On the exit time from a cone for random walks with drift - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

On the exit time from a cone for random walks with drift

Résumé

In this article we consider d-dimensional random walks such that the law of the increments has all exponential moments. For a large class of cones, we compute the exponential decay of the probability for such random walks to stay in the cone up to time n, as n goes to infinity. We show that the latter equals the global minimum, on the dual cone, of the Laplace transform of the random walk increments. Our results find applications in the counting of walks in orthants, a classical domain in enumerative combinatorics.
Fichier principal
Vignette du fichier
ExponentialDecayForRandomWalk130628.pdf (227.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00838721 , version 1 (26-06-2013)
hal-00838721 , version 2 (28-06-2013)
hal-00838721 , version 3 (23-11-2013)
hal-00838721 , version 4 (27-05-2014)
hal-00838721 , version 5 (21-03-2015)

Identifiants

  • HAL Id : hal-00838721 , version 2

Citer

Rodolphe Garbit, Kilian Raschel. On the exit time from a cone for random walks with drift. 2013. ⟨hal-00838721v2⟩
577 Consultations
962 Téléchargements

Partager

More