressed as a function of strikes for T = 2Y .

Strikes 0.45 0.55 0.65 0.75 0.85 0.90 1 1.10 1.20 1.35 1.55 1.80 2.30

MC 37.22 34.46 32.19 30.26 28.59 27.83 26.44 25.20 24.07 22.58 20.89 19.16 16.72
MC- 37.20 34.45 32.18 30.26 28.59 27.83 26.44 25.19 24.07 22.58 20.88 19.14 16.26
MC+ 37.24 34.47 32.20 30.27 28.60 27.84 26.45 25.20 24.08 22.59 20.89 19.18 17.05
AF(xavg) 37.32 34.52 32.22 30.28 28.59 27.83 26.43 25.18 24.04 22.52 20.76 18.87 15.84

Table 5.4
Implied Black-Scholes volatilities (%) for the Monte Carlo simulations (execution time: 1h31m44s) and the

approximation AF(xavg) expressed as a function of strikes for T = 3Y .

Strikes 0.35 0.50 0.55 0.70 0.80 0.90 1 1.10 1.25 1.45 1.75 2.05 2.70

MC 39.08 34.73 33.59 30.74 29.19 27.84 26.65 25.57 24.16 22.55 20.57 18.97 16.32
MC- 39.04 34.71 33.58 30.74 29.19 27.84 26.64 25.57 24.15 22.54 20.55 18.94 15.58
MC+ 39.11 34.74 33.60 30.75 29.20 27.85 26.65 25.58 24.16 22.55 20.58 19.00 16.79
AF(xavg) 39.13 34.76 33.62 30.76 29.20 27.85 26.65 25.58 24.15 22.52 20.49 18.82 15.97

By the monotone convergence theorem and the local property of stochastic integrals, we have

E
[
eXT

]
= lim
n→+∞

E
[
eXT 1T<τn

]
= lim
n→+∞

E
[
eX

(n)
T 1T<τn

]
.

Because σ(t,Xt)
√
Vt ∧ n is bounded in (t, ω), we can define a new measure Q(n)|FT = eX

(n)
T −x0Q|FT

under which

(W
(n)
t , B

(n)
t ) := (Wt −

∫ t

0

σ(s,Xs)
√
Vs ∧ n ds,Bt −

∫ t

0

ρsσ(s,Xs)
√
Vs ∧ n ds)

is a two-dimensional Brownian motion with correlation (ρt)0≤t≤T . It gives

E
[
eXT

]
= ex0 lim

n→+∞
Q(n) (T < τn) .

The dynamics of V under Q(n) writes

dVt =
(
αt + ρtξtσ(t,Xt)

√
Vt
√
Vt ∧ n

)
dt+ ξt

√
VtdB

(n)
t , V0 = v0, (A.2)

and we aim at comparing it to the Stochastic Differential Equation (SDE in short)

dV
(n)
t =

(
αt + |ξ|∞|σ|∞V (n)

t

)
dt+ ξt

√
V

(n)
t dB

(n)
t , V

(n)
0 = v0. (A.3)

Observe that the drift coefficient of V (n) dominates that of V : therefore, from usual arguments
used for comparing time-dependent SDEs (see Proposition [KS91, Proposition 5.2.18]), we can
show V

(n)
t ≥ Vt for any t ∈ [0, T ] a.s.. Actually, the quoted reference deals with one-dimensional

SDEs, but the arguments apply in the same way to our model (X,V ). Then it gives

Q(n) (T < τn) ≥ Q(n)

(
sup

0≤t≤T
V

(n)
t < n

)
.
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Table 5.5
Implied Black-Scholes volatilities (%) for the Monte Carlo simulations (execution time: 2h29m18s) and the

approximation AF(xavg) expressed as a function of strikes for T = 5Y .

Strikes 0.25 0.40 0.50 0.60 0.75 0.85 1 1.15 1.35 1.60 2.05 2.50 3.60

MC 41.27 36.15 33.81 31.93 29.68 28.44 26.86 25.52 24.01 22.45 20.25 18.53 15.59
MC- 41.21 36.12 33.79 31.91 29.67 28.43 26.85 25.51 24.01 22.45 20.23 18.48 ND
MC+ 41.33 36.18 33.82 31.94 29.69 28.45 26.86 25.53 24.02 22.46 20.27 18.57 16.76
AF(xavg) 41.27 36.16 33.82 31.94 29.69 28.45 26.87 25.53 24.03 22.46 20.24 18.51 15.44

Table 5.6
Implied Black-Scholes volatilities (%) for the Monte Carlo simulations (execution time: 4h54m27s) and the

approximation AF(xavg) expressed as a function of strikes for T = 10Y .

Strikes 0.15 0.25 0.35 0.50 0.65 0.80 1 1.20 1.50 1.95 2.75 3.65 6.30

MC 44.71 39.62 36.40 33.11 30.77 28.97 27.09 25.59 23.81 21.79 19.28 17.33 15.31
MC- 44.60 39.56 36.36 33.08 30.75 28.95 27.07 25.58 23.80 21.78 19.25 17.22 ND
MC+ 44.83 39.69 36.44 33.14 30.79 28.98 27.10 25.60 23.82 21.81 19.31 17.43 16.28
AF(xavg) 44.69 39.63 36.41 33.12 30.78 28.98 27.10 25.61 23.83 21.81 19.28 17.30 13.70

The last probability is equal to Q
(

sup0≤t≤T Ṽt < n
)

where Ṽ is the (strong) solution to (A.3)

with B instead of B(n). Since Ṽ is non explosive, the latter probability converges to 1 as n→ +∞.
The proof of Proposition 2.3 is complete.

Appendix B. Explicit computation of the corrective terms of Theorem 2.4. We give
the full derivation of the corrective terms in the approximation (2.3) of Theorem 2.4. We begin
with the proof of Lemma 3.2 and next we give the details of the computation of the corrective
terms.

B.1. Proof of Lemma 3.2. We proceed by induction, by using the next intermediate result:

Lemma B.1. Let (Mt)t∈[0,T ] be a square integrable and predictable process, (ft)t∈[0,T ] be a
measurable and bounded deterministic function and ϕ ∈ C∞b (R). Then, we have:

E

[
ϕ(

∫ T

0

ftdWt)

∫ T

0

MtdWt

]
=E

[
ϕ(1)(

∫ T

0

ftdWt)

∫ T

0

ftMtdt

]
,

E

[
ϕ(

∫ T

0

ftdWt)

∫ T

0

MtdBt

]
=E

[
ϕ(1)(

∫ T

0

ftdWt)

∫ T

0

ρtftMtdt

]
.

Proof. These equalities directly follow from the duality relationship of Malliavin calculus (see
Lemma 1.2.1 in [Nua06]).

If N = 1 and IN = 0, there is nothing to prove. If N = 1 and IN ∈ {1, 2}, Lemma 3.2 is a
particular case of Lemma B.1 (with deterministic M) noting that ∀i ∈ N,

E

[
ϕ(i)(

∫ T

0

ftdWt)

]
= ∂ixiE

[
ϕ(

∫ T

0

ftdWt + x)

] ∣∣∣
x=0

.

Suppose that the formula (3.13) is true for a given N ≥ 1 and let us prove it at order N + 1. Then
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write, directly if IN+1 = 0 or with Lemma B.1 if IN+1 ∈ {1, 2},

E

[
ϕ(

∫ T

0

ftdWt)

∫ T

0

lN+1,tN+1

∫ tN+1

0

lN,tN . . .

∫ t2

0

l1,t1dW I1
t1 . . . dW

IN
tN dW

IN+1

tN+1

]

=E

[
ϕ(1IN+1 6=0)(

∫ T

0

ftdWt)

∫ T

0

l̂N+1,tN+1

∫ tN+1

0

lN,tN

∫ tN

0

. . .

∫ t2

0

l1,t1dW I1
t1 . . . dW

IN
tN dtN+1

]

=E

[
ϕ(1IN+1 6=0)(

∫ T

0

ftdWt)

∫ T

0

(
lN,tN

∫ T

tN

l̂N+1,sds
) ∫ tN

0

. . .

∫ t2

0

l1,t1dW I1
t1 . . . dW

IN
tN

]
,

where at the last equality we have used the Itô integration by parts formula
∫ T

0
gtZtdt =

∫ T
0

(
∫ T
t
gsds)dZt,

valid for any continuous semi-martingale Z starting from 0 and any measurable and bounded de-
terministic function g. We easily conclude using the induction hypothesis at order N .

B.2. Calculus of the corrective terms. We recall our third order approximation:

E
[
h(XP

T )
]

+ E
[
h(1)(XP

T )X1,T

]
+ E

[
h(1)(XP

T )
X2,T

2

]
+

1

2
E
[
h(2)(XP

T )X2
1,T

]
.

We compute each corrective term separately, and pay attention to the different natures in these
corrections (pure local volatility, pure stochastic volatility and mixed local-stochastic one).

B Step 1: contribution with X1,T . From (3.4)-(3.5)-(3.6) we have

X1,T =

∫ T

0

(
σ

(1)
t2 λt2

∫ t2

0

σt1λt1(dWt1 −
σt1λt1

2
dt1) +

σt2
2λt2

∫ t2

0

ξt1λt1dBt1

)
(dWt2 − σt2λt2dt2).

(B.1)

Then, apply repeatedly Lemma 3.2 to ϕ(·) = h(1)(x0− 1
2

∫ T
0
σ2
t vtdt+ ·), ft = σtλt to get (recalling

the definition (2.1) of sensitivities):

E
[
h(1)(XP

T )X1,T

]
= Cl1,T [Gh3 −

3

2
Gh2 +

1

2
Gh1 ] +

Cs1,T
2

[Gh3 − Gh2 ], (B.2)

where:

Cl1,T = ω(σ2v, σσ(1)v)T0 , Cs1,T = ω(ρξσv, σ2)T0 .

B Step 2: contribution with X2,T . In view of (3.7) and (3.6)-(3.9), we have:

X2,T

2
=

1

2

∫ T

0

λt[(X
P
t − x0)2σ

(2)
t + 2X1,tσ

(1)
t ](dWt − σtλtdt)

+
1

2

∫ T

0

(XP
t − x0)V1,t

σ
(1)
t

λt
(dWt − 2σtλtdt)

− 1

2

∫ T

0

(XP
t − x0)2(σ

(1)
t )2vtdt+

1

4

∫ T

0

V2,t

λt
σt(dWt − σtλtdt)−

1

8

∫ T

0

V 2
1,t

λ3
t

σtdWt.

Besides, the Itô formula combined with (1.4)-(3.4)-(3.5)-(3.6)-(3.9) yields

(XP
t − x0)2

2
=

∫ t

0

( ∫ t2

0

σt1λt1(dWt1 −
σt1λt1

2
dt1)

)
σt2λt2(dWt2 −

σt2λt2
2

dt2)
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+
1

2

∫ t

0

σ2
t1vt1dt1, (B.3)

X1,t =

∫ t

0

(

∫ t2

0

σt1λt1(dWt1 −
σt1λt1

2
dt1))σ

(1)
t2 λt2(dWt2 − σt2λt2dt2)

+

∫ t

0

σt2
2λt2

(

∫ t2

0

ξt1λt1dBt1)(dWt2 − σt2λt2dt2), (B.4)

(XP
t − x0)V1,t =

∫ t

0

( ∫ t2

0

ξs1λs1dBs1
)
σt2λt2(dWt2 −

σt2λt2
2

dt2) (B.5)

+

∫ t

0

( ∫ t2

0

σt1λt1(dWt1 −
σt1λt1

2
dt1)

)
ξs2λs2dBs2 +

∫ t

0

ξt1ρt1σt1vt1dt1,

V2,t =

∫ t

0

( ∫ t2

0

ξs1λs1dBs1
) ξs2
λs2

dBs2 . (B.6)

Combining (B.1)-(B.3)-(B.4)-(B.5)-(B.6) with repeated applications of Lemma 3.2 yields (after
tedious but easy computations)

E
[
h(1)(XP

T )
X2,T

2

]
+

1

8
E

[
h(2)(XP

T )

∫ T

0

V 2
1,t

vt
σ2
t dt

]
(B.7)

=Cl3b,T [Gh4 − 2Gh3 +
5Gh2

4
− G

h
1

4
] + Cl2b,T [

Gh2
2
− G

h
1

2
]

+ Cl4,T [Gh4 −
5Gh3

2
+ 2Gh2 −

Gh1
2

] + Cls4,T [
Gh4
2
− Gh3 +

Gh2
2

]

+ (Cls2,T + Cls3,T )[
Gh4
2
− 5Gh3

4
+
Gh2
2

] + Cls1,T [
Gh2
2
− Gh1 ]

+ Cl3a,T [−Gh3 + Gh2 −
Gh1
4

]− Cl2a,T
Gh1
2

+ Cs2,T [
Gh4
4
− G

h
3

4
],

where:

Cl2a,T = ω(σ2v, (σ(1))2v)T0 , Cl2b,T = ω(σ2v, σσ(2)v)T0 , Cl3a,T = ω(σ2v, σ2v, (σ(1))2v)T0 ,

Cl3b,T = ω(σ2v, σ2v, σσ(2)v)T0 , Cl4,T = ω(σ2v, σσ(1)v, σσ(1)v)T0 , Cs2,T = ω(ρξσv, ρξσ, σ2)T0 ,

Cls1,T = ω(ρξσv, σσ(1))T0 , Cls2,T = ω(ρξσv, σ2v, σσ(1))T0 , Cls3,T = ω(σ2v, ρξσv, σσ(1))T0 ,

Cls4,T = ω(ρξσv, σ2, σσ(1)v)T0 .

Here we handle the second term of (B.7) together with X2,T because the overall computations are
somewhat simpler (here it has the effect of removing the last contribution of X2,T ).
B Step 3: contribution with X2

1,T . Starting from (3.4) and applying the Itô formula we have:

1

2
X2

1,T =

∫ T

0

X1,t((X
P
t − x0)σ

(1)
t λt +

V1,tσt
2λt

)(dWt − σtλtdt) (B.8)

+
1

2

∫ T

0

((XP
t − x0)2(σ

(1)
t )2vt + (XP

t − x0)V1,tσtσ
(1)
t )dt+

1

8

∫ T

0

V 2
1,t

vt
σ2
t dt,

X1,t(X
P
t − x0) =

∫ t

0

[(XP
t1 − x0)2σ

(1)
t1 λt1 +

(XP
t1 − x0)V1,t1σt1

2λt1
](dWt1 − σt1λt1dt1)
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+

∫ t

0

X1,t1σt1λt1(dWt1 −
σt1λt1

2
dt1) +

∫ t

0

[(XP
t1 − x0)σt1σ

(1)
t1 vt1 +

V1,t1

2
σ2
t1 ]dt1,

(B.9)

X1,tV1,t =

∫ T

0

[(XP
t1 − x0)V1,t1σ

(1)
t1 λt1 +

V 2
1,t1σt1
2λt1

](dWt1 − σt1λt1dt1) +

∫ t

0

X1,t1ξt1λt1dBt1

+

∫ t

0

ρt1ξt1 [(XP
t1 − x0)σ

(1)
t1 vt1 +

V1,t1σt1
2

]dt1, (B.10)

V 2
1,t =2

∫ t

0

( ∫ t2

0

ξt1λt1dBt1
)
ξt2λt2dBt2 +

∫ t

0

ξ2
t1vt1dt1. (B.11)

From Lemma 3.2 and (B.9)-(B.3)-(B.5)-(B.1)-(1.4)-(3.5) it follows that

E

[
h(2)(XP

T )

∫ T

0

X1,t(X
P
t − x0)σ

(1)
t λt(dWt − σtλtdt)

]
(B.12)

=Cl9a,T [2Gh6 − 6Gh5 +
13Gh4

2
− 3Gh3 +

Gh2
2

] + Cl4,T [Gh4 − 2Gh3 + Gh2 ]

+ (Cls10a,T + Cls10b,T )[
Gh6
2
− 5Gh5

4
+ Gh4 −

Gh3
4

] + Cls4,T [
Gh4
2
− Gh3 +

Gh2
2

]

+ Cl9b,T [Gh6 − 3Gh5 +
13Gh4

4
− 3Gh3

2
+
Gh2
4

] + Cls10c,T [
Gh6
2
− 5Gh5

4
+ Gh4 −

Gh3
4

]

+ Cl4,T [Gh4 −
3Gh3

2
+
Gh2
2

] + Cls4,T [
Gh4
2
− G

h
3

2
]

where

Cl9a,T = ω(σ2v, σ2v, σσ(1)v, σσ(1)v)T0 , Cl9b,T = ω(σ2v, σσ(1)v, σ2v, σσ(1)v)T0 ,

Cls10a,T = ω(ρξσv, σ2v, σ2, σσ(1)v)T0 , Cls10b,T = ω(σ2v, ρξσv, σ2, σσ(1)v)T0 ,

Cls10c,T = ω(ρξσv, σ2, σ2v, σσ(1)v)T0 .

Similarly, using Lemma 3.2 and (B.10)-(B.5)-(B.11)-(B.1), we have:

1

2
E

[
h(2)(XP

T )

∫ T

0

X1,tV1,tσt
λt

(dWt − σtλtdt)

]
(B.13)

=(Cls10d,T + Cls10e,T )[
Gh6
2
− 5Gh5

4
+ Gh4 −

Gh3
4

] + Cls5,T [
Gh4
2
− Gh3 +

Gh2
2

]

+ Cs4a,T [
Gh6
2
− Gh5 +

Gh4
2

] + Cs3,T [
Gh4
4
− G

h
3

2
+
Gh2
4

]

+ Cls10f,T [
Gh6
2
− 5Gh5

4
+ Gh4 −

Gh3
4

] + Cs4b,T [
Gh6
4
− G

h
5

2
+
Gh4
4

]

+ Cls6,T [
Gh4
2
− 3Gh3

4
+
Gh2
4

] + Cs2,T [
Gh4
4
− G

h
3

4
],

where

Cs2,T = ω(ρξσv, ρξσ, σ2)T0 , Cs3,T = ω(ξ2v, σ2, σ2)T0 , Cs4a,T = ω(ρξσv, ξρvσ, σ2, σ2)T0 ,

Cs4b,T = ω(ρξvσ, σ2, ρξσv, σ2)T0 , Cls5,T = ω(ρξσv, σσ(1)v, σ2)T0 , Cls6,T = ω(σ2v, ρξσ(1)v, σ2)T0 ,
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Cls10d,T = ω(ρξσv, σ2v, σσ(1)v, σ2)T0 , Cls10e,T = ω(σ2v, ρξσv, σσ(1)v, σ2)T0 , Cls10f,T = ω(σ2v, σσ(1)v, ρξσv, σ2)T0 .

Then using again Lemma 3.2 and (B.3)-(B.5) it comes:

1

2
E

[
h(2)(XP

T )

∫ T

0

((XP
t − x0)2(σ

(1)
t )2vt + (XP

t − x0)V1,tσtσ
(1)
t )dt

]
(B.14)

=Cl3a,T [Gh4 − Gh3 +
Gh2
4

] + Cl2a,T
Gh2
2

+ (Cls2,T + Cls3,T )[
Gh4
2
− G

h
3

4
] + Cls1,T

Gh2
2
.

Finally in view of (B.8), we sum the contributions (B.12)-(B.13)-(B.14) to obtain

1

2
E
[
h(2)(XP

T )X2
1,T

]
− 1

8
E

[
h(2)(XP

T )

∫ T

0

V 2
1,t

vt
σ2
t dt

]
(B.15)

=(2Cl9a,T + Cl9b,T )[Gh6 − 3Gh5 +
13Gh4

4
− 3Gh3

2
+
Gh2
4

]

+ Cl4,T [2Gh4 −
7Gh3

2
+

3Gh2
2

] + Cls4,T [Gh4 −
3Gh3

2
+
Gh2
2

]

+ (Cls10a,T + Cls10b,T + Cls10c,T + Cls10d,T + Cls10e,T + Cls10f,T )[
Gh6
2
− 5Gh5

4
+ Gh4 −

Gh3
4

]

+ Cls5,T [
Gh4
2
− Gh3 +

Gh2
2

] + Cs3,T [
Gh4
4
− G

h
3

2
+
Gh2
4

] + Cs2,T [
Gh4
4
− G

h
3

4
]

+ (2Cs4a,T + Cs4b,T )[
Gh6
4
− G

h
5

2
+
Gh4
4

] + Cls6,T [
Gh4
2
− 3Gh3

4
+
Gh2
4

]

+ Cl3a,T [Gh4 − Gh3 +
Gh2
4

] + Cl2a,T
Gh2
2

+ (Cls2,T + Cls3,T )[
Gh4
2
− G

h
3

4
] + Cls1,T

Gh2
2
.

BStep 4: some mathematical reductions. There are some relations between the expansion
coefficients. Namely, for any integrable functions f1, f2, g1, g2 : [0, T ] 7→ R, we have

ω(f1, f2)T0 ω(g1, g2)T0 = ω(f1, f2, g1, g2)T0 + ω(f1, g1, g2, f2)T0 + ω(f1, g1, f2, g2)T0

+ ω(g1, g2, f1, f2)T0 + ω(g1, f1, f2, g2)T0 + ω(g1, f1, g2, f2)T0 . (B.16)

This relation is proved by standard integral manipulations. It gives:

(Cs1,T )2

2
=2Cs4a,T + Cs4b,T ,

(Cl1,T )2

2
=2Cl9a,T + Cl9b,T ,

Cl1,TC
s
1,T =Cls10a,T + Cls10b,T + Cls10c,T + Cls10d,T + Cls10e,T + Cls10f,T .

In addition we set Cl2,T = Cl2a,T + Cl2b,T and Cl3,T = Cl3a,T + Cl3b,T .

BFinal step. Taking advantage of the above simplifications and summing up the different con-
tributions (B.2)-(B.7)-(B.15) of steps 1− 2− 3, we obtain the announced formula (2.3), gathering
the corrective terms according to the order of the Greeks.

Appendix C. Applications of the implied volatility expansion at mid-point for time-
independent local and stochastic volatility models with CIR-type variance. We specify
in this section the form of the implied volatility approximation at mid point when considering the
time-independent local and stochastic volatility model with CIR-type variance:

dXt = σ(Xt)
√
Yt[dWt −

σ(Xt)
√
Yt

2
dt], X0 = x0,
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dYt = κ(θ − Yt)dt+ ξ
√
YtdBt, Y0 = v0,

d〈W,B〉t = ρdt.

Note that this model is equivalent to the time-dependent model (1.2)-(1.3) by setting Vt = Yte
κt,

σ(t, x) = σ(x)e−κt/2, αt = eκtκθ, ξt = ξeκt/2. Thus we can apply our different price and implied
volatility expansion theorems by considering in the various corrective coefficients C (defined in
Theorem 2.4 and Definitions 4.1 and 4.3) the above time dependent functions. These coefficients
are obtained by simple iterated integrations of exponential functions. Using Mathematica, we
derive the following explicit expressions.

Proposition C.1. For σ(t, x) = σ(x)e−
κt
2 , vt = v0 + θ(eκt − 1), ξt = ξe

κt
2 and ρt = ρ, one

has:∫ T

0

vte
−κtdt =vT, Cl1,T (x) =

σ3(x)σ(1)(x)v2T 2

2
,

Cl2,T (x) =
σ2(x)[(σ(1))2 + σσ(2)](x)v2T 2

2
, Cl3,T (x) =Cl5,T (x) =

σ4(x)[(σ(1))2 + σσ(2)](x)v3T 3

6
,

Cl4,T (x) =
σ4(x)(σ(1))2(x)v3T 3

6
, Cl6,T (x) =

σ6(x)(σ(1))2(x)v4T 4

24
,

Cl7,T (x) =[(σ(1))2 + σσ(2)](x)vT, Cl8,T (x) =
[σσ(1)]2(x)v2T 2

2
,

Cs1,T (x) =
ρξσ3(x)Rs1T

2

2
, Cs2,T (x) =

ρ2ξ2σ4(x)Rs2T
3

6
,

Cs3,T (x) =
ξ2σ4(x)Rs3T

3

6
, Cls1,T (x) =Cls8,T (x) =

ρξσ2(x)σ(1)(x)Rs1T
2

2
,

Cls2,T (x) =Cls5,T (x) =
ρξσ4(x)σ(1)(x)Rls1 T

3

6
, Cls3,T (x) =Cls6,T (x) = Cls9,T (x) =

ρξσ4(x)σ(1)(x)Rls2 T
3

6
,

Cls4,T (x) =Cls7,T (x) =
ρξσ4(x)σ(1)(x)Rls3 T

3

6
,

where

v = (v0 − θ)
e−κT

(
−1 + eκT

)
κT

+ θ,

Rs1 = (v0 − θ)
e−κT

(
−2κT + 2eκT − 2

)
κ2T 2

+ θ
e−κT

(
2κTeκT − 2eκT + 2

)
κ2T 2

,

Rs2 = (v0 − θ)
e−κT

(
−3κT (κT + 2) + 6eκT − 6

)
κ3T 3

+ θ
e−κT

(
6eκT (κT − 2) + 6κT + 12

)
κ3T 3

,

Rs3 =(v0 − θ)
e−2κT

(
−6eκTκT + 3e2κT − 3

)
κ3T 3

+ θ
e−2κT

(
12eκT + 3e2κT (2κT − 3)− 3

)
2κ3T 3

,

Rls1 =
3

2κ3T 3

{
e−2κT (v0 − θ)

(
v0(3 + 2κT )− θ(5 + 2κT )

)
+ 2e−κT

(
θ2(4 + κT (6 + κT ))

− θv0(−2 + κT (4 + κT ))− 2v2
0

)
+ θ2(4κT − 13) + 4θv0 + v2

0

}
,

Rls2 =
3

κ3T 3

{
− e−2κT (v0 − θ)2 + e−κT

(
θ2(−4 + κT (−2 + κT ))− θv0(−2 + κT (−4 + κT ))− 2κTv2

0

)
+ θ2

(
5 + κT (−4 + κT )

)
+ 2θv0(−2 + κT ) + v2

0

}
,

Rls3 =
3

2κ3T 3

{
e−2κT (v0 − θ)

(
v0(3 + 2κT )− θ(5 + 2κT )

)
− 4e−κT (v0 − 2θ)2
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+ θ2
(
11 + 2κT (−4 + κT )

)
+ 4θv0(−2 + κT ) + v2

0

}
.

We have in addition the relation: vT Rs1T
2

2 =
(Rls1 +Rls2 +Rls3 )T 3

6 .

After some simplifications, we obtain the following expressions for the coefficients γ and π

defined in Definitions 4.1 and 4.3.
Proposition C.2. For σ(t, x) = σ(x)e−

κt
2 , vt = v0 + θ(eκt − 1), ξt = ξe

κt
2 and ρt = ρ, one

has:

γ0a,T (x0) =σ(x0)
√
v
{

1 +
ρξσ(x0)Rs1T

8v

}
,

γ1a,T (x0) =σ(x0)
√
v
{
− σ(1)(x0)

2σ(x0)
− ρξRs1

4σ(x0)v2

}
,

γ0b,T (x0) =σ(x0)
√
v
{
vT [

σ(x0)σ(2)(x0)

12
− (σ(1))2(x0)(

1

24
+
σ2(x0)vT

96
)]

+
ρ2ξ2T

v2 [
3(Rs1)2

32v
+Rs2(

σ2(x0)vT

48
− 1

12
)]− ξ2TRs3

v2 [
1

24
+
σ2(x0)vT

96
]

+
ρξσ(1)(x0)T

v
[
Rs1
8

+ σ2(x0)vT (
Rls2
48v
− Rs1

32
)]
}
,

γ1b,T (x0) =σ(x0)
√
v
{ρ2ξ2T

v2 [
3(Rs1)2

32v
− Rs2

12
]− ρξσ(1)(x0)T

v
[
Rs1
16

+
Rls2
24v

]
}
,

γ2,T (x0) =σ(x0)
√
v
{σ(2)(x0)

6σ(x0)
− (σ(1))2(x0)

12σ2(x0)
+

ρ2ξ2

σ2(x0)v3 [
Rs2
12
− 3(Rs1)2

16v
] +

ξ2Rs3
24σ2(x0)v3

}
,

π1a,T (xavg) =− σ(xavg)
√
v

ρξRs1
4σ(xavg)v

2 ,

π1b,T (xavg) =σ(xavg)
√
v
{ρ2ξ2T

v2 [
3(Rs1)2

32v
− Rs2

12
] +

ρξσ(1)(xavg)T

v
[
Rs1
16
− Rls2

24v
]
}
,

π2,T (xavg) =σ(xavg)
√
v
{σ(2)(xavg)

24σ(xavg)
− (σ(1))2(xavg)

12σ2(xavg)
+

ρ2ξ2

σ2(xavg)v
3 [
Rs2
12
− 3(Rs1)2

16v
] +

ξ2Rs3
24σ2(xavg)v

3

}
.
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