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Abstract

This paper deals with the singular configurations of symmetric 5-DOF parallel mechanisms performing

three translational and two independent rotational DOFs. The screw theory approach is adopted in order to

obtain the Jacobian matrices. The regularity of these matrices is examined using Grassmann-Cayley algebra

and Grassmann geometry. More emphasis is placed on the geometric investigation of singular configurations

by means of Grassmann-Cayley Algebra for a class of simplified designs whereas Grassmann geometry is

used for a matter of comparison. The results provide algebraic expressions for the singularity conditions,

in terms of some bracket monomials obtained from the superbracket decomposition. Accordingly, all the

singularity conditions can be enumerated.

Keywords: Parallel singularity, screw theory, 5-DOF parallel mechanisms, Grassmann geometry, Grassmann-

Cayley algebra, Jacobian matrix, superbracket decomposition

1 Introduction

The singular configurations of Parallel Mechanisms (PMs) are critical poses characterized by either the loss of

some degrees of freedom (DOF), the gain of some extra DOF or the loss of stiffness. The determination of

singular configurations is thus a central issue in robotics due to their major effect on the robot performance [1,

2]. Lower-mobility PMs are suitable for a wide range of applications that require fewer than six DOF. The

classification of the singularities of lower-mobility PMs has stimulated the interest of many researchers [3–6].

In this paper, the classification proposed in [4] is adopted. Accordingly, a lower-mobility PM can exhibit

three types of singularities: (i) limb singularities, (i i) platform singularities [4], also known as constraint

singularities [7] and (i i i) actuation singularities. In this paper, more emphasis is placed on the actuation

singularities that are more challenging than the other ones for the mechanisms under study.

Constraint and actuation singularities are referred to as parallel singularities and are related to the rank

deficiency of a Jacobian matrix derived from the first-order kinematic relation. The latter relation is referred

to as the input-output velocity equation and is linear with respect to the time-rate changes of the input-output

variables. The determination of the parallel singularities of a PM consists in finding either the poses, yielding

the singularity locus, or the conditions, yielding the configurations, in which the Jacobian matrix becomes rank-

deficient. A 6 � 6 Jacobian matrix J of a given lower-mobility PM can be derived following the methodology

proposed in [8] based on screw theory.

The next step is to explore the regularity of J, which can be performed with two general approaches: linear

algebra and Grassmann geometry [1, 2, 9–16]. Linear algebra consists in a direct analysis of J by expanding

its determinant and examining its vanishing conditions. Generally, the determinant of such a matrix is highly
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non linear and unwieldy to assess, even with a computer algebra system. Hence, linear algebra fails to provide

satisfactory results, and therefore, the use of Grassmann-Cayley Algebra (GCA) [2, 11, 12, 14] or Grassmann

Geometry (GG) [1,9,10,13,16] may be regarded as promising solutions to explore the degeneracy of J, namely,

to analyze the singularities of PMs.

The GCA is a systematic approach to obtain a bracket representation of the determinant of J, called su-

perbracket. By exploring this superbracket, it is possible to obtain a geometrical interpretation of the parallel

singularities. On the other hand, GG is a geometric approach that provides a classification for the conditions

under which a set of n Plücker lines spans a variety of dimension lower than n. This paper focuses on the ap-

plication of GCA to provide a compact vector expression for the singularity locus of 3T1R PMs with identical

limb structures.

Symmetric1 5-DOF PMs performing three translational and two independent rotational motions, referred

to as 3T2R, are considered as case studies to apply the GCA for two main reasons:

1. Recent studies on their kinematic properties, such as the Forward Kinematic Problem (FKP) [17–19], led

to interesting results and this might also be the case for their singularity analysis;

2. The actuation wrench and the constraint wrench—a line at infinity—of a given limb of such mechanisms

are not directly associated with the direction of a given mechanical joint (e.g., for the Gough-Stewart

platform with 6-UPS as kinematic arrangement the actuation wrench is along the prismatic actuator

direction).

In general, 5-DOF PMs fall into three classes according to their mobility: (i) three translational and two

rotational DOFs (3T2R), (ii) three rotational and two planar translational DOFs (3R2Tp) where the planar

motion could be either fixed or instantaneous and (iii) three rotational and two spherical translational DOFs

(3R2Ts) [20]. Geometrically, the 3T2R motion can be made equivalent to guiding a combination of a directed

line and a point on it. Accordingly, the 3T2R PMs can be used in a wide range of applications for a point-line

combination including, among others, 5-axis machine tools [21], welding and conical spray-gun. Moreover, 5-

DOF PMs are very useful for medical applications [22] that require at the same time mobility, compactness and

accuracy around a functional point. So far researchers have mainly worked on the type synthesis of such PMs [4,

20,23–26]. There were no symmetrical 5-DOF PMs until Huang and Li and Jin et al. independently solved the

problem and filled this gap [27, 28]. It is noteworthy that the most existing 5-DOF PMs are asymmetrical, i.e.,

have a 5-DOF passive limb that constrains some actuated 6-DOF limbs [29, 30].

Due to the short history of symmetric 5-DOF PMs, more precisely the ones performing a 3T2R motion

pattern, their kinematic properties are still not well understood. In some recent studies, the Inverse Kinematic

Problem (IKP), Forward Kinematic Problem (FKP), workspace and singularities were investigated [18, 19, 31–

34]. The singularities were investigated upon a different perspective based on GG [32]. The results obtained

in [32] are based on some inspections and intuitions. Thus, as a global objective, this paper aims at blending

these two approaches, namely, GCA and GG in order to obtain a more systematic approach to enumerate all

the singular configurations of the PMs under study. These PMs originate from the comprehensive study of

symmetric 5-DOF PMs (3T2R) whose FKP admits either a closed-form solution or a univariate expression [19,

34]. It should be noted that the GCA is applied based on the framework presented in [2, 11, 35–37].

The remainder of the paper is organized as follows. First, some concepts for the singularity analysis are

recalled. Then, the general architecture of the PMs under study is presented and a brief review of some existing

kinematic properties is given, which leads us to a class of simplified designs with certain practical interests.

In this paper, the singularity analysis method based on GCA is applied to two simplified designs. The results

obtained with GCA are then put in contrast with the ones obtained recently using GG in order to make these two

approaches complementary rather than opposite. Finally, the paper concludes with some remarks that provide

insight into ongoing works to extend this study to other types of lower-mobility PMs.

1In the context of this paper, the term symmetric refers to the limb type and not to the geometry, such as centro–symmetrical

simplifications.
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2 Preliminary Concepts

2.1 Screw Theory

Screw theory [37–40] is suitable for the type synthesis [20] and the study of the instantaneous motion [41] of

PMs. A twist and a wrench are screws that represent the instantaneous motion of a rigid body and a system

of forces and moments applied on a rigid body, respectively. A zero-pitch wrench, namely, a pure force, cor-

responds to the Plücker coordinate vector of a finite line in the 3-dimensional projective space P3. In turn, an

infinite-pitch wrench, namely, a pure moment, corresponds to the Plücker coordinate vector of a line at infinity

in P3. It is noteworthy that finite lines and lines at infinity are projective lines, i.e., Plücker lines whose six

components satisfy the Grassmann Plücker relation [42]. A n-screw system is a screw subspace whose basis is

composed of n screws.

2.2 Projective Space

The 3-dimensional projective space P3 is characterized by the affine space R
3 in addition to the plane at infin-

ity �1. It is noteworthy that the coordinates of a projective element are determined up to a scalar multiple. A

projective point has four homogeneous coordinates whereas a projective line has six Plücker coordinates rep-

resented by its Plücker coordinate vector. The following properties highlight the relations between projective

elements:

1. A finite point, A, is represented by its homogeneous coordinates vector a D .a1; a2; a3; 1/T , the first

three coordinates being its Cartesian coordinates in R
3;

2. A finite line, L, is represented by its Plücker coordinates vector F D .sI r � s/; where s is the line

direction, (r � s) represents the moment of L with respect to the origin and r is the position vector of any

point on L;

3. Let underlined points denote points at infinity. Any finite line, F D .sI r � s/, has a unique point at

infinity c D .sI 0/. This point is determined by the line direction up to a scalar multiple. Thus, all finite

lines of direction s intersect at one common point at infinity, namely, c;

4. All finite planes of normal vector m, have a common line at infinity. This line is given by: M D .0I m/

and passes through the point at infinity of any finite line orthogonal to m;

5. Two lines at infinity M1 D .0I m1/ and M2 D .0I m2/ intersect at a unique point at infinity g D

.m1 � m2I 0/.

2.3 Grassmann-Cayley Algebra and Superbracket

The GCA was developed by H. Grassmann (1809–1877) as a calculus for linear varieties operating on extensors

with the join “_” and meet “^” operators. The latter are associated with the span and intersection of vector

spaces of extensors characterized with their step. GCA makes it possible to work at the symbolic level, and

therefore, to produce coordinate-free algebraic expressions for the singularity conditions of spatial PMs. For

further details on GCA, the reader is referred to [2, 11, 42] and references therein. The rows of J of a PM

are usually Plücker coordinate vectors of six projective lines [8, 43]. The superjoin of these six vectors in P5

corresponds to the determinant of J up to a scalar multiple, which is the superbracket in GCA ƒ.V .2// [42].

Thus, a singularity occurs when this superbracket vanishes. The superbracket is an expression involving 12

points selected on the six lines and can be developed into a linear combination of 24 bracket monomials [2,44],

each one being the product of three brackets of four projective points:

Œab; cd; ef; gh; ij; kl� D

24
X

iD1

yi (1)
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where

y1 D �Œabcd�Œefgi�Œhjkl� y2 D Œabcd�Œefhi�Œgjkl� y3 D Œabcd�Œefgj�Œhikl�

y4 D �Œabcd�Œefhj�Œgikl� y5 D Œabce�Œdfgh�Œijkl� y6 D �Œabde�Œcfgh�Œijkl�

y7 D �Œabcf�Œdegh�Œijkl� y8 D Œabdf�Œcegh�Œijkl� y9 D �Œabce�Œdghi�Œfjkl�

y10 D Œabde�Œcghi�Œfjkl� y11 D Œabcf�Œdghi�Œejkl� y12 D Œabce�Œdghj�Œfikl�

y13 D �Œabdf�Œcghi�Œejkl� y14 D �Œabde�Œcghj�Œfikl� y15 D �Œabcf�Œdghj�Œeikl�

y16 D Œabdf�Œcghj�Œeikl� y17 D Œabcg�Œdefi�Œhjkl� y18 D �Œabdg�Œcefi�Œhjkl�

y19 D �Œabch�Œdefi�Œgjkl� y20 D �Œabcg�Œdefj�Œhikl� y21 D Œabdh�Œcefi�Œgjkl�

y22 D Œabdg�Œcefj�Œhikl� y23 D Œabch�Œdefj�Œgikl� y24 D �Œabdh�Œcefj�Œgikl�

A bracket Œabcd� is null if and only if (iff) the projective points a; b; c and d are coplanar.

2.4 Grassmann Geometry

A general classification of linear varieties (sets of lines in the 3-dimensional projective space P3) can be found

in [1, 9, 45] and is summarized in Table 1. Since a projective line can be either a finite line or a line at infinity,

the foregoing classification does apply for a linear variety in which some lines at infinity may appear.

Table 1: Grassmann varieties [1, 9, 45].

Rank Class Linear variety

0 empty set ;

1 point a line in the 3-D space

2 lines (2a) a pair of skew lines

(2b) a flat pencil of lines

3 planes (3a) a regulus

(3b) the union of two flat pencils having a line in common

but lying in distinct planes and with distinct centers

(3c) all lines through a point

(3d) all lines in a plane

4 congruences (4a) elliptic congruence

(4b) hyperbolic congruence

(4c) parabolic congruence

(4d) degenerate congruence

5 complexes (5a) non singular complex; generated by five skew lines

(5b) singular complex; all the lines meeting one given line

3 Constraint Analysis of 5-RPUR PMs

3.1 General design and kinematic properties

Figures 1 and 2 provide respectively a schematic representation of a RPUR limb and a model of a 5-DOF PM

that can be used to produce all three translational DOFs, plus two independent rotational DOFs (3T2R) of the

end-effector. The mapping sequence between the desired orientation of the platform and angles � and � is the

first rotation, � , about the x-axis followed by the second rotation, �, about the y�axis.

The input of the mechanism is provided by the five linear prismatic actuators. From the type synthesis

presented in [25], the geometric characteristics associated with the components of each limb are as follows:

The actuated prismatic joint of the i-th limb is directed along2 �i k AiBi and line (BiCi ) is directed along vi .

The first two revolute joints of the i-th limb have axes parallel to e1 and form a plane Pi while the axes of

the last two ones are parallel to e2 and form a plane Vi . It should be noted that the second and third revolute

2In what follows, operators “k”, “?”, “\” and “�” denote the parallelism, the orthogonality, the intersection and the coincidence

of geometric entities, respectively.
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Figure 1: Schematic representation of a RPUR limb.
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Figure 2: Schematic representation of a 5-RPUR PM.

joints in each limb are arranged with perpendicular axes intersecting at point Bi and are thus assimilated

to a U (Universal) joint. This mechanical simplification leads to a 5-RPUR type mechanism. Further results

regarding the kinematic properties such as the solution of the IKP, the FKP and the determination of the constant

orientation workspace can be found in [18, 19, 31–34]. It should be noted that the origin of this research work

is based on the results obtained for their FKP, with 1680 finite solutions [18], and the constant-orientation

workspace where Bohemian domes [46] come up for the vertex space [33].
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3.1.1 Constraint wrench system

Each limb of the PM applies a constraint wrench, which is a pure moment (infinite-pitch wrench) O$c D .0I e1 �

e2/ being reciprocal to the five twists associated with the limb’s kinematic joints R, P, U and R. Consequently,

all the limbs of this 5-DOF PM apply the same constraint wrench implying that symmetric 5-DOF PMs are

highly overconstrained. Therefore, the constraint wrench system Wc of the PM is a 1-system given by:

Wc D span.O$c/ ; O$c D .0I e1 � e2/ (2)

The moving platform cannot rotate about any axis not normal to e3 D e1 � e2. It has three independent

translations and two independent rotations whose axes are orthogonal to e3.

Emerging here is the notion of platform singularity (constraint singularity [7]). From Eq. (2), it follows

that the order of the constraint wrench system for this class of 5-DOF PMs cannot be lower than one, since e1

and e2 are two fixed independent directions, which lets aside the platform singularity from the remainder of the

singularity analysis [25].

3.1.2 Actuation wrench system

By locking the actuator in the i-th limb, an additional constraint appears, which is called the actuation wrench

of the limb. It is a pure force reciprocal to the limb’s four revolute joints. Thus, the axis of this wrench is the

intersection line of planes Pi and Vi and passes necessarily through point Bi . Consequently, each limb li of the

mechanism applies one actuation force O$i , i D 1; : : : ; 5, of direction si and of axis Ai D Pi \ Vi as depicted

in Fig. 1. Plane Pi has (e1 � �i ) as normal vector while plane Vi has (e2 � vi ) as normal one. The actuation

force of the i-th limb is expressed as:

O$i D .si I rBi
� si / ; si D .e1 � �i / � .e2 � vi / (3)

where rBi
is the position vector of point Bi with respect to the reference frame .O; x; y; z/.

3.1.3 Jacobian matrix and overall wrench system

The rows of the Jacobian matrix J of the 5-RPUR PM can be expressed as the six unit screws O$1; O$2; O$3; O$4; O$5

and O$c that correspond to the Plücker coordinate vectors of six projective lines. The overall wrench system of

the PM is given by:

W D span.O$1; O$2; O$3; O$4; O$5; O$c/ (4)

In a non singular configuration, W is a 6-system and the six screws are linearly independent. Singular configura-

tions of the mechanism correspond to configurations in which these six screws become linearly dependent and

span a (n < 6)-system.

3.2 Simplified designs

The PMs under study in this paper are the results of a recent study [19] where the main purpose was to obtain

a family of simplified designs whose FKP admits either a closed-form solution or a univariate expression. This

issue, i.e., having a simple FKP, is a definite asset in the design of PMs, which makes the control of the PM

easier. Two among the nine simplified designs presented in [19], named AA and BB , are considered as case

studies to apply the GCA. Then, the results are compared with those obtained in [32] using GG.

3.2.1 The AA mechanism

The AA mechanism shown in Fig. 3 is obtained from the general architecture with3 B1 � B2 � B12, B3 �

B4 � B34, C1 � C2 � C12 and C3 � C4 � C34. In turn, plane V1 � V2 � V12 is defined as the plane

containing B12, C12 and e2 whereas vector v1 � v2 � v12 lies in plane V12 and is orthogonal to e2. Similarly

for V34 and v34.

Let Ai denote the axis of screw O$i of direction si . We have A1 D P1 \V12 and A2 D P2 \V12. Moreover,

A1 and A2 intersect at point B12 which belongs to the three planes P1, P2 and V12. Screws O$1 and O$2 are

given by:

3For the i-th limb, point Bi is defined as the intersection point of the second and the third revolute joint axes.
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B12

B34

B5

C12 C34

C5

v12

V12

V34

P 1

P 2

e2

e1

Figure 3: Schematic representation of the AA mechanism.

� O$1 D .s1I rB12
� s1/, where s1 D .e1 � �1/ � .e2 � v12/;

� O$2 D .s2I rB12
� s2/, where s2 D .e1 � �2/ � .e2 � v12/.

Now let us consider screws O$3, O$4 and O$5. We have A3 D P3 \ V34, A4 D P4 \ V34 and A5 D P5 \ V5.

Moreover, A3 and A4 intersect at point B34. Thus, screws O$3, O$4 and O$5 are given by:

� O$3 D .s3I rB34
� s3/, where s3 D .e1 � �3/ � .e2 � v34/;

� O$4 D .s4I rB34
� s4/, where s4 D .e1 � �4/ � .e2 � v34/;

� O$5 D .s5I rB5
� s5/, where s5 D .e1 � �5/ � .e2 � v5/.

Plane V12 contains axes A1 and A2 of the two screws O$1 and O$2. Likewise, plane V34 contains axes A3 and A4

of O$3 and O$4.

3.2.2 The BB mechanism

For the BB mechanism shown in Fig. 4, we have A1 � A2 � A12, A3 � A4 � A34 and C1C2 k C3C4 k e2.

The mechanism is assembled such that B1C1 k B2C2 k v12, B3C3 k B4C4 k v34. Thus, V1 � V2 � V12,

V3 � V4 � V34 and B1B2 k B3B4 k e2. In this paper, the singularity analysis is performed for this working

mode of the mechanism. It is noteworthy that the BB mechanism has other working modes for which plane

V12 (V34, respectively) may not exist. The working mode change appears when the robot goes through a limb

singularity. For example, if v4 k e1, the mechanism will be able to switch into another working mode in which

B3C3 is no longer parallel to B4C4. However, it is possible to prevent this mode change by imposing some

limits on the actuated prismatic joints.

The axis Ai of screw O$i , .i D 1; : : : ; 5/, passes through point Bi . Screws O$1, O$2, O$3, O$4, O$5 and O$c take the

following expressions:

� O$1 D .s1I rB1
� s1/, where s1 D .e1 � �1/ � .e2 � v12/;

� O$2 D .s2I rB2
� s2/, where s2 D .e1 � �2/ � .e2 � v12/;

� O$3 D .s3I rB3
� s3/, where s3 D .e1 � �3/ � .e2 � v34/;
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Figure 4: Schematic representation of the BB mechanism.

� O$4 D .s4I rB4
� s4/, where s4 D .e1 � �4/ � .e2 � v34/;

� O$5 D .s5I rB5
� s5/, where s5 D .e1 � �5/ � .e2 � v5/;

� O$c D .0I e3/.

Let us consider axes A3 and A4 of screws O$3 and O$4, respectively. As mentioned previously, these axes pass

through points B3 and B4, respectively. Moreover, we have A3 D P3 \ V34 and A4 D P4 \ V34. Thus,

plane V34 contains axes A3 and A4 that intersect at point B34. Obviously, this point lies in the three planes

P3;P4 and V34. As shown in Fig 5, the intersection line of P3 and P4 coincides with the axis of the R-joint of

direction e1, passing through point A34 and attached to the fixed base. Therefore, point B34 is the intersection

point of this axis and plane V34. Likewise, axes A1 and A2 intersect in plane V12 at point B12 that also belongs

to the line passing through point A12 and directed along e1.

4 Singularity Analysis of the AA mechanism

4.1 Superbracket of the AA mechanism

A spanning system of the overall wrench system of the AA mechanism is composed of one constraint mo-

ment O$c D .0I e3/, and five actuation forces O$i D .si I rBi
� si /, .i D 1; : : : ; 5/ as obtained in Sec. 3.2.1.

These wrenches are represented with one line at infinity and five finite lines in P3. In order to obtain the twelve

points of the superbracket corresponding to the mechanism under study, we must select twelve points on these

six projective lines, i.e. two points on each line. The extensor of a line at infinity is the join of two extensors

associated with two distinct points at infinity belonging to this line. The extensor of a finite line is the join of

two extensors associated either with two distinct finite points or with one finite point and one point at infinity,

since any finite line has one point at infinity defining its direction.

A wrench graph representing the projective lines associated with the wrenches of the AA mechanism is

given in Fig. 6. Let e1, e2 and e3 be the extensors associated with the points at infinity in the directions e1, e2

and e3, respectively. Thus, e1 D .e1I 0/, e2 D .e2I 0/ and O$c D e1e2 D .0I e1 � e2/ D .0I e3/.
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Figure 5: Planes Pi and Vi for the BB mechanism.
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Figure 6: Wrench graph of the AA mechanism in P3.

Let p
i
, .i D 1; : : : ; 5/, be the extensor associated with the point at infinity in the direction �i . Thus,

p
i

D .�i I 0/. The line at infinity e2e3 D .0I e2 � e3/ D .0I e1/ passes through all points at infinity of

directions orthogonal to e1. Since �i , .i D 1; : : : ; 5/, are orthogonal to e1, points p
i

belong to e2e3.

Let v12, v34 and v5 be the extensors associated with the points at infinity in the directions v12, v34 and v5,
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respectively. Thus, v12 D .v12I 0/, v34 D .v34I 0/ and v5 D .v5I 0/. Since v12, v34 and v5 are orthogonal

to e2, points v12, v34 and v5 belong to e1e3 D .0I e1 � e3/ D .0I e2/.

The line at infinity LPi
of plane Pi passes through p

i
and e1, i.e., LPi

D e1pi
D .0I e1��i /, .i D 1; : : : ; 5/.

Similarly, the lines at infinity of planes V12, V34 and V5 are LV12
D e2v12 D .0I e2 � v12/, LV34

D e2v34 D

.0I e2 � v34/ and LV5
D e2v5 D .0I e2 � v5/.

Let b12, b34 and b5 be the extensors associated with points B12, B34 and B5, respectively, and let si ,

.i D 1; : : : ; 5/ represent the point at infinity of axis Ai . Since P1 \ V12 D A1, the lines at infinity of P1 and

V12 intersect at point s1. Accordingly,

s1 D LP1
\ LV12

D e1p1
^ e2v12 (5)

Likewise,

s2 D LP2
\ LV12

D e1p2
^ e2v12 (6)

s3 D LP3
\ LV34

D e1p3
^ e2v34 (7)

s4 D LP4
\ LV34

D e1p4
^ e2v34 (8)

s5 D LP5
\ LV5

D e1p5
^ e2v5 (9)

As a consequence, O$1 D b12s1, O$2 D b12s2, O$3 D b34s3, O$4 D b4s4, O$5 D b5s5 and O$c D e1e2. The

superbracket of the AA mechanism is expressed as follows:

SAA D Œb12s1; b12s2; b5s5; e1e2; b34s3; b34s4� (10)

4.2 Superbracket decomposition of the AA mechanism

From Eq. (1), the superbracket can be developed into a linear combination of 24 monomials. Since the bracket

of any four coplanar projective points is null, 20 among the 24 monomials of SAA are null. Therefore, SAA

takes the following simplified expression:

SAA D � Œb12 b5 s5 b34�Œb12 s1 s2 e1�Œe2 s3 b34 s4� C Œb12 b5 s5 b34�Œb12 s1 s2 e2�Œe1 s3 b34 s4�

C Œb12 e1 e2 b34�Œb12 s1 s2 b5�Œs5 s3 b34 s4� � Œb12 e1 e2 b34�Œb12 s1 s2 s5�Œb5 s3 b34 s4�

SAA D �Œb12 b5 s5 b34�
�

Œb12 s1 s2
�

e
1
�Œ

�

e
2
s
3
b34 s4�

�

C Œb12 e1 e2 b34�

�

Œb12 s1 s2
�

b5�Œ
�

s
5
s
3
b34 s4�

�

(11)

where the dotted letters stand for permuted elements as explained in [11, 42]. The previous expression is

composed of two main terms X and Y , namely,

X D Œb12 b5 s5 b34�
�

Œb12 s1 s2
�

e
1
�Œ

�

e
2
s
3
b34 s4�

�

(12)

Y D Œb12 e1 e2 b34�

�

Œb12 s1 s2
�

b5�Œ
�

s
5
s
3
b34 s4�

�

(13)

The first term X is equal to zero when:

1. Œb12 b5 s5 b34� D 0 ) points b12, b5, b34 and s
5

are coplanar;

2. .b12s1s2/^.s
3
b34s4/^.e

1
e
2
/ D 0 ) the projective line (e

1
e
2
) intersects the intersection line of planes

(b12s1s2) and .s
3
b34s4/. Plane (b12s1s2) is the plane containing the finite point B12 and the two points

at infinity s
1

and s
2

of directions s1 and s2, respectively. From Sec. 3.2.1, since plane V12 (respectively

V34) contains axes A1 and A2 (respectively A3 and A4) of the two screws O$1 and O$2 (respectively O$3 and
O$4), we conclude that .b12s1s2/ � V12 (respectively .s

3
b34s4/ � V34). Therefore,

.b12s1s2/ ^ .s
3
b34s4/ � .V12 \ V34/ (14)

Moreover, the lines at infinity of planes V12 and V34 intersect at point e
2
. Thus, (b12s1s2/ ^ .s

3
b34s4)

is a finite line of direction e2, which always intersects the line at infinity .e
1
e
2
/ at point e

2

4.

4More generally, the condition .b12s1s2/ ^ .s
3
b34s4/ ^ .e

1
e
2
/ D 0 is verified when line (V12 \V34) lies in a plane having e3 as

normal vector.
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Consequently, the first term X of Eq. (11) is always null and the superbracket of the AA mechanism is

reduced to:

SAA D Œb12 e1 e2 b34�

�

Œb12 s1 s2
�

b5�Œ
�

s
5
s
3
b34 s4�

�

(15)

The singularity conditions of the AA mechanism correspond to the vanishing conditions of term Y that fall

into two main cases:

(a) Œb12 e1 e2 b34� D 0 ) points b12, b34, e
1

and e
2

are coplanar, which occurs if one of the following

conditions is verified:

(a.1) b12 � b34, in this case points B12 and B34 coincide;

(a.2) b12 � e
1

(or b12 � e
2
): impossible as a finite line cannot coincide with a point at infinity;

(a.3) b34 � e
1

(or b34 � e
2
): impossible;

(a.4) e
1

� e
2
: impossible because e1 and e2 are two fixed independent directions;

(a.5) Points b12, e
1

and e
2

are aligned: impossible as a finite point cannot be aligned with two distinct

points at infinity;

(a.6) Points b34, e
1

and e
2

are aligned: impossible;

(a.7) Points b12, b34 and e
1

are aligned: in this case (B12B34) is parallel to e1 as shown in Fig. 7(a);

(a.8) Points b12, b34 and e
2

are aligned: in this case (B12B34) is parallel to e2;

(a.9) b12b34 ^ e
1
e
2

D 0: in this case the point at infinity of line (B12B34) belongs to the line at infinity

e
1
e
2
. It means that line (B12B34) lies in a plane having e1 � e2 as normal vector.

(b) .b12s1s2/ ^ .s
3
b34s4/ ^ .b5s5/ D 0, which occurs if one of the following conditions is verified:

(b.1) .b12s1s2/ D 0 ) plane .b12s1s2/ degenerates ) s
1

� s
2
, screws O$1 and O$2 are coaxial;

(b.2) .s
3
b34s4/ D 0 ) screws O$3 and O$4 are coaxial;

(b.3) .b5s5/ D 0 ) b5 � s
2
: impossible;

(b.4) .b12s1s2/ � .s
3
b34s4/ ) V12 and V34 are coplanar. Such a configuration is illustrated in Fig. 7(b);

(b.5) .b5s5/ 2 .b12s1s2/ ) the axis A5 of screw O$5 lies in plane V12;

(b.6) .b5s5/ 2 .s
3
b34s4/ ) A5 lies in V34;

(b.7) .b5s5/, namely, the actuation force O$5 intersects the intersection line of planes (b12s1s2) and .s
3
b34s4/,

namely, (V12 \ V34), as shown in Fig. 7(c). Thus, a singularity occurs if line .b5s5/ of direction

s5 and line (V12 \ V34) of direction e2 intersect. A particular case of this condition, illustrated

in Fig. 7(d), occurs if they intersect at infinity, i.e., if s5 k e2. This implies that �5 k e2, �5

being the direction of the actuated prismatic joint of the 5-th limb. Another particular case of this

condition happens when line (V12 \ V34) coincides with line .b5s5/, i.e., with axis A5.

From Eq. (15), a vector form for the singularity conditions can be expressed as follows:
�

n � .e1 � e2/

��

�

.s1 � s2/ � .s3 � s4/
�

� s5

�

D 0 (16)

where n is the unit vector of line .B12B34/.

4.3 Correspondence between GG and GCA

This paper, in contrast with most of the literature dealing with the singularity analysis of PMs, does not reject

one approach in favour of the other, i.e., GG and GCA, and it attempts to use both approaches as complementary

rather than regarding them as opposites. To do so, we resort to the results obtained in [32] for the singularity

analysis of the AA mechanism using the classification of linear varieties given in Table 2 that was presented

in [9]. By virtue of the results obtained with GCA, the whole singularity conditions for the AA mechanism are

made equivalent to the vanishing conditions of term Y . The latter can occur upon two different cases in which

the first case falls into nine sub-cases, with five excluded cases, and the second case results in seven different

cases where one was excluded.
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(a) (b)

(c) (d)

e1

e2

e2

e2

�$5

�$5

B 12

B 34

V12

V12

V12

V34 V34

V34

V5

V5
P5

P5

Figure 7: Singular configurations of the AA mechanism corresponding to cases (a.7), (b.4) and (b.7).

4.3.1 The first case: (a.1), (a.7), (a.8) and (a.9)

(a.1) If B12 � B34, then the four actuation forces O$1, O$2, O$3 and O$4 will intersect at a common point. In that

case the foregoing forces span a variety of dimension three rather than four. From a theoretical stand

point, such a configuration corresponds to condition 3c of GG. However, for the proposed design of the

AA mechanism, this condition could be excluded.

(a.7) If B12B34 k e1, then the first axes (directed along e1) of the two U joints of the simplified arrangements

will coincide, as depicted in Fig. 7(a). By virtue of GG, in this case, two skew lines are transversal to

five lines. Reaching this step, based on Fig. 7(a), it is straightforward to conclude that the intersection

line of planes V12 and V34, namely, Tv k e2, is always concurrent with the axes of screws O$1; O$2; O$3; O$4

and O$c . On the other hand, when the first axes of both U joints are pointed to each other, there is a second

line, namely, .B12B34/ k e1, which crosses the foregoing five screws and which is skew with the first

transversal line, Tv, described above. Accordingly, this singularity is referred to as hyperbolic congru-

ence, condition 4b of GG, for which two skew lines are transversal to all lines. In such a configuration,

the five screws O$1; O$2; O$3; O$4 and O$c span a variety of dimension four rather than five.

(a.8) To explain this singularity, namely, B12B34 k e2, one should think beyond the classification given in [9].

From the classification proposed in [19] for some special cases in which a line at infinity is among a set

of Plücker lines, it reveals that this singularity corresponds to condition C21

4 . In this condition, two pairs
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of lines, namely, fA1; A2g (the axes of O$1 and O$2) and fA3; A4g (the axes of O$3 and O$4), span two distinct

planes V12 and V34 whose projections into the plane perpendicular to the line at infinity, O$c , are parallel.

For the proposed design of the AA mechanism, this condition cannot occur.

(a.9) This case is a general condition that covers (a.7) and (a.8). From the above analysis for (a.7) and (a.8),

it can be inferred that all the configurations that condition (a.9) holds can be classified as hyperbolic

congruence, unless condition (a.8) is true. However, it can be noticed that C21

4 is the general condition

of (a.9).

Table 2: Singularity conditions of the AA mechanism: correspondence between GCA and GG.

Singularity Geometric Corresponding GLG

case (GCA) singularity condition singularity type

(a.1) B12 � B34 3c, all lines through a point

(a.7) .B12B34/ k e1 4b, hyperbolic congruence

(a.8) .B12B34/ k e2 C21

4 , two pairs of concurrent lines

(a.9) .B12B34/ ? e1 � e2 plus a line at infinity

(b.1) A1 � A2 1, point

(b.2) A3 � A4

(b.4) V12 � V34 3d, all lines in a plane

5b, singular linear complex

(b.5) A5 2 V12

(b.6) A5 2 V34 5b, singular linear complex

.V12 \ V34/ � A5

(b.7) s5 k e2

.V12 \ V34/ \ A5 ¤ ; 5b, singular linear complex

4c, parabolic congruence

4.3.2 The second case: (b.1), (b.2), (b.4), (b.5), (b.6) and (b.7)

(b.1) Only two conditions lead to coaxial O$1 and O$2: (a) P1 � P2 and (b) v12 k e1 (this is also a limb

singularity5 where the actuation wrench becomes reciprocal to the input). In such a configuration, A1 D

.P1 \ V12/ coincides with A2 D .P2 \ V12/, namely, the three planes P1, P2 and V12 intersect at a

common line.

(b.2) Based on the above discussion, coaxial O$3 and O$4 happens upon two configurations: (a) P3 � P4 and (b)

v34 k e1 (this is also a limb singularity).

(b.4) When V12 � V34, axes A1; A2; A3 and A4 lie in a common plane and the screw system given by

span.O$1; O$2; O$3; O$4/ degenerates. Such a configuration is illustrated in Fig. 7(b) and corresponds to

condition 3d of GG, all lines in a plane. This case also corresponds to condition 5b of GG since in that

case the intersection line of V12 and V5, which is of direction e2, intersects the six screws of the overall

wrench system.

(b.5) We know that line .V12 \ V34/ is always concurrent with the axes of screws O$1; O$2; O$3 and O$4. As

mentioned previously, this line, being of direction e2, passes through the point at infinity e
1
. Therefore,

it crosses the line at infinity O$c D e
1
e
2
. If .b5s5/ 2 .b12s1s2/, then line .V12 \ V34/ also crosses screw

O$5 and, as a result, in such a configuration, this line crosses the six screws O$1; : : : ; O$5; and O$c . Based

on GG, this singularity is referred to as singular linear complex, condition 5b, which corresponds to a

variety of dimension five.

5Based on the results presented in [32], such a mechanism exhibits a limb singularity when v12 k e1 or �i D 0.
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(b.6) This case is similar to (b.5).

(b.7) In this case, O$5 passes through the intersection of two pairs of planes spanned by the set fA1; A2; A3; A4g

of the axes of screws O$1; O$2; O$3 and O$4. There are several possibilities for which this set can span different

pairs of planes. All these possibilities are studied in [32] and three cases turn out to be possible:

1. All planes Pi , i D 1; : : : ; 5, have a common intersection line. Clearly, this line called Tp is parallel

to e1. Thus, it is transversal to the line associated with the constraint wrench O$c . This singularity is

referred to as singular linear complex, condition 5b.

2. All planes Vi , i D 1; : : : ; 5, have a common intersection line. Obviously, this line called Tv is par-

allel to e2 and transversal to O$c . This singularity is referred to as singular linear complex, condition

5b. As mentioned previously, there is a particular configuration: s5 k e2, which implies that �5 k e2.

Such a configuration is illustrated in Fig. 7(d).

3. O$5 intersects the line passing through (B12B34). This is a parabolic congruence, condition 4c,

where the lines associated with O$1; O$2; O$3 and O$4 belong to the union of three planar pencils of

lines, in different planes, having a common line.

Table 2 illustrates the valid geometric singularity conditions of the AA mechanism obtained with GCA as well

as their corresponding GG singularity type.

4.4 Instantaneous motions associated with parallel singularities

Parallel singularities are critical configurations in which a PM loses its inherent stiffness and the motion of its

end-effector becomes uncontrollable. Since the AA mechanism is free of constraint singularities, its actuation

singularities correspond to the rank deficiency of J. In such configurations, the actuators of the PM cannot

control its end-effector’s motion, namely, the end-effector might generate some infinitesimal motion(s) even

when the actuators are locked. In each of these singularities, the wrenches O$1; O$2; O$3; O$4; O$5 and O$c form

a n < 6-system and the twist(s) reciprocal to this system for a given actuation singularity determine(s) the

uncontrolled motion of the end-effector [16].

(a.1) Theoretically, this corresponds to a configuration in which the four actuation forces $i (i D 1; : : : 4) pass

through a common point, namely, B12 � B34. In that case, there exists a finite line .B12B5/, which

crosses the five actuation forces $i (i D 1; : : : 4). Let u and u D .uI 0/ be the unit vector and the point at

infinity of line B12B5, respectively. Two cases turn to be possible:

� u 2 e1e2 , line .B12B5/ is orthogonal to e1 �e2, i.e., it crosses O$c in addition to the five actuation

forces. In that case, the uncontrolled motion corresponds to a zero-pitch twist given by .uI rB12
�u/.

Thus, it is a pure rotation about an axis of direction u;

� u … e1e2. In that case, one can find neither a zero-pitch twist nor an infinite-pitch twist reciprocal to

screws $1; : : : ; $5 and $c . Thus, the uncontrolled motion corresponds to a finite-pitch twist, namely,

a combination of a rotation and a translation.

(a.7),(a.8) and (a.9) A general condition for these cases is .B12B34/?e1 � e2, which implies that a finite

line .B12B34/ crosses the five screws O$1; O$2; O$3; O$4 and O$c that form a 4-system. However, in these

cases, line .B12B34/ does not generally intersect O$5. It can be concluded that the uncontrolled motion

corresponds to a finite-pitch twist.

(b.1) In this condition, screws O$1 and O$2 are coaxial. It could be noticed that the condition P1 � P2 appears

to be impossible for the proposed mechanism. On the other hand, if v12 k e1, the mechanisms exhibits

simultaneously an actuation singularity (O$1 and O$2 are coaxial) and two limb singularities (O$1 and O$2 are

reciprocal to the twists associated with the actuated prismatic joints of the first and the second limbs). As

s1 k s2 k e1 in such a configuration, the mechanism loses the translational DOF along e1.

(b.2) This condition can be analyzed similarly to (b.1).
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(b.4) In that case a line in plane V12 � V34 of direction e2 is reciprocal to the five screws O$1; O$2; O$3; O$4 and O$c

but not necessarily reciprocal to O$5. Thus, this case is similar to (a.9), namely, the uncontrolled motion

corresponds to a finite-pitch twist.

(b.5),(b.6) and (b.7) In these cases, line .V12 \ V34/ crosses axis A5 of screw O$5. As mentioned previously,

this implies that line .V12 \ V34/ of direction e2 crosses the six wrenches O$1; O$2; O$3; O$4; O$5 and O$c .

Accordingly, in all of these cases, the actuators cannot control the rotational DOF of the moving platform

about an axis of direction e2.

5 Singularity Analysis of the BB mechanism

5.1 Superbracket of the BB mechanism

Ω∞
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Figure 8: Wrench graph of the BB mechanism in P3.

For the BB mechanism, extensors s
i
, i D 1; : : : ; 5, are obtained similarly to the AA mechanism. Let

b12, b34, b1, b2, b3, b4 and b5 be the 1-extensors associated with points B12, B34, B1, B2, B3, B4 and B5,

respectively. Since lines (B1B2) and (B3B4) are parallel to e2, b1b2 and b3b4 intersect �1 at e
2
. Figure 8

shows the wrench graph of the BB mechanism in P3.

The projective line associated with O$c D .0I e1 � e2/ passes through the points at infinity e
1

and e
2
.

Similarly to the AA mechanism, screw O$5 is represented by b5s5, where s
5

D .s5I 0/ is the point at infinity

of direction s5. In what concerns screws O$i (i D 1; : : : ; 4), several representations turn to be possible. As an

example, let us consider screw O$1. Since the projective line associated with this screw passes through points b1,

b12 and s
1
, the 2-extensor associated with this screw can be expressed as the join of two among these three

points. The superbracket must be chosen in such a way that we obtain the simplest expression. Therefore,

all relations between the corresponding projective elements must be considered. Since b12 is a common point

of O$1 and O$2, it must be part of the two points representing O$1 in the superbracket. Thus, the second point is

either b1 or s
1
. Since b1 and b2 are aligned with e

2
as well as b3 and b4, we choose to include points bi in the

superbracket of this PM rather than s
i
, i D 1; : : : ; 4. However, for the superbracket of the BB mechanism, the

use of bi or s
i
, i D 1; : : : ; 4, leads to the same number of monomials in the simplified expression. Accordingly,
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the superbracket of the BB mechanism takes the form:

SBB D Œb12b1; b12b2; b5s5; e1e2; b34b3; b34b4� D Œb12s1; b12s2; b5s5; e1e2; b34s3; b34s4�

D Œb12 e1 e2 b34�

�

Œb12 b1 b2
�

b5�Œ
�

s
5
b3 b34 b4�

�

� Œb12 b5 s5 b34�
�

Œb12 b1 b2
�

e
1
�Œ

�

e
2
b3 b34 b4�

�

D Œb12 e1 e2 b34�

�

Œb12 b1 b2
�

b5�Œ
�

s
5
b3 b34 b4�

�

(17)

The singularity conditions of the BB mechanism correspond to the vanishing conditions of SBB that fall into

two main cases:

(a) Œb12 e1 e2 b34� D 0 ) points b12, b34, e
1

and e
2

are coplanar, which can occur upon one of the following

subcases:

(a.1) Points B12 and B34 coincide;

(a.2) Line .B12B34/ is parallel to e1;

(a.3) Line .B12B34/ is parallel to e2;

(a.4) Line .B12B34/ is orthogonal to e1 � e2.

(b) .b12b1b2/ ^ .b3b34b4/ ^ .b5s5/ D 0, which occurs if one of the following conditions is verified:

(b.1) Points B12, B1 and B2 are aligned (or two of them coincide), in this case, screws O$1 and O$2 are

coaxial;

(b.2) Screws O$3 and O$4 are coaxial;

(b.3) Planes V12 and V34 coincide;

(b.4) Axis A5 of screw O$5 lies in plane V12;

(b.5) A5 lies in V34;

(b.6) The intersection line of planes V12 and V34 coincides with A5;

(b.7) A5 is directed along e2, i.e., s5 is parallel to e2. This implies that �5 k e2;

(b.8) (V12 \ V34) and A5 are concurrent.

As mentioned in Sec. 3.2.2, for the BB mechanism, point B12 (respectively B34) belongs to the axis,

directed along e1, of the R-joint centered at A12 (respectively A34) and attached to the fixed base. Thus, the

second and third Cartesian coordinates of point B12 (respectively B34) are the same as those of point A12

(respectively A34). As pointed out in [33], a BB mechanism has a singular orientation for � , called �s , which

depends on the geometric parameters of the base and can be found by expanding condition (a.4):

.yA12
� yA34

/ sin �s C .zA12
� zA34

/ cos �s D 0 (18)

where ŒxA12
; yA12

; zA12
�T and ŒxA34

; yA34
; zA34

�T are the Cartesian coordinate vectors of points A12 and A34,

respectively. For instance, for the design proposed in Fig. 4; �s D 0.

6 Conclusions

This paper presented an exhaustive singularity analysis of two 3T2R 5-DOF Parallel Mechanisms (PMs) having

a simplified architecture. The proposed singularity analysis approach is applicable to lower-mobility PMs,

mainly those having infinite-pitch wrench(es) among the rows of their Jacobian matrix. For a given PM, this

approach consists of three main steps:

(i) The use of screw theory to represent the wrenches of the PM in the projective space. This representation is

very useful since it illustrates all the geometric relations between the wrenches of the PM and allows the

simplification of the superbracket decomposition.
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(ii) The use of Grassmann-Cayley Algebra (GCA) to enumerate all the singularity conditions of the PMs under

study and to derive a vector expression for the singularity locus, which is difficult to obtain for such PMs

with other singularity analysis methods.

(iii) The use of Grassmann Geometry (GG) to examine the rank deficiency of the Jacobian matrix and charac-

terize the uncontrolled motion for a given singularity condition.

This paper showed that GCA and GG could be used together in order to better characterize and investigate the

singularities of spatial parallel mechanisms. The proposed approach is currently used by the authors to analyze

the singularities of other types of 5-DOF PMs like 3R2T PMs.
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