On the exit time from a cone for random walks with drift - Archive ouverte HAL
Article Dans Une Revue Revista Matemática Iberoamericana Année : 2016

On the exit time from a cone for random walks with drift

Résumé

We compute the exponential decay of the probability that a given multi-dimensional random walk stays in a convex cone up to time $n$, as $n$ goes to infinity. We show that the latter equals the minimum, on the dual cone, of the Laplace transform of the random walk increments. As an example, our results find applications in the counting of walks in orthants, a classical domain in enumerative combinatorics.
Fichier principal
Vignette du fichier
ExponentialDecayForRandomWalk-revised.pdf (266.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00838721 , version 1 (26-06-2013)
hal-00838721 , version 2 (28-06-2013)
hal-00838721 , version 3 (23-11-2013)
hal-00838721 , version 4 (27-05-2014)
hal-00838721 , version 5 (21-03-2015)

Licence

Identifiants

Citer

Rodolphe Garbit, Kilian Raschel. On the exit time from a cone for random walks with drift. Revista Matemática Iberoamericana, 2016, 32 (2), pp.511-532. ⟨10.4171/rmi/893⟩. ⟨hal-00838721v5⟩
577 Consultations
962 Téléchargements

Altmetric

Partager

More