Singularity Analysis of 3T2R Parallel Mechanisms using Grassmann-Cayley Algebra and Grassmann Line Geometry - Archive ouverte HAL
Article Dans Une Revue Mechanism and Machine Theory Année : 2012

Singularity Analysis of 3T2R Parallel Mechanisms using Grassmann-Cayley Algebra and Grassmann Line Geometry

Résumé

This paper deals with the singular configurations of symmetric 5-DOF parallel mechanisms performing three translational and two independent rotational DOFs. The screw theory approach is adopted in order to obtain the Jacobian matrices. The regularity of these matrices is examined using Grassmann-Cayley algebra and~Grassmann geometry. More emphasis is placed on the geometric investigation of singular configurations by means of Grassmann-Cayley Algebra for a class of simplified designs whereas Grassmann geometry is used for a matter of comparison. The results provide algebraic expressions for the singularity conditions, in terms of some bracket monomials obtained from the superbracket decomposition. Accordingly, all the singularity conditions can be enumerated.
Fichier principal
Vignette du fichier
pl.pdf (675.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00833520 , version 1 (12-06-2013)

Identifiants

Citer

Semaan Amine, M Tale Masouleh, Stéphane Caro, Philippe Wenger, Clément Gosselin. Singularity Analysis of 3T2R Parallel Mechanisms using Grassmann-Cayley Algebra and Grassmann Line Geometry. Mechanism and Machine Theory, 2012, 52, pp.326-340. ⟨10.1016/j.mechmachtheory.2011.11.015⟩. ⟨hal-00833520⟩
201 Consultations
637 Téléchargements

Altmetric

Partager

More