Characterization of large energy solutions of the equivariant wave map problem: II - Archive ouverte HAL
Article Dans Une Revue American Journal of Mathematics Année : 2015

Characterization of large energy solutions of the equivariant wave map problem: II

Résumé

We consider 1-equivariant wave maps from 1+2 dimensions to the 2-sphere of finite energy. We establish a classification of all degree 1 global solutions whose energies are less than three times the energy of the harmonic map Q. In particular, for each global energy solution of topological degree 1, we show that the solution asymptotically decouples into a rescaled harmonic map plus a radiation term. Together with our companion article, where we consider the case of finite-time blow up, this gives a characterization of all 1-equivariant, degree 1 wave maps in the energy regime [E(Q), 3E(Q)).
Fichier principal
Vignette du fichier
CKLS2-new.pdf (404.21 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00832752 , version 1 (14-02-2020)

Identifiants

Citer

Raphaël Côte, Carlos Kenig, Andrew Lawrie, Wilhelm Schlag. Characterization of large energy solutions of the equivariant wave map problem: II. American Journal of Mathematics, 2015, 137 (1), pp.209-250. ⟨10.1353/ajm.2015.0003⟩. ⟨hal-00832752⟩
147 Consultations
38 Téléchargements

Altmetric

Partager

More