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CHARACTERIZATION OF LARGE ENERGY SOLUTIONS OF

THE EQUIVARIANT WAVE MAP PROBLEM: II

R. CÔTE, C. E. KENIG, A. LAWRIE, AND W. SCHLAG

Abstract. We consider 1-equivariant wave maps from R1+2 → S2 of finite
energy. We establish a classification of all degree one global solutions whose

energies are less than three times the energy of the harmonic map Q. In

particular, for each global energy solution of topological degree one, we show
that the solution asymptotically decouples into a rescaled harmonic map plus

a radiation term. Together with the companion article, [6], where we consider
the case of finite-time blow up, this gives a characterization of all 1-equivariant,

degree 1 wave maps in the energy regime [E(Q), 3E(Q)).

1. Introduction

This paper is the companion article to [6]. Here we continue our study of the
equivariant wave maps problem from 1 + 2 dimensional Minkowski space to 2–
dimensional surfaces of revolution. In local coordinates on the target manifold,
(M, g), the Cauchy problem for wave maps is given by

�Uk = −ηαβΓkij(U)∂αU
i∂βU

j (1.1)

(U, ∂tU)|t=0 = (U0, U1),

where Γkij are the Christoffel symbols on TM . As in [6] we will, for simplicity,

restrict our attention to the case when the target (M, g) = (S2, g) with g the round
metric on the 2–sphere, S2. Our results here apply to more general compact surfaces
of revolution as well, and we refer the reader to [6, Appendix A] for more details.

In spherical coordinates,

(ψ, ω) 7→ (sinψ cosω, sinψ sinω, cosψ),

on S2, the metric, g, is given by the matrix g = diag(1, sin2(ψ)). In the case of
1-equivariant wave maps, we require our wave map, U , to have the form

U(t, r, ω) = (ψ(t, r), ω) 7→ (sinψ(t, r) cosω, sinψ(t, r) sinω, cosψ(t, r)),
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where (r, ω) are polar coordinates on R2. In this case, the Cauchy problem (1.1)
reduces to

ψtt − ψrr −
1

r
ψr +

sin(2ψ)

2r2
= 0 (1.2)

(ψ,ψt)|t=0 = (ψ0, ψ1).

Wave maps exhibit a conserved energy, which in this equivariant setting is given by

E(U, ∂tU)(t) = E(ψ,ψt)(t) =

∫ ∞
0

(
ψ2
t + ψ2

r +
sin2(ψ)

r2

)
r dr = const.,

and they are invariant under the scaling

~ψ(t, r) := (ψ(t, r), ψt(t, r)) 7→ (ψ(λt, λr), λψt(λtλr)).

The conserved energy is also invariant under this scaling which means that the
Cauchy problem under consideration is energy critical.

We refer the reader to [6] for a more detailed introduction and history of the
equivariant wave maps problem.

As in [6], we note that any wave map ~ψ(t, r) with finite energy and continuous
dependence on t ∈ I satisfies ψ(t, 0) = mπ and ψ(t,∞) = nπ for all t ∈ I for fixed
integers m,n. This determines a disjoint set of energy classes

Hm,n := {(ψ0, ψ1) | E(ψ0, ψ1) <∞ and ψ0(0) = mπ, ψ0(∞) = nπ}. (1.3)

We will mainly consider the spaces H0,n and we denote these by Hn := H0,n. In
this case we refer to n as the degree of the map. We also define H =

⋃
n∈ZHn to

be the full energy space.
In our analysis, an important role is played by the unique (up to scaling) non-

trivial harmonic map, Q(r) = 2 arctan(r), given by stereographic projection. We
note that Q solves

Qrr +
1

r
Qr =

sin(2Q)

2r2
. (1.4)

Observe in addition that (Q, 0) ∈ H1 and in fact (Q, 0) has minimal energy in H1

with E(Q) := E(Q, 0) = 4. Note the slight abuse of notation above in that we will
denote the energy of the element (Q, 0) ∈ H1 by E(Q) rather than E(Q, 0).

Recall that in [6] we showed that for any data ~ψ(0) in the zero topological class,

H0, with energy E(~ψ) < 2E(Q) there is a corresponding unique global wave map

evolution ~ψ(t, r) that scatters to zero in the sense that the energy of ~ψ(t) on any
arbitrary, but fixed compact region vanishes as t → ∞, see [6, Theorem 1.1]. An
equivalent way to view this scattering property is that there exists a decomposition

~ψ(t) = ~ϕL(t) + oH(1) as t→∞ (1.5)

where ~ϕL(t) ∈ H0 solves the linearized version of (1.2):

ϕtt − ϕrr −
1

r
ϕr +

1

r2
ϕ = 0 (1.6)

This result was proved via the concentration-compactness/rigidity method which
was developed by the second author and Merle in [21] and [22], and it provides
a complete classification of all solutions in H0 with energy below 2E(Q), namely,
they all exist globally and scatter to zero. We note that this theorem is also a
consequence of the work by Sterbenz and Tataru in [34] if one considers their
results in the equivariant setting.
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In [6] we also study degree one wave maps, ~ψ(t) ∈ H1, with energy E(~ψ) =
E(Q) + η < 3E(Q) that blow up in finite time. Because we are working in the
equivariant, energy critical setting, blow-up can only occur at the origin in R2 and
in an energy concentration scenario. We show that if blow-up does occur, say at
t = 1, then there exists a scaling parameter λ(t) = o(1 − t), a degree zero map
~ϕ ∈ H0 and a decomposition

~ψ(t, r) = ~ϕ(r) + (Q (r/λ(t)) , 0) + oH(1) as t→ 1. (1.7)

Here we complete our study of degree one solutions to (1.2), i.e., solutions that
lie in H1, with energy below 3E(Q), by providing a classification of such solutions
with this energy constraint. Since the degree of the map is preserved for all time,
scattering to zero is not possible for a degree one solution. However, we show that a
decomposition of the form (1.7) holds in the global case. In particular we establish
the following theorem:

Theorem 1.1 (Classification of solutions in H1 with energies below 3E(Q)). Let
~ψ(0) ∈ H1 and denote by ~ψ(t) ∈ H1 the corresponding wave map evolution. Suppose

that ~ψ satisfies

E(~ψ) = E(Q) + η < 3E(Q).

Then, one of the following two scenarios occurs:

(1) Finite time blow-up: The solution ~ψ(t) blows up in finite time, say at
t = 1, and there exists a continuous function, λ : [0, 1)→ (0,∞) with λ(t) =
o(1− t), a map ~ϕ = (ϕ0, ϕ1) ∈ H0 with E(~ϕ) = η, and a decomposition

~ψ(t) = ~ϕ+ (Q (·/λ(t)) , 0) + ~ε(t) (1.8)

such that ~ε(t) ∈ H0 and ~ε(t)→ 0 in H0 as t→ 1.

(2) Global Solution: The solution ~ψ(t) ∈ H1 exists globally in time and
there exists a continuous function, λ : [0,∞) → (0,∞) with λ(t) = o(t) as
t → ∞, a solution ~ϕL(t) ∈ H0 to the linear wave equation (1.6), and a
decomposition

~ψ(t) = ~ϕL(t) + (Q (·/λ(t)) , 0) + ~ε(t) (1.9)

such that ~ε(t) ∈ H0 and ~ε(t)→ 0 in H0 as t→∞.

Remark 1. One should note that the requirement λ(t) = o(t) as t→∞ in part (2)
above leaves open many possibilities for the asymptotic behavior of global degree
one solutions to (1.2) with energy below 3E(Q). If λ(t) → λ0 ∈ (0,∞) then our
theorem says that the solution ψ(t) asymptotically decouples into a soliton, Qλ0

,
plus a purely dispersive term, and one can call this scattering to Qλ0 . If λ(t) → 0
as t→∞ then this means that the solution is concentrating E(Q) worth of energy
at the origin as t → ∞ and we refer to this phenomenon as infinite time blow-up.
Finally, if λ(t)→∞ as t→∞ then the solution can be thought of as concentrating
E(Q) worth of energy at spacial infinity as t → ∞ and we call this infinite time
flattening.

We also would like to highlight the fact that global solutions of the type men-
tioned above, i.e., infinite time blow-up and flattening, have been constructed in the
case of the 3d semi-linear focusing energy critical wave equation by Donninger and
Krieger in [10]. No constructions of this type are known at this point for the energy



4 R. CÔTE, C. E. KENIG, A. LAWRIE, AND W. SCHLAG

critical wave maps studied here. In addition, a classification of all the possible
dynamics for maps in H1 at energy levels ≥ 3E(Q) remains open.

Remark 2. We emphasize that [6] goes hand-in-hand with this article and the
two papers are intended to be read together. In fact, part (1) of Theorem 1.1
was established in [6, Theorem 1.3]. Therefore, in order to complete the proof of
Theorem 1.1 we need to prove only part (2) and the rest of this paper will be
devoted to that goal. The broad outline of the proof of Theorem 1.1 (2) is similar
in nature to the proof of part (1). With this is mind we will often refer the reader to
[6] where the details are nearly identical instead of repeating the same arguments
here.

Remark 3. We remark that Theorem 1.1 is reminiscent of the recent works of
Duyckaerts, the second author, and Merle in [11, 12, 13, 14] for the energy criti-
cal semi-linear focusing wave equation in 3 spacial dimensions and again we refer
the reader to [6] for a more detailed description of the similarities and differences
between these papers.

Remark 4. Finally, we would like to note that the same observations in [6, Appen-
dix A] regarding 1-equivariant wave maps to more general targets, higher equivari-
ance classes and the 4d equivariant Yang-Mills system hold in the context of the
global statement in Theorem 1.1.

2. Preliminaries

For the reader’s convenience, we recall a few facts and notations from [6] that
are used frequently in what follows. We define the 1-equivariant energy space to be

H = {~U ∈ Ḣ1 × L2(R2;S2) |U ◦ ρ = ρ ◦ U, ∀ρ ∈ SO(2)}.
H is endowed with the norm

E(~U(t)) = ‖~U(t)‖2
Ḣ1×L2(R2;S2)

=

∫
R2

(|∂tU |2g + |∇U |2g) dx. (2.1)

As noted in the introduction, by our equivariance condition we can write U(t, r, ω) =
(ψ(t, r), ω) and the energy of a wave map becomes

E(U, ∂tU)(t) = E(ψ,ψt)(t) =

∫ ∞
0

(
ψ2
t + ψ2

r +
sin2(ψ)

r2

)
r dr = const. (2.2)

We also define the localized energy as follows: Let r1, r2 ∈ [0,∞). Then

Er2r1 (~ψ(t)) :=

∫ r2

r1

(
ψ2
t + ψ2

r +
sin2(ψ)

r2

)
r dr.

Following Shatah and Struwe, [29], we set

G(ψ) :=

∫ ψ

0

|sin ρ| dρ. (2.3)

Observe that for any (ψ, 0) ∈ H and for any r1, r2 ∈ [0,∞) we have

|G(ψ(r2))−G(ψ(r1))| =

∣∣∣∣∣
∫ ψ(r2)

ψ(r1)

|sin ρ| dρ

∣∣∣∣∣ (2.4)

=

∣∣∣∣∫ r2

r1

|sin(ψ(r))|ψr(r) dr
∣∣∣∣ ≤ 1

2
Er2r1 (ψ, 0).
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We also recall from [6] the definition of the space H × L2.

‖(ψ0, ψ1)‖2H×L2 :=

∫ ∞
0

(
ψ2

1 + (ψ0)2
r +

ψ2
0

r2

)
r dr. (2.5)

We note that for degree zero maps (ψ0, ψ1) ∈ H0 the energy is comparable to the
H × L2 norm provided the L∞ norm of ψ0 is uniformly bounded below π. This
equivalence of norms is detailed in [6, Lemma 2.1], see also [5, Lemma 2]. The
space H × L2 is not defined for maps (ψ0, ψ1) ∈ H1, but one can instead consider
the H × L2 norm of (ψ0 −Qλ, 0) for λ ∈ (0,∞), and Qλ(r) = Q(r/λ). In fact, for

maps ~ψ ∈ H1 such that E(~ψ)− E(Q) is small, one can choose λ > 0 so that

‖(ψ0 −Qλ, ψ1)‖2H×L2 ' E(~ψ)− E(Q).

This amounts to the coercivity of the energy near Q up to the scaling symmetry.
For more details we refer the reader to [4, Proposition 4.3], [6, Lemma 2.5], and [3].

2.1. Properties of global wave maps. We will need a few facts about global
solutions to (1.2). The results in this section constitute slight refinements and a
few consequences of the work of Shatah and Tahvildar-Zadeh in [31, Section 3.1]
on global equivariant wave maps and originate in the work of Christodoulou and
Tahvildar-Zadeh on spherically symmetric wave maps, see [9].

Proposition 2.1. Let ~ψ(t) ∈ H be a global wave map. Let 0 < λ < 1. Then we
have

lim sup
t→∞

Et−Aλt (~ψ(t))→ 0 as A→∞. (2.6)

In fact, we have

Et−Aλt (~ψ(t))→ 0 as t, A→∞ for A ≤ (1− λ)t. (2.7)

We note that Proposition 2.1 is a refinement of [31, (3.4)], see also [9, Corollary
1] where the case of spherically symmetric wave maps is considered. To prove this
result, we follow [9], [31], and [29] and introduce the following quantities:

e(t, r) := ψ2
t (t, r) + ψ2

r(t, r) +
sin2(ψ(t, r))

r2

m(t, r) := 2ψt(t, r)ψr(t, r).

Observe that with this notation the energy identity becomes:

∂te(t, r) =
1

r
∂r (rm(t, r)) , (2.8)

which we can conveniently rewrite as

∂t(re(t, r))− ∂r(rm(t, r)) = 0. (2.9)

Using the notation in [9], we set

α2(t, r) := r (e(t, r) +m(t, r))

β2(t, r) := r(e(t, r)−m(t, r))

and we define null coordinates

u = t− r, v = t+ r.
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Next, for 0 ≤ λ < 1 set

Eλ(u) :=

∫ ∞
1+λ
1−λu

α2(u, v) dv (2.10)

F (u0, u1) := lim
v→∞

∫ u1

u0

β2(u, v) du. (2.11)

Also, let C±ρ denote the interior of the forward (resp. backward) light-cone with
vertex at (t, r) = (ρ, 0) for ρ > 0 in (t, r) coordinates.

As in [31, Section 3.1], one can show that the integral in (2.10) and the limit in
(2.11) exist for a wave map of finite energy, see also [9, Section 2] for the details of
the argument for the spherically symmetric case.

By integrating the energy identity (2.9) over the region (C +
u0
\C +

u1
) ∩ C−v0 , where

0 < u0 < u1 < v0, we obtain the identity∫ u1

u0

β2(u, v) du =

∫ v0

u0

α2(u0, v) dv −
∫ v0

u1

α2(u1, v) dv.

Letting v0 →∞ we see that

0 ≤ F (u0, u1) = E0(u0)− E0(u1), (2.12)

which shows that E0 is decreasing. Next, note that

F (u, u2) = F (u, u1) + F (u1, u2) ≥ F (u, u1)

for u2 > u1, and thus F (u, u1) is increasing in u1. F (u, u1) is also bounded above
by E (u) so

F (u) := lim
u1→∞

F (u, u1)

exists and, as in [31], [9], we have

F (u)→ 0 as u→∞. (2.13)

Finally note that the argument in [9, Lemma 1] shows that for all 0 < λ < 1 we
have

Eλ(u)→ 0 as u→∞, (2.14)

which is stated in [31, (3.3)]. To deduce (2.14), follow the exact argument in [9,
proof of Lemma 1] using the relevant multiplier inequalities for equivariant wave
maps established in [29, proof of Lemma 8.2] in place of [9, equation (6)]. We can
now prove Proposition 2.1.

Proof of Proposition 2.1. Fix λ ∈ (0, 1) and δ > 0. Find A0 and T0 large enough
so that

0 ≤ F (A) ≤ δ, 0 ≤ Eλ((1− λ)t) ≤ δ
for all A ≥ A0 and t ≥ T0. In (u, v)–coordinates consider the points

X1 = ((1− λ)t, (1 + λ)t), X2 = (A, 2t−A)

X3 = (A, v̄), X4 = ((1− λ)t, v̄)

where v̄ is very large. Integrating the energy identity (2.9) over the region Ω
bounded by the line segments X1X2, X2X3, X3X4, X4X1 we obtain,

Et−Aλt (~ψ(t)) = −
∫ v̄

2t−A
α2(A, v) dv +

∫ (1−λ)t

A

β2(u, v̄) du+

∫ v̄

(1+λ)t

α2((1− λ)t, v) dv.
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r

t u

v

t

F (A, 1− λt)

Eλ((1− λ)t)

Et−Aλt (~ψ(t))

u = A

Ω

Figure 1. The quadrangle Ω over which the energy identity is
integrated is the gray region above.

Letting v̄ →∞ above and recalling that F (u, u1) is increasing in u1 we have

Et−Aλt (~ψ(t)) ≤ Eλ((1− λ)t) + F (A, (1− λ)t)

≤ Eλ((1− λ)t) + F (A).

The proposition now follows from (2.14) and (2.13). �

We will also need the following corollaries of Proposition 2.1:

Corollary 2.2. Let ~ψ(t) ∈ H be a global wave map. Then

lim sup
T→∞

1

T

∫ T

A

∫ t−A

0

ψ2
t (t, r) r dr dt→ 0 as A→∞. (2.15)

Proof. We will use the following virial identity for solutions to (1.2):

∂t(r
2m)− ∂r(r2ψ2

t + r2ψ2
r − sin2 ψ) + 2rψ2

t = 0. (2.16)

Now, fix δ > 0 so that δ < 1/3 and find A0, T0 so that for all A ≥ A0 and t ≥ T0

we have

Et−Aδt (~ψ(t)) ≤ δ.
Then, ∫ δt

0

e(t, r)r2 dr ≤ E(~ψ(t))δt

and as long as we ensure that A ≤ 1/3t, we obtain∫ 2t/3

δt

e(t, r) r2 dr ≤ δt.
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This implies that∫ 2t/3

0

e(t, r) r2 dr ≤ Cδt, and

∫ 2t/3

0

e(t, r) r3 dr ≤ Cδt2.

Let χ : R → [0, 1] be a smooth cut-off function such that χ(x) = 1 for |x| ≤ 1/3,
χ(x) = 0 for |x| ≥ 2/3 and χ′(x) ≤ 0. Then, using the virial identity (2.16) we have

d

dt

∫ ∞
0

m(t, r)χ(r/t) r2 dr =

∫ ∞
0

∂t(r
2m(t, r))χ(r/t) dr − 2

t2

∫ ∞
0

ψtψr r
3χ′(r/t) dr

=

∫ ∞
0

∂r(r
2(ψ2

t + ψ2
r)− sin2(ψ))χ(r/t) dr

− 2

∫ ∞
0

ψ2
t (t, r)χ(r/t) r dr +O(δ)

=
1

t2

∫ ∞
0

(r2(ψ2
t + ψ2

r)− sin2(ψ))χ′(r/t) r dr

− 2

∫ ∞
0

ψ2
t (t, r)χ(r/t) r dr +O(δ)

= −2

∫ ∞
0

ψ2
t (t, r)χ(r/t) r dr +O(δ).

Integrating in t between 0 and T yields∫ T

0

∫ ∞
0

ψ2
t (t, r)χ(r/t) r dr dt ≤ CδT

with an absolute constant C > 0. By the definition of χ(x) this implies∫ T

0

∫ t/3

0

ψ2
t (t, r) r dr dt ≤ CδT.

Next, note that we have∫ T

A

∫ t−A

t/3

ψ2
t (t, r) r dr dt ≤

∫ T0

A

E(~ψ) dt+

∫ T

T0

∫ t−A

t/3

e(t, r) r dr dt

≤ (T0 −A)E(~ψ) + (T − T0)δ.

Therefore,

1

T

∫ T

A

∫ t−A

0

ψ2
t (t, r) r dr dt ≤ Cδ +

T0

T
E(~ψ)

Hence,

lim sup
T→∞

1

T

∫ T

A

∫ t−A

0

ψ2
t (t, r) r dr dt ≤ Cδ

for all A ≥ A0, which proves (2.15). �

Corollary 2.3. Let ~ψ(t) ∈ H be a smooth global wave map. Recall that ~ψ(t) ∈ H
implies that there exists k ∈ Z such that for all t we have ψ(t,∞) = kπ. Then for
any λ > 0 we have

‖ψ(t)− ψ(t,∞)‖L∞(r≥λt) → 0 as t→∞. (2.17)

Before proving Corollary 2.3, we can combine Proposition 2.1 and Corollary 2.3
to immediately deduce the following result.
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Corollary 2.4. Let ~ψ(t) ∈ H be a global wave map. Let 0 < λ < 1. Then we have

lim sup
t→∞

‖~ψ(t)− (ψ(t,∞), 0)‖2H×L2(λt≤r≤t−A) → 0 as A→∞. (2.18)

Proof. Say ~ψ(t) ∈ Hk. Observe that Corollary 2.3 shows that for t0 large enough
we have, say,

|ψ(t, r)− kπ| ≤ π

100
for all t ≥ t0 and r ≥ λt. This in turn implies that for t ≥ t0 we can find a C > 0
such that

|ψ(t, r)− kπ|2 ≤ C sin2(ψ(t, r)) ∀ t ≥ t0, r ≥ λt.

Now (2.18) follows directly from (2.6). �

The first step in the proof of Corollary 2.3 is the following lemma:

Lemma 2.5. Let ~ψ(t) ∈ H be a smooth global wave map. Let R > 0 and suppose

that the initial data ~ψ(0) = (ψ0, ψ1) ∈ H1 satisfies supp(∂rψ0), supp(ψ1) ⊂ B(0, R).
Then for any t ≥ 0 and for any A < t we have

‖ψ(t)− ψ(t,∞)‖L∞(r≥t−A) ≤
√
E(~ψ)

√
A+R

t−A
. (2.19)

Proof. By the finite speed of propagation we note that for each t ≥ 0 we have
supp(ψr(t)) ⊂ B(0, R+ t). Hence, for all t ≥ 0 we have

|ψ(t, r)− ψ(t,∞)| ≤
∫ ∞
r

|ψr(t, r′)| dr′

≤

(∫ R+t

r

ψ2
r(t, r′) r′ dr′

) 1
2
(∫ R+t

r

1

r′
dr′

) 1
2

≤
√
E(~ψ)

√
log

(
t+R

r

)
.

Next observe that if r ≥ t−A then

log

(
t+R

r

)
≤ log

(
1 +

A+R

r

)
≤ log

(
1 +

A+R

t−A

)
≤ A+R

t−A
.

This proves (2.19). �

Proof of Corollary 2.3. Say ψ(t) ∈ Hk, that is ψ(t,∞) = kπ for all t. First observe

that by an approximation argument, it suffices to consider wave maps ~ψ(t) ∈ Hk
with initial data ~ψ(0) = (ψ0, ψ1) ∈ Hk with

supp(∂rψ0), supp(ψ1) ⊂ B(0, R)

for R > 0 arbitrary, but fixed. Now, let tn →∞ be any sequence and set

An :=
√
tn.

Then, for each r ≥ λtn we have

|ψ(tn, r)− kπ| ≤ ‖ψ(tn)− kπ‖L∞(λtn≤r≤tn−An) + ‖ψ(tn)− kπ‖L∞(r≥tn−An).
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By Lemma 2.5 we know that

‖ψ(tn)− kπ‖L∞(r≥tn−An) ≤
√
E(ψ)

√√
tn +R

tn −
√
tn
→ 0 as n→∞. (2.20)

Hence it suffices to show that

‖ψ(tn)− kπ‖L∞(λtn≤r≤tn−An) → 0 as n→∞.

To see this, first observe that (2.20) implies that

ψ(tn, tn −An)→ kπ

as n→∞. Therefore it is enough to show that

‖ψ(tn)− ψ(tn, tn −An)‖L∞(λtn≤r≤tn−An) → 0 as n→∞. (2.21)

With G defined as in (2.3) we can combine (2.4) and Proposition 2.1 to deduce that
for all r ≥ λtn we have

|G(ψ(tn, r))−G(ψ(tn, tn −An))| ≤ 1

2
Etn−Anλtn

(~ψ(tn))→ 0.

as n → ∞. This immediately implies (2.21) since G is a continuous, increasing
function. �

3. Profiles for global degree one solutions with energy below 3E(Q)

In this section we carry out the proof of Theorem 1.1 (2). We start by first
deducing the conclusions along a sequence of times. To be specific, we establish the
following proposition:

Proposition 3.1. Let ψ(t) ∈ H1 be a global solution to (1.2) with

E(~ψ) = E(Q) + η < 3E(Q).

Then there exist a sequence of times τn → ∞, a sequence of scales λn � τn, a
solution ~ϕL(t) ∈ H0 to the linear wave equation (1.6), and a decomposition

~ψ(τn) = ~ϕL(τn) + (Q (·/λn) , 0) + ~ε(τn) (3.1)

such that ~ε(τn) ∈ H0 and ~ε(τn)→ 0 in H × L2 as n→∞.

To prove Proposition 3.1 we proceed in several steps. We first construct the
sequences τn and λn while identifying the large profile, Q(·/λn). Once we have
done this, we extract the radiation term ϕL. In the last step, we prove strong
convergence of the error

~ε(τn) := ~ψ(τn)− ~ϕL(τn)− (Q (·/λn) , 0)→ 0

in the space H × L2.
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3.1. The harmonic map at t = +∞. Here we prove the analog of Struwe’s
result [35, Theorem 2.1] for global wave maps of degree different than zero, i.e.,
ψ(t) ∈ H\H0 for all t ∈ [0,∞). This will allow us to identify the sequences τn, λn
and the harmonic maps Q(·/λn) in the decomposition (3.1).

Theorem 3.2. Let ~ψ(t) ∈ H\H0 be a smooth, global solution to (1.2). Then, there
exists a sequence of times tn → ∞ and a sequence of scales λn � tn so that the
following results hold: Let

~ψn(t, r) :=
(
ψ(tn + λnt, λnr), λnψ̇(tn + λnt, λnr)

)
(3.2)

be the global wave map evolutions associated to the initial data

~ψn(r) := (ψ(tn, λnr), λnψ̇(tn, λn, r)).

Then, there exists λ0 > 0 so that

~ψn → (±Q(·/λ0), 0) in L2
t ([0, 1);H1 × L2)loc.

We begin with the following lemma, which follows from Corollary 2.2 and is the
global-in-time version of [6, Corollary 2.9]. The statement and proof are also very
similar to [13, Lemma 4.4] and [11, Corollary 5.3].

Lemma 3.3. Let ~ψ(t) ∈ H be a smooth global wave map. Let A : (0,∞)→ (0,∞)
be any increasing function such that A(t) ↗ ∞ as t → ∞ and A(t) ≤ t for all t.
Then, there exists a sequence of times tn →∞ such that

lim
n→∞

sup
σ>0

1

σ

∫ tn+σ

tn

∫ t−A(tn)

0

ψ̇2(t, r) r dr dt = 0. (3.3)

Proof. The proof is analogous to the argument given in [11, Corollary 5.3]. We
argue by contradiction. The existence of a sequence of times tn satisfying (3.3) is
equivalent to the statement

∀A(t)↗∞ with A(t) ≤ t as t→∞, ∀δ > 0, ∀T0 > 0, ∃τ ≥ T0 so that

sup
σ>0

1

σ

∫ τ+σ

τ

∫ t−A(τ)

0

ψ̇2(t, r) r dr dt ≤ δ.

So we assume that (3.3) fails. Then,

∃A(t)↗∞ with A(t) ≤ t as t→∞, ∃δ > 0, ∃T0 > 0, ∀τ ≥ T0, ∃σ > 0 so that

1

σ

∫ τ+σ

τ

∫ t−A(τ)

0

ψ̇2(t, r) r dr dt > δ. (3.4)

Now, by Corollary 2.2 we can find a large A1 and a T1 = T1(A1) > T0 so that for
all T ≥ T1 we have

1

T

∫ T

A1

∫ t−A1

0

ψ̇2(t, r) r dr dt ≤ δ/100. (3.5)

Since A(t) ↗ ∞ we can fix T > T1 large enough so that A(t) ≥ A1 for all t ≥ T .
Define the set X as follows:

X :=

{
σ > 0 :

1

σ

∫ T+σ

T

∫ t−A(T )

0

ψ̇2(t, r) r dr dt ≥ δ

}
.
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Then X is nonempty by (3.4). Define ρ := supX. We claim that ρ ≤ T . To see
this assume that there exists σ ∈ X so that σ ≥ T . Then we would have

T + σ ≤ 2σ.

This in turn implies, using (3.5), that

1

2σ

∫ T+σ

T

∫ t−A(T )

0

ψ̇2(t, r) r dr dt ≤ 1

T + σ

∫ T+σ

A1

∫ t−A1

0

ψ̇2(t, r) r dr dt ≤ δ/100

where we have also used the fact that A(T ) ≥ A1. This would mean that

1

σ

∫ T+σ

T

∫ t−A(T )

0

ψ̇2(t, r) r dr dt ≤ δ/50,

which is impossible since we assumed that σ ∈ X. Therefore ρ ≤ T . Moreover, we
know that ∫ T+ρ

T

∫ T−A(T )

0

ψ̇2(t, r) r dr dt ≥ δρ. (3.6)

Now, since T + ρ > T > T1 > T0 we know that there exists σ > 0 so that∫ T+ρ+σ

T+ρ

∫ t−A(T+ρ)

0

ψ̇2(t, r) r dr dt > δσ.

Since A(t) is increasing, we have A(T ) ≤ A(T + ρ) and hence the above implies
that ∫ T+ρ+σ

T+ρ

∫ t−A(T )

0

ψ̇2(t, r) r dr dt > δσ. (3.7)

Summing (3.6) and (3.7) we get∫ T+ρ+σ

T

∫ t−A(T )

0

ψ̇2(t, r) r dr dt > δ(σ + ρ),

which means that ρ+ σ ∈ X. But this contradicts that fact that ρ = supX. �

The rest of the proof of Theorem 3.2 will follow the same general outline of [35,

proof of Theorem 2.1]. Let ~ψ(t) ∈ H1 be a smooth global wave map.
We begin by choosing a scaling parameter. Let δ0 > 0 be a small number, for

example δ0 = 1 would work. For each t ∈ (0,∞) choose λ(t) so that

δ0 ≤ E2λ(t)
0 (~ψ(t)) ≤ 2δ0. (3.8)

Then using the monotonicity of the energy on interior cones we know that for each
|τ | ≤ λ(t) we have

Eλ(t)
0 (~ψ(t+ τ)) ≤ E2λ(t)−|τ |

0 (~ψ(t+ τ)) ≤ E2λ(t)
0 (~ψ(t)) ≤ 2δ0. (3.9)

Similarly, we have

δ0 ≤ E2λ(t)+|τ |
0 (~ψ(t+ τ)) ≤ E3λ(t)

0 (~ψ(t+ τ)). (3.10)

Lemma 3.4. Let ~ψ(t) ∈ H\H0 and λ(t) be defined as above. Then we have λ(t)� t
as t→∞.
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Proof. Suppose ~ψ ∈ Hk for k ≥ 1. It suffices to show that for all λ > 0 we have
λ(t) ≤ λt for all t large enough. Fix λ > 0. By Corollary 2.3 we have

‖ψ(t)− kπ‖L∞(r≥λt) → 0 (3.11)

as t → ∞. For the sake of finding a contradiction, suppose that there exists a
sequence tn → ∞ with λ(tn) ≥ λtn for all n ∈ N. By (2.4) and (3.11) we would
then have that

E2λ(tn)
0 (~ψ(tn)) ≥ Eλtn0 (~ψ(tn)) ≥ 2G(ψ(tn, λtn))→ 2G(kπ) ≥ 4 > 2δ0,

which contradicts (3.8) as long as we ensure that δ0 < 2. �

We can now complete the proof of Theorem 3.2.

Proof of Theorem 3.2. Let λ(t) be defined as in (3.8). Choose another scaling pa-
rameter A(t) so that A(t) → ∞ and λ(t) ≤ A(t) � t for t → ∞, for example one

could take A(t) := max{λ̃(t), t1/2} where λ̃(t) := sup0≤s≤t λ(s). By Lemma 3.3 we
can find a sequence tn → ∞ so that by setting λn := λ(tn) and An := A(tn) we
have

lim
n→∞

1

λn

∫ tn+λn

tn

∫ t−An

0

ψ̇2(t, r) r dr dt = 0.

Now define a sequence of global wave maps ~ψn(t) ∈ H\H0 by

~ψn(t, r) :=
(
ψ(tn + λnt, λnr), λnψ̇(tn + λnt, λnr)

)
.

and write the full wave maps in coordinates on S2 as Un(t, r, ω) := (ψn(t, r), ω).
Observe that we have∫ 1

0

∫ rn

0

ψ̇2
n(t, r) r dr dt→ 0 as n→∞ (3.12)

where rn := (tn −An)/λn →∞ as n→∞ by our choice of An. Also note that

E(~ψn(t)) = E(~ψ(tn + λnt)) = E(~ψ) = C.

This implies that the sequence ~ψn is uniformly bounded in L∞t (Ḣ1 × L2). Note
that (2.4) implies that ψn is uniformly bounded in L∞t L

∞
x . Hence we can extract

a further subsequence so that

~ψn ⇀ ~ψ∞ weakly in L2
t (H

1 × L2)loc

and, in fact, locally uniformly on [0, 1)× (0,∞). By (3.12), the limit

~ψ∞(t, r) = (ψ∞(r), 0) ∀(t, r) ∈ [0, 1)× (0,∞)

and is thus a time-independent weak solution to (1.2) on [0, 1)×(0,∞). This means

that the corresponding full, weak wave map Ũ∞(t, r, ω) = U∞(r, ω) := (ψ∞(r), ω) is
a time-independent weak solution to (1.1) on [0, 1)×R2 \ {0}. By Hélein’s theorem
[16, Theorem 2],

U∞ : R2 \ {0} → S2

is a smooth finite energy, co-rotational harmonic map. By Sacks-Uhlenbeck, [27],
we can then extend U∞ to a smooth finite energy, co-rotational harmonic map U :
R2 → S2. Writing U(r, ω) = (ψ∞(r), ω), we have either ψ∞ ≡ 0 or ψ∞ = ±Q(·/λ0)
for some λ0 > 0.
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Following Struwe, we can also establish strong local convergence

~ψn → (ψ∞, 0) in L2
t ([0, 1);H1 × L2)loc (3.13)

using the equation (1.1) and the local energy constraints from (3.9):

E1
0 (~ψn(t)) ≤ 2δ0, E1

0 (ψ∞) ≤ 2δ0,

which hold uniformly in n for |t| ≤ 1. For the details of this argument we refer
the reader to [35, Proof of Theorem 2.1 (ii)]. Finally we note that the strong local
convergence in (3.13) shows that indeed ψ∞ 6≡ 0 since by (3.10) we have

δ0 ≤ E3
0 (~ψn(t))

uniformly in n for each |t| ≤ 1. Therefore we can conclude that there exists λ0 > 0
so that ψ∞(r) = ±Q(r/λ0). �

As in [6], the following consequences of Theorem 3.2, which hold for global degree
one wave maps with energy below 3E(Q), will be essential in what follows.

Corollary 3.5. Let ψ(t) ∈ H1 be a smooth global wave map such that E(~ψ) <
3E(Q). Then we have

ψn −Q(·/λ0)→ 0 as n→∞ in L2
t ([0, 1);H)loc, (3.14)

with ψn(t, r), {tn}, {λn}, and λ0 as in Theorem 3.2.

Corollary 3.5 is the global-in-time analog of [6, Corollary 2.13]. For the details,
we refer the reader to [6, Proof of Lemma 2.11, Lemma 2.12, and Corollary 2.13].
At this point we note that we can, after a suitable rescaling, assume, without loss
of generality, that λ0 in Theorem 3.2, and Corollary 3.5, satisfies λ0 = 1.

Arguing as in [6, Proof of Proposition 5.4] we can also deduce the following
consequence of Theorem 3.2.

Proposition 3.6. Let ψ(t) ∈ H1 be a smooth global wave map such that E(~ψ) <
3E(Q). Then, there exists a sequence αn → ∞, a sequence of times τn → ∞, and
a sequence of scales λn � τn with αnλn � τn, so that

(a) As n→∞ we have

lim
n→∞

∫ τn−An

0

ψ̇2(τn, r) r dr → 0, (3.15)

where An →∞ satisfies λn ≤ An � τn.
(b) As n→∞ we have

lim
n→∞

∫ αnλn

0

(∣∣∣∣ψr(τn, r)− Qr(r/λn)

λn

∣∣∣∣2 +
|ψ(τn, r)−Q(r/λn)|2

r2

)
r dr = 0. (3.16)

Remark 5. Proposition 3.6 follows directly from Lemma 3.3, Corollary 3.5 and a
diagonalization argument. As mentioned above, we refer the reader to [6, Proposi-
tion 5.4 (a), (b)] for the details. Also note that τn ∈ [tn, tn + λn] where tn →∞ is
the sequence in Proposition 3.6. Finally An := A(tn) is the sequence that appears
in the proof of Theorem 3.2.

As in [6] we will also need the following simple consequence of Proposition 3.6.
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Corollary 3.7. Let αn, λn, and τn be defined as in Proposition 3.6. Let βn → ∞
be any sequence such that βn < c0αn for some c0 < 1. Then, for every 0 < c1 < C2

such that C2c0 < 1 there exists β̃n with c1βn ≤ β̃n ≤ C2βn such that

ψ(τn, β̃nλn)→ π as n→∞. (3.17)

3.2. Extraction of the radiation term. In this subsection we construct what
we will refer to as the radiation term, ϕL(t) ∈ H0 in the decomposition (3.1).

Proposition 3.8. Let ψ(t) ∈ H1 be a global wave map with E(~ψ) = E(Q) + η <
3E(Q). Then there exists a solution ϕL(t) ∈ H0 to the linear wave equation (1.6)
so that for all A ≥ 0 we have

‖~ψ(t)− (π, 0)− ~ϕL(t)‖H×L2(r≥t−A) → 0 as t→∞. (3.18)

Moreover, for n large enough we have

E(~ϕL(τn)) ≤ C < 2E(Q). (3.19)

Proof. To begin we pick any αn → ∞ and find τn, λn as in Proposition 3.6. Now
let βn → ∞ be any other sequence such that βn � αn. By Corollary 3.7 we can
assume that

ψ(τn, βnλn)→ π (3.20)

as n→∞. We make the following definition:

φ0
n(r) =

{
π − π−ψ(τn,βnλn)

βnλn
r if 0 ≤ r ≤ βnλn

ψ(τn, r) if βnλn ≤ r <∞
(3.21)

φ1
n(r) =

{
0 if 0 ≤ r ≤ βnλn
ψ̇(τn, r) if βnλn ≤ r <∞.

(3.22)

We claim that ~φn := (φ0
n, φ

1
0) ∈ H1,1 and E(~φn) ≤ C < 2E(Q). Clearly φ0

n(0) = π
and φ0

n(∞) = π. We claim that

E∞βnλn(~φn) = E∞βnλn(~ψ(τn)) ≤ η + on(1). (3.23)

Indeed, since ψ(τn, βnλn) → π we have G(ψ(τn, βnλn)) → 2 = 1
2E(Q) as n → ∞.

Therefore, by (2.4) we have

Eβnλn0 (ψ(τn), 0) ≥ 2G(ψ(τn, βnλn)) ≥ E(Q)− on(1)

for large n which proves (3.23) since E∞βnλn(~ψ(τn)) = E∞0 (~ψ(τn))− Eβnλn0 (~ψ(τn)).

We can also directly compute Eβnλn0 (φ0
n, 0). Indeed,

Eβnλn0 (φ0
n, 0) =

∫ βnλn

0

(
π − ψ(τn, βnλn)

βnλn

)2

r dr +

∫ βnλn

0

sin2
(
π−ψ(τn,βnλn)

βnλn
r
)

r
dr

≤ C |π − ψ(τn, βnλn)|2 → 0 as n→∞.

Hence E(~φn) ≤ η+ on(1). This means that for large enough n we have the uniform

estimates E(~φn) ≤ C < 2E(Q). Therefore, by [6, Theorem 1.1], (which holds with
exactly the same statement in H1,1 as in H0 = H0,0), we have that the wave map

evolution ~φn(t) ∈ H1,1 with initial data ~φn is global in time and scatters to π as
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t→ ±∞. The scattering statement means that for each n we can find initial data
~φn,L so that the solution, S(t)~φn,L, to the linear wave equation (1.6) satisfies

‖~φn(t)− (π, 0)− S(t)~φn,L‖H×L2 → 0 as t→∞.
Abusing notation, we set

~φn,L(t) := S(t− τn)~φn,L.

By the definition of ~φn and the finite speed of propagation observe that we have

φn(t− τn, r) = ψ(t, r) ∀r ≥ t− τn + βnλn.

Therefore, for all fixed m we have

‖~ψ(t)− (π, 0)− ~φm,L(t)‖H×L2(r≥t−τm+βmλm) → 0 as t→∞, (3.24)

and, in particular

‖~φn − (π, 0)− ~φm,L(τn)‖H×L2(r≥τn−τm+βmλm) → 0 as n→∞. (3.25)

Now set ~ϕn = (ϕ0
n, ϕ

1
n) := (φ0

n, φ
1
n)− (π, 0) ∈ H0. We have E(~ϕn) ≤ C < 2E(Q) by

construction. Therefore the sequence S(−τn)~ϕn is uniformly bounded in H × L2.
Let ~ϕL = (ϕ0

L, ϕ
1
L) ∈ H0 be the weak limit of S(−τn)~ϕn in H × L2 as n→∞, i.e.,

S(−τn)~ϕn ⇀ ~ϕ weakly in H × L2

as n → ∞. Denote by ~ϕL(t) := S(t)~ϕL the linear evolution of ~ϕL at time t.
Following the construction in [1, Main Theorem] we have the following profile de-
composition for ~ϕn:

~ϕn(r) = ~ϕL(τn, r) +

k∑
j=2

(
ϕjL(tjn/λ

j
n, r/λ

j
n),

1

λjn
ϕ̇jL(tjn/λ

j
n, r/λ

j
n)

)
+ ~γkn(r) (3.26)

where if we label ϕL =: ϕ1
L, τn =: t1n, and λ1

n = 1 this is exactly a profile de-
composition as in [6, Corollary 2.15]. Now observe that for each fixed m we can
write

~ϕn(r)− ~φm,L(τn, r) = ~ϕL(τn, r)− ~φm,L(τn, r)

+
k∑
j=2

(
ϕjL(tjn/λ

j
n, r/λ

j
n),

1

λjn
ϕ̇jL(tjn/λ

j
n, r/λ

j
n)

)
+ ~γkn(r) (3.27)

and (3.27) is still a profile decomposition in the sense of [6, Corollary 2.15] for the

sequence ~ϕn(r)− ~φm,L(τn, r). Since the pseudo-orthogonality of the H×L2 norm is
preserved after sharp cut-offs, see [7, Corollary 8] or [6, Proposition 2.19], we then
have

‖~ϕn−~φm,L(τn)‖2H×L2(r≥τn−τm+βmλm) = ‖~ϕL(τn)−~φm,L(τn)‖2H×L2(r≥τn−τm+βmλm)

+

k∑
j=2

‖~ϕjL(tjn/λ
j
n)‖2H×L2(r≥τn−τm+βmλm) + ‖~γkj ‖2H×L2(r≥τn−τm+βmλm) + on(1)

Note that (3.25) implies that the left-hand-side above tends to zero as n → ∞.
Therefore, since all of the terms on right-hand-side are non-negative we can deduce
that

‖~ϕL(τn)− ~φm,L(τn)‖2H×L2(r≥τn−τm+βmλm) → 0 as n→∞.
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Since,

~ϕL(τn)− ~φm,L(τn) = S(τn)(~ϕ− S(−τm)~φm,L)

is a solution to the linear wave equation, we can use the monotonicity of the energy
on exterior cones to deduce that

‖~ϕL(t)− ~φm,L(t)‖2H×L2(r≥t−τm+βmλm) → 0 as t→∞.

Combining the above with (3.24) we can conclude that

‖~ψ(t)− (π, 0)− ~ϕL(t)‖2H×L2(r≥t−τm+βmλm) → 0 as t→∞.

The above holds for each m ∈ N and for any sequence βm → ∞ with βm < c0αm.
Taking βm � αm and recalling that τm → ∞ and λm are such that αmλm � τm
we have that τm − βmλm → ∞ as m → ∞. Therefore, for any A > 0 we can find
m large enough so that τm − βmλm > A, which proves (3.18) in light of the above.

It remains to show (3.19). But this follows immediately from the decomposition
(3.26) and the almost orthogonality of the nonlinear wave map energy for such a
decomposition, see [6, Lemma 2.16], since we know that the left-hand-side of (3.26)
satisfies

E(~ϕn) ≤ C < 2E(Q)

for large enough n. �

Now that we have constructed the radiation term ~ϕL(t) we denote by ϕ(t) ∈ H0

the global wave map that scatters to the linear wave ~ϕL(t), i.e., ~ϕ(t) ∈ H0 is the
global solution to (1.2) such that

‖~ϕ(t)− ~ϕL(t)‖H×L2 → 0 as t→∞. (3.28)

The existence of such a ϕ(t) ∈ H0 locally around t = +∞ follows immediately from
the existence of wave operators for the corresponding 4d semi-linear equation. The
fact that ϕ(t) is global-in-time follows from [6, Theorem 1] since (3.19) and (3.28)
together imply that E(~ϕ) < 2E(Q).

We will need a few facts about the degree zero wave map ~ϕ(t) which we collect
in the following lemma.

Lemma 3.9. Let ~ϕ(t) be defined as above. Then we have

lim sup
t→∞

‖~ϕ(t)‖H×L2(|r−t|≥A) → 0 as A→∞, (3.29)

lim
t→∞

E∞t−A(~ϕ(t))→ E(~ϕ) as A→∞. (3.30)

Proof. First we prove (3.29). We have

‖~ϕ(t)‖2H×L2(|r−t|≥A) ≤ ‖~ϕ(t)− ~ϕL(t)‖2H×L2 + ‖ϕL(t)‖2H×L2(|r−t|≥A).

By (3.28) the first term on the right-hand-side above tends to 0 as t → ∞ so it
suffices to show that

lim sup
t→∞

‖ϕL(t)‖2H×L2(|r−t|≥A) → 0 as A→∞.

Since ϕL(t) is a solution to (1.6) the above follows from [7, Theorem 4] by passing
to the analogous statement for the corresponding 4d free wave vL(t) given by

rvL(t, r) := ϕL(t, r).
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To prove (3.30) we note that the limit as t → ∞ exists for any fixed A due to the
monotonicity of the energy on exterior cones. Next observe that we have

lim
t→∞

Et−A0 (~ϕ(t)) ≤ lim
t→∞

‖~ϕ(t)‖2H×L2(r≤t−A) → 0 as A→∞ (3.31)

by (3.29) and then (3.30) follows immediately from the conservation of energy. �

Now, observe that we can combine Proposition 3.8 and (3.28) to conclude that
for all A ≥ 0 we have

‖~ψ(t)− (π, 0)− ~ϕ(t)‖H×L2(r≥t−A) → 0 as t→∞. (3.32)

With this in mind we define a(t) as follows:

~a(t) := ~ψ(t)− ~ϕ(t) (3.33)

and we aggregate some preliminary information about a in the following lemma:

Lemma 3.10. Let ~a(t) be defined as in (3.33). Then ~a(t) ∈ H1 for all t. Moreover,

• for all λ > 0 we have

‖~a(t)− (π, 0)‖H×L2(r≥λt) → 0 as t→∞, (3.34)

• the quantity E(~a(t)) has a limit as t→∞ and

lim
t→∞

E(~a(t)) = E(~ψ)− E(~ϕ). (3.35)

Proof. By definition we have a(t) ∈ H1 for all t since

a(t, 0) = 0, a(t,∞) = π.

To prove (3.34) observe that for every A ≤ (1− λ)t we have

‖~a(t)− (π, 0)‖2H×L2(r≥λt) ≤ ‖~ψ(t)− (π, 0)‖2H×L2(λt≤r≤t−A)

+ ‖~ϕ(t)‖2H×L2(λt≤r≤t−A)

+ ‖~a(t)− (π, 0)‖2H×L2(r≥t−A).

Then (3.34) follows by combining (3.32), (3.29), and (2.18). To prove (3.35) we
first claim that

lim
A→∞

lim
t→∞

E∞t−A(~ψ(t)) = E(~ϕ). (3.36)

Indeed, we have

E∞t−A(~ψ(t)) =

∫ ∞
t−A

[(ψt(t)− ϕt(t) + ϕt(t))
2 + (ψr(t)− ϕr(t) + ϕr(t))

2] r dr

+

∫ ∞
t−A

sin2(ψ(t)− π − ϕ(t) + ϕ(t))

r
dr

= E∞t−A(~ϕ(t)) + ‖~ψ(t)− (π, 0)− ~ϕ(t)‖2
Ḣ1×L2(r≥t−A)

+O
(
‖~ψ(t)− (π, 0)− ~ϕ(t)‖Ḣ1×L2(r≥t−A)‖~ϕ(t)‖Ḣ1×L2(r≥t−A)

)
+

∫ ∞
t−A

sin2(ψ(t)− π − ϕ(t) + ϕ(t))− sin2(ϕ(t))

r
dr

= E∞t−A(~ϕ(t)) +O
(
‖~ψ(t)− (π, 0)− ~ϕ(t)‖2H×L2(r≥t−A)

)
+O

(√
E(~ϕ)‖~ψ(t)− (π, 0)− ~ϕ(t)‖H×L2(r≥t−A)

)
,
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which proves (3.36) in light of (3.30) and (3.32). In the third equality above we
have used the simple trigonometric inequality:∣∣sin2(x− y + y)− sin2(y)

∣∣ ≤ 2 |sin(y)| |x− y|+ 2 |x− y|2 .

Now, fix δ > 0. By (3.29), (3.36), and (3.32) we can choose A, T0 large enough so
that for all t ≥ T0 we have

‖~ϕ(t)‖H×L2(r≤t−A) ≤ δ,∣∣∣E∞t−A(~ψ(t))− E(~ϕ)
∣∣∣ ≤ δ,

‖~a(t)− (π, 0)‖2H×L2(r≥t−A) ≤ δ.

Then for all t ≥ T0 and A as above we can argue as before to obtain

E(~a(t)) = Et−A0 (~a(t)) +O(‖~a(t)− (π, 0)‖2H×L2(r≥t−A)

= Et−A0 (~ψ(t)) +O

(√
E(~ψ)‖~ϕ(t)‖H×L2(r≤t−A)

)
+O

(
‖~ϕ(t)‖2H×L2(r≤t−A)

)
+O

(
‖~a(t)− (π, 0)‖2H×L2(r≥t−A)

)
= E(~ψ)− E∞t−A(~ψ(t)) +O(δ)

= E(~ψ)− E(~ϕ) +O(δ),

which proves (3.35). �

We will also need the following technical lemma in the next section.

Lemma 3.11. For any sequence σn > 0 with λn � σn � τn we have

lim
n→∞

1

σn

∫ τn+σn

τn

∫ ∞
0

ȧ2(t, r) r dr dt = 0. (3.37)

Proof. Fix 0 < λ < 1. For each n we have

1

σn

∫ τn+σn

τn

∫ ∞
0

ȧ2(t, r) r dr dt ≤ 1

σn

∫ τn+σn

τn

∫ λt

0

ȧ2(t, r) r dr dt

+
1

σn

∫ τn+σn

τn

∫ ∞
λt

ȧ2(t, r) r dr dt.

By (3.34) we can conclude that

lim
n→∞

sup
t≥τn

∫ ∞
λt

ȧ2(t, r) r dr = 0.

Hence it suffices to show that

lim
n→∞

1

σn

∫ τn+σn

τn

∫ λt

0

ȧ2(t, r) r dr dt = 0.

Observe that for every n we have

1

σn

∫ τn+σn

τn

∫ λt

0

ȧ2(t, r) r dr dt .
1

σn

∫ τn+σn

τn

∫ λt

0

ψ̇2(t, r) r dr dt (3.38)

+
1

σn

∫ τn+σn

τn

∫ λt

0

ϕ̇2(t, r) r dr dt.
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We first estimate the first integral on the right-hand-side above. Let An → ∞ be
the sequence in Proposition 3.6, see also Remark 5, and let tn →∞ be the sequence
in Theorem 3.2. Recall that we have τn ∈ [tn, tn + λn] and λn ≤ An � tn.

Observe that for n large enough we have that for each t ∈ [τn, τn + σn] we have
λt ≤ t−An. Hence,

1

σn

∫ τn+σn

τn

∫ λt

0

ψ̇2(t, r) r dr dt ≤ 1

σn

∫ τn+σn

τn

∫ t−An

0

ψ̇2(t, r) r dr dt.

Next, note that since λn � σn we can ensure that for n large enough we have
λn + σn ≤ 2σn. Therefore,

1

σn

∫ τn+σn

τn

∫ t−An

0

ψ̇2(t, r) r dr dt ≤ 2

λn + σn

∫ tn+λn+σn

tn

∫ t−An

0

ψ̇2(t, r) r dr dt→ 0

as n→∞ by Lemma 3.3.
Lastly we estimate the second integral on the righ-hand-side of (3.38). For each

A > 0 we can choose n large enough so that λt ≤ t − A for each t ∈ [τn, τn + σn].
So we have

1

σn

∫ τn+σn

τn

∫ λt

0

ϕ̇2(t, r) r dr dt ≤ 1

σn

∫ τn+σn

τn

∫ t−A

0

ϕ̇2(t, r) r dr dt.

Taking the limsup as n→∞ of both sides and then letting A→∞ on the right we
have by (3.29) that the left-hand-side above tends to 0 as n→∞. This concludes
the proof. �

3.3. Compactness of the error. For the remainder of this section, we fix αn →
∞ and find τn →∞ and λn � τn as in Proposition 3.6. We define~bn = (bn,0, bn,1) ∈
H0 as follows:

bn,0(r) := a(τn, r)−Q(r/λn), (3.39)

bn,1(r) := ȧ(τn, r). (3.40)

As in [6, Section 5.3], our goal in this subsection is to show that ~bn → 0 in the
energy space. Indeed we prove the following result:

Proposition 3.12. Define ~bn ∈ H0 as in (3.39), (3.40). Then,

‖~bn‖H×L2 → 0 as n→∞. (3.41)

Remark 6. In light of (3.28), it is clear that Proposition 3.12 implies Proposition 3.1.

Remark 7. The proof of Proposition 3.12 will follow the same strategy as [6, Propo-
sition 5.6] and we refer the reader to the outline given there for a general overview
of the proof.

We begin with the following consequences of the previous sections.

Lemma 3.13. Let ~bn ∈ H0 be defined as above. Then we have

(a) As n→∞ we have

‖bn,1‖L2 → 0. (3.42)

(b) As n→∞ we have

‖bn,0‖H(r≤αnλn) → 0. (3.43)



LARGE ENERGY SOLUTIONS OF THE EQUIVARIANT WAVE MAP PROBLEM: II 21

(c) For any fixed λ > 0 we have

‖bn,0‖H(r≥λτn) → 0 as n→∞. (3.44)

(d) There exists a C > 0 so that

E(~bn) ≤ C < 2E(Q) (3.45)

for n large enough.

Proof. To prove (3.42) fix 0 < λ < 1 and observe that we have∫ ∞
0

b2n,1(r) r dr ≤
∫ λτn

0

ψ̇2(τn, r) r dr +

∫ λτn

0

ϕ̇2(τn, r) r dr

+

∫ ∞
λτn

ȧ(τn, r)
2 r dr.

Then (3.42) follows from (3.15), (3.29), and (3.34).
Next we prove (3.43). To see this, observe that for each n we have

‖bn,0‖2H(r≤αnλn) ≤ ‖ψ(τn)−Q(·/λn)‖2H(r≤αnλn) + ‖ϕ(τn)‖2H(r≤αnλn).

The first term on the right-hand-side tends to zero as n→∞ by (3.16). To estimate
the second term on the right-hand-side we note that for fixed A > 0 we can find n
large enough so that αnλn ≤ τn −A and so we have

‖ϕ(τn)‖2H(r≤αnλn) ≤ ‖ϕ(τn)‖2H(r≤τn−A).

Taking the limsup as n → ∞ on both sides above and then taking A → ∞ on the
right and recalling (3.29) we see that the limit as n→∞ of the left-hand side above
must be zero. This proves (3.43).

To deduce (3.44) note that

‖bn,0‖2H(r≥λτn) ≤ ‖a(τn)− π‖2H(r≥λτn) + ‖Q(·/λn)− π‖2H(r≥λτn).

The first term on the right-hand-side above tends to zero as n→∞ by (3.34). The
second term tends to zero since λτn/λn →∞ as n→∞.

Finally, we establish (3.45). First observe that for any fixed λ > 0, (3.44) implies
that

E(~bn) = Eλτn0 (~bn) + E∞λτn(~bn)

= Eλτn0 (~bn) + on(1)

as n→∞. So it suffices to control Eλτn0 (~bn). Next, observe that for n large enough,
(3.31) gives that

‖~ϕ(τn)‖H×L2(r≤λτn) ≤ ‖~ϕ(τn)‖H×L2(r≤τn−A)

and the right-hand side is small for n,A large. This means that the contribution
of ~ϕ(τn) is negligible on r ≤ λτn, and thus

Eλτn0 (~bn) = Eλτn0 (~ψ(τn)− (Q(·/λn), 0)) + on(1).

Next, recall that Proposition 3.6 implies that

Eαnλn0 (~ψ(τn)−Q(·/λn), 0) = on(1), (3.46)

which shows in particular that

E∞αnλn(~ψ(τn)) ≤ η + on(1) (3.47)



22 R. CÔTE, C. E. KENIG, A. LAWRIE, AND W. SCHLAG

where η := E(~ψ)− E(Q) < 2E(Q). Also, (3.46) means that it suffices to show that

Eλτnαnλn
(~ψ(τn)− (Q(·/λn), 0)) ≤ C < 2E(Q).

Note that since αn →∞ we have

E∞αnλn(Q(·/λn)) = E∞αn(Q) = on(1).

Hence,

Eλτnαnλn
(~ψ(τn)− (Q(·/λn), 0)) = Eλτnαnλn

(~ψ(τn)) + on(1) ≤ η + on(1),

which completes the proof. �

Next, we would like to show that the sequence ~bn does not contain any nonzero
profiles. This next result is the global-in-time analog of [6, Proposition 5.7] and the
proof is again, reminiscent of the the arguments given in [11, Section 5].

Denote by ~bn(t) ∈ H0 the wave map evolution with data ~bn. By (3.45) and [6,

Theorem 1.1] we know that ~bn(t) ∈ H0 is global in time and scatters to zero as
t→ ±∞.

The statements of the following proposition and its corollary are identical to the
corresponding statements [6, Proposition 5.7 and Corollary 5.8] in the finite time
blow-up case.

Proposition 3.14. Let bn ∈ H0 and the corresponding global wave map evolution
~bn(t) ∈ H0 be defined as above. Then, there exists a decomposition

~bn(t, r) = bn,L(t, r) + ~θn(t, r) (3.48)

where ~bn,L satisfies the linear wave equation (1.6) with initial data ~bn,L(0, r) :=

(bn,0, 0). Moreover, bn,L and ~θn satisfy∥∥∥∥1

r
bn,L

∥∥∥∥
L3
t (R;L6

x(R4))

−→ 0 (3.49)

‖~θn‖L∞t (R;H×L2) +

∥∥∥∥1

r
θn

∥∥∥∥
L3
t (R;L6

x(R4))

−→ 0 (3.50)

as n→∞.

Before beginning the proof of Proposition 3.14 we use the conclusions of the
proposition to deduce the following corollary which will be an essential ingredient
in the proof of Proposition 3.12.

Corollary 3.15. Let ~bn(t) be defined as in Proposition 3.14. Suppose that there
exists a constant δ0 and a subsequence in n so that ‖bn,0‖H ≥ δ0. Then there exists
α0 > 0 such that for all t > 0 and all n large enough along this subsequence we
have

‖~bn(t)‖H×L2(r≥t) ≥ α0δ0. (3.51)

Proof. First note that since ~bn,L satisfies the linear wave equation (1.6) with initial

data ~bn,L(0) = (bn,0, 0) we know by [7, Corollary 5] and [6, Corollary 2.3], that
there exists a constant β0 > 0 so that for each t ≥ 0 we have

‖~bn,L(t)‖H×L2(r≥t) ≥ β0‖bn,0‖H .
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On the other hand, by Proposition 3.14 we know that

‖~bn(t)−~bn,L(t)‖H×L2(r≥t) ≤ ‖~θn(t)‖H×L2 = on(1).

Putting these two facts together gives

‖~bn(t)‖H×L2(r≥t) ≥ ‖bn,L(t)‖H×L2(r≥t) − on(1)

≥ β0‖bn,0‖H − on(1).

This yields (3.51) by passing to a suitable subsequence and taking n large enough.
�

The proof of Proposition 3.14 is very similar to the proof of [6, Proposition 5.7].
Instead of going through the entire argument again here, we establish the main
ingredients of the proof and we refer the reader to [6] for the remainder of the
argument.

Since ~bn ∈ H0 and E(~bn) ≤ C < 2E(Q) we can, by [6, Corollary 2.15], consider

the following profile decomposition for ~bn:

bn,0(r) =
∑
j≤k

ϕjL

(
−tjn
λjn

,
r

λjn

)
+ γkn,0(r), (3.52)

bn,1(r) =
∑
j≤k

1

λjn
ϕ̇jL

(
−tjn
λjn

,
r

λjn

)
+ γkn,1(r), (3.53)

where each ~ϕjL is a solution to (1.6) and where we have for each j 6= k:

λjn
λkn

+
λkn

λjn
+

∣∣tjn − tkn∣∣
λkn

+

∣∣tjn − tkn∣∣
λjn

→∞ as n→∞. (3.54)

Moreover, if we denote by ~γkn,L(t) the linear evolution of ~γkn, i.e., solution to (1.6),
we have for j ≤ k that(

γkn,L(λjnt
j
n, λ

j
n·), λjnγ̇kn,L(λjnt

j
n, λ

j
n·)
)
⇀ 0 in H × L2 as n→∞ (3.55)

lim sup
n→∞

∥∥∥∥1

r
γkn,L

∥∥∥∥
L3
tL

6
x(R4)

→ 0 as k →∞. (3.56)

Finally we have the following Pythagorean expansions:

‖~bn‖2H×L2 =
∑
j≤k

∥∥∥∥~ϕjL(−tjnλjn
)∥∥∥∥2

H×L2

+ ‖~γkn‖2H×L2 + on(1) (3.57)

As in [6], the proof of Proposition 3.14 will consist of a sequence of steps designed

to show that each of the profiles ϕjL must be identically zero. Arguing exactly as in
[6, Lemma 5.9, Corollary 5.10] we can first deduce that the times tjn can be taken

to be 0 for each n, j and that the the initial velocities ϕ̇jL(0) must all be identically
zero as well. We summarize this conclusion in the following lemma:

Lemma 3.16. In the decomposition (3.52), (3.53) we can assume, without loss of
generality, that tjn = 0 for every n and for every j. In addition, we then have

ϕ̇jL(0, r) ≡ 0 for every j.
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The proof of Lemma 3.16 is identical to the proof of [6, Lemma 5.9] and the
proof of [6, Corollary 5.10]. We refer the reader to [6] for the details.

By Lemma 3.16 we can rewrite our profile decomposition as follows:

bn,0(r) =
∑
j≤k

ϕjL
(
0, r/λjn

)
+ γkn,0(r) (3.58)

bn,1(r) = on(1) in L2 as n→∞, (3.59)

Note that in addition to the Pythagorean expansion in (3.57) we also have the
following almost-orthogonality of the nonlinear wave map energy, which was estab-
lished in [6, Lemma 2.16]:

E(~bn) =
∑
j≤k

E(ϕjL(0), 0) + E(γkn,0, 0) + on(1). (3.60)

Note that ϕj , γkn,0 ∈ H0 for every j, for every n, and for every k. Using the fact

that E(~bn) ≤ C < 2E(Q), (3.60) and [6, Theorem 1.1] imply that, for every j, the

nonlinear wave map evolution of the data (ϕjL(0, r/λjn), 0) given by

~ϕjn(t, r) :=

(
ϕj
(
t

λjn
,
r

λjn

)
,

1

λjn
ϕ̇j
(
t

λjn
,
r

λjn

))
(3.61)

is global in time and scatters as t→ ±∞. Moreover we have the following nonlinear
profile decomposition guarranteed by [6, Proposition 2.17]:

~bn(t, r) =
∑
j≤k

~ϕjn(t, r) + ~γkn,L(t, r) + ~θkn(t, r) (3.62)

where the ~bn(t, r) are the global wave map evolutions of the data ~bn, ~γkn,L(t, r) is

the linear evolution of (γkn, 0), and the errors ~θkn satisfy

lim sup
n→∞

(
‖~θkn‖L∞t (H×L2) +

∥∥∥∥1

r
θkn

∥∥∥∥
L3
t (R;L6

x(R4))

)
→ 0 as k →∞. (3.63)

Recall that we are trying to show that all of the profiles ϕj must be identically
equal to zero. As in [6] we can make the following crucial observations about the
scales λjn. Since we have concluded that we can assume that all of the times tjn = 0
for all n, j we first note that the orthogonality condition (3.54) implies that for
j 6= k:

λjn
λkn

+
λkn

λjn
→∞ as n→∞.

Next, recall that by Lemma 3.13 we have

‖bn,0‖H(r≤αnλn) → 0 as n→∞, (3.64)

‖bn,0‖H(r≥λτn) → 0 as n→∞, ∀λ > 0 fixed. (3.65)

Combining the above two facts with [6, Proposition 2.19] we can conclude that for
each λjn corresponding to a nonzero profile ϕj we have

λn � λjn � τn as n→∞. (3.66)
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Now, let k0 be the index corresponding to the first nonzero profile ϕk0 . We can
assume, without loss of generality that k0 = 1. By (3.64), (3.66) and [11, Appendix

B] we can find a sequence λ̃n so that

λ̃n � αnλn

λn � λ̃n � λ1
n

λ̃n � λjn or λjn � λ̃n ∀j > 1.

Define

βn =
λ̃n
λn
→∞

and we note that βn � αn and λ̃n = βnλn. Therefore, up to replacing βn by a

sequence β̃n ' βn and λ̃n by
˜̃
λn := β̃nλn, we have by Corollary 3.7 and a slight

abuse of notation that

ψ(τn, λ̃n)→ π as n→∞. (3.67)

We define the set

Jext := {j ≥ 1 | λ̃n � λjn}.
Note that by construction 1 ∈ Jext.

The above technical ingredients are necessary for the proof of the following lemma
and its corollary. The analog in the finite-time blow-up case is [6, Lemma 5.10].

Lemma 3.17. Let ϕ1, λ1
n be defined as above. Then for all ε > 0 we have

1

λ1
n

∫ λ1
n

0

∫ ∞
ελ1
n+t

∣∣∣∣∣∣
∑

j∈Jext ,j≤k

ϕ̇jn(t, r) + γ̇kn,L(t, r)

∣∣∣∣∣∣
2

r dr dt = okn (3.68)

where lim
k→∞

lim sup
n→∞

okn = 0. Also, for all j > 1 and for all ε > 0 we have

1

λ1
n

∫ λ1
n

0

∫ ∞
ελ1
n+t

(ϕ̇jn)2(t, r) r drdt→ 0 as n→∞. (3.69)

Remark 8. We refer the reader to [6, Proof of Lemma 5.10] for the details of the
proof of Lemma 3.17. The proof of (3.68) is nearly identical to [6, Proof of (5.57)]
the one difference being that here we use Lemma 3.11 in place of the argument
following [6, equation (5.66)]. The proof of (3.69) is identical to [6, Proof of (5.58)]
and we omit it here.

Note that (3.68) and (3.69) together directly imply the following result:

Corollary 3.18. Let ϕ1 be as in Lemma 3.17. Then for all ε > 0 we have

1

λ1
n

∫ λ1
n

0

∫ ∞
ελ1
n+t

∣∣ϕ̇1
n(t, r) + γ̇kn,L(t, r)

∣∣2 r dr dt = okn (3.70)

where lim
k→∞

lim sup
n→∞

okn = 0.

The proof of Proposition 3.14 now follows from the exact same argument as [6,
Proof of Proposition 5.7]. We refer the reader to [6] for the details.

We can now complete the proof of Proposition 3.12.
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Proof of Proposition 3.12. We argue by contradiction. Assume that Proposition 3.12
fails. Then, up to extracting a subsequence, we can find a δ0 > 0 so that

‖bn,0‖H ≥ δ0 (3.71)

for every n. By Corollary 3.15 we know that there exists α0 > 0 so that for all t,

‖~bn(t)‖H×L2(r≥|t|) ≥ α0δ0.

We will show that the above is, in fact, impossible by constructing a sequence of
times along which the left hand side above tends to zero. It is convenient to carry
out the argument in rescaled coordinates. Set

µn :=
λn
τn
.

Since λn � τn as n→∞, our new scale µn → 0 as n→∞. We next define rescaled
wave maps:

gn(t, r) := ψ(τn + τnt, τnr), (3.72)

hn(t, r) := ϕ(τn + τnt, τnr). (3.73)

Since ~gn(t) and ~hn(t) are defined by rescaling ~ψ and ~ϕ we have that ~gn(t) ∈ H1

is a global-in-time wave map and the wave map ~ϕ(t) ∈ H0 is global-in-time and
scatters to 0 as t→ ±∞. We then have

a(τn + τnt, τnr) = gn(t, r)− hn(t, r).

Similarly, we define

b̃n,0(r) := bn,0(τnr),

b̃n,1(r) := τnbn,1(τnr)

and the corresponding rescaled wave map evolutions

b̃n(t, r) := bn(τnt, τnr),

∂tb̃n(t, r) := τnḃn(τnt, τnr).

After this rescaling, our decomposition becomes

gn(0, r) = hn(0, r) +Q

(
r

µn

)
+ b̃n,0(r) (3.74)

ġn(0, r) = ḣn(0, r) + b̃n,1(r). (3.75)

We can rephrase (3.44) and (3.43) in terms of this rescaling and we obtain:

∀λ > 0 fixed, ‖b̃n,0‖H(r≥λ) → 0 as n→∞, (3.76)

‖b̃n,0‖H(r≤αnµn) → 0 as n→∞. (3.77)

Also, (3.29) implies that

lim
A→∞

lim sup
n→∞

‖~hn(0)‖H×L2(r≤1−A/τn) = 0, (3.78)

lim
A→∞

lim sup
n→∞

‖~hn(0)‖H×L2(r≥1+A/τn) = 0. (3.79)

Next, we claim that for every n a decomposition of the form (3.74) is preserved up
to a small error if we replace the terms in (3.74) with their respective wave map
evolutions at some future times to be defined precisely below.
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By Corollary 3.7 we can choose a sequence γn →∞ with

γn � αn

so that

gn(0, γnµn)→ π as n→∞.

Define δn → 0 by

|gn(0, γnµn)− π| =: δn → 0.

Using (3.16) we define εn → 0 by

‖~gn(0)− (Q(·/µn), 0)‖H×L2(r≤αnµn) =: εn → 0.

Finally, choose βn →∞ so that

βn ≤ min{√γn, δ−1/2
n , ε−1/2

n }
gn(0, βnµn/2)→ π as n→∞. (3.80)

As in [6], we make the following claims:

(i) As n→∞ we have

‖~gn(βnµn/2)− (Q(·/µn), 0)‖H×L2(r≤βnµn) → 0. (3.81)

(ii) For each n, on the interval r ∈ [βnµn,∞) we have

~gn

(
βnµn

2
, r

)
− (π, 0) = ~hn

(
βnµn

2
, r

)
+
~̃
bn

(
βnµn

2
, r

)
(3.82)

+
~̆
θn

(
βnµn

2
, r

)
,

‖~̆θn‖L∞t (H×L2) → 0.

We first prove (3.81). The proof is very similar to the corresponding argument in
the finite-time blow-up case, see [6, Proof of (5.76)]. We repeat the argument here
for completeness.

First note that we have

‖~gn(0)− (Q(·/µn), 0)‖H×L2(r≤γnµn) ≤ εn → 0.

Unscale the above by setting g̃n(t, r) = gn(µnt, µnr), which gives

‖(g̃n(0), ∂tg̃n(0))− (Q(·), 0)‖H×L2(r≤γn) ≤ εn → 0.

Now using [6, Corollary 2.6] and the finite speed of propagation we claim that we
have

‖(g̃n(βn/2), ∂tg̃n(βn/2))− (Q(·), 0)‖H×L2(r≤βn) = on(1). (3.83)

To see this, we need to show that [6, Corollary 2.6] applies. Indeed define

ĝn,0(r) :=


π if r ≥ 2γn

π + π−g̃n(0,γn)
γn

(r − 2γn) if γn ≤ r ≤ 2γn

g̃n(0, r) if r ≤ γn.

ĝn,1(r) =

{
∂tg̃n(0, r) if r ≤ γn
0 if r ≥ γn
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Then, by construction we have ~̂gn ∈ H1, and since

‖~̂gn − (π, 0)‖H×L2(γn≤r≤2γn) ≤ Cδn

we then can conclude that

‖~̂gn − (Q, 0)‖H×L2 ≤ ‖~̂gn − (Q, 0)‖H×L2(r≤γn) + ‖~̂gn − (π, 0)‖H×L2(γn≤r≤2γn)

+ ‖(π, 0)− (Q, 0)‖H×L2(r≥γn)

≤ C(εn + δn + γ−1
n ).

Now, given our choice of βn, (3.83) follows from [6, Corollary 2.6] and the finite
speed of propagation. Rescaling (3.83) we have

‖(gn(βnµn/2), ∂tgn(βnµn/2))− (Q(·/µn), 0)‖H×L2(r≤βnµn) → 0.

This proves (3.81). Also note that by monotonicity of the energy on interior cones
and the comparability of the energy and the H×L2 norm in H0, for small energies,
we see that (3.42) and (3.77) imply that

‖(b̃n(βnµn/2), ∂tb̃n(βnµn/2))‖H×L2(r≤βnµn) → 0. (3.84)

Next we prove (3.82). First we define

g̃n,0(r) =

{
π − π−gn(0,µnβn/2)

1
2µnβn

r if r ≤ βnµn/2
gn(0, r) if r ≥ βnµn/2

g̃n,1(r) = ġn(0, r).

Then, let χ ∈ C∞([0,∞)) be defined so that χ(r) ≡ 1 on the interval [2,∞) and
suppχ ⊂ [1,∞). Define

~̆gn(r) := χ(4r/βnµn)(~̃gn(r)− (π, 0))

~̆
bn(r) := χ(4r/βnµn)

~̃
bn(r)

and observe that we have the following decomposition

~̆gn(r) = ~hn(0, r) +
~̆
bn(r) + on(1),

where the on(1) is in the sense of H×L2 – here we also have used (3.78). Moreover,
the right-hand side above, without the on(1) term, is a profile decomposition in
the sense of [6, Corollary 2.15] because of Proposition 3.14 and [7, Lemma 11]
or [6, Lemma 2.20]. We can then consider the nonlinear profiles. Note that by

construction we have ~̆gn ∈ H0 and as in [6], we can use (3.80) to show that E(~̆gn) ≤
C < 2E(Q) for large n. The corresponding wave map evolution ~̆gn(t) ∈ H0 is thus
global in time and scatters as t→ ±∞ by [6, Theorem 1.1]. We also need to check

that E(
~̆
bn) ≤ C < 2E(Q). Note that by construction and the definition of b̃n, we
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have

E(
~̆
bn) ≤ E(

~̃
bn) +O

(∫ ∞
0

4r2

β2
n,0µ

2
n

(χ′)2(4r/βnµn)
b2n((1− τn)r)

r
dr

)

+

∫ βnµn

βnµn/2

sin2(χ(4r/βnµn)bn,0((1− τn)r))

r
dr

≤ E(
~̃
bn) +O

(∫ βnλn

βnλn/2

b2n,0(r)

r
dr

)
= E(

~̃
bn) + on(1) ≤ C < 2E(Q),

where the last line follows from (3.43) since βn � αn.
Arguing as in [6], we can use Proposition 3.14, [6, Proposition 2.17] and [6,

Lemma 2.18] to obtain the following nonlinear profile decomposition

~̆gn(t, r) = ~hn(t, r) +
~̆
bn(t, r) +

~̆
θn(t, r),

‖~̆θn‖L∞t (H×L2) → 0.

Finally observe that by construction and the finite speed of propagation we have

~̆gn(t, r) = ~gn(t, r)− π,
~̆
bn(t, r) =

~̃
bn(t, r).

for all t ∈ R and r ∈ [βnµn/2 + |t| ,∞). Therefore, in particular we have

~gn(βnµn/2, r)− (π, 0) = ~hn(βnµn/2, r) +
~̃
bn(βnµn/2, r) +

~̆
θn(βnµn/2, r)

for all r ∈ [βnµn,∞) which proves (3.82).
We can combine (3.81), (3.82), (3.84), and (3.78) together with the monotonicity

of the energy on interior cones and the fact that ‖Q(·/µn)− π‖H(r≥βnµn) = on(1),
to obtain the decomposition

~gn(βnµn/2, r) = (Q(r/µn), 0) + ~hn(βnµn/2, r) (3.85)

+
~̃
bn(βnµn/2, r) +

~̃
θn(r),

‖~̃θn‖H×L2 → 0. (3.86)

Now, let sn →∞ be any sequence such that sn ≥ βnµn/2 for each n. The next
step is to prove the following decomposition at time sn:

~gn(sn, r)− (π, 0) = ~hn(sn, r) +
~̃
bn(sn, r) + ~ζn(r) ∀r ∈ [sn,∞), (3.87)

‖~ζn‖H×L2 → 0 as n→∞. (3.88)

We proceed as in the proof of (3.82). By (3.81) we can argue as in Corollary 3.7
and find ρn →∞ with ρn � βn so that

gn(βnµn/2, ρnµn)→ π as n→∞. (3.89)
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t = 0 r

t

t =
βnµn

2

βnµn
2

3βnµn
2

αn

βnµn

Q(·/µn)

hn(0) + b̃n(0)

Q(·/µn) hn(βnµn2 ) + b̃n(βnµn2 )

Figure 2. A schematic description of the evolution of the de-
composition (3.74) from time t = 0 until time t = βnµn

2 . At time

t = βnµn
2 the decomposition (3.85) holds.

Define

f̂n,0(r) =

{
π − π−gn(βnµn/2, ρnµn)

ρnµn
r if r ≤ ρnµn

gn(βnµn/2, r) if r ≥ ρnµn
f̂n,1(r) = ġn(βnµn/2, r).

Let χ ∈ C∞ be as above and set

~fn(r) := χ(2r/ρnµn)(
~̂
fn(r)− (π, 0)),

~̂
bn(r) := χ(2r/ρnµn)

~̃
bn(βnµn/2, r).

Observe that we have the following decomposition:

~fn(r) = ~hn(βnµn/2, r) +
~̂
bn(r) + on(1).

where the on(1) above is in the sense ofH×L2. Moreover, the right-hand side above,
without the on(1) term, is a profile decomposition in the sense of [6, Corollary 2.15]
because of Proposition 3.14 and [7, Lemma 11] or [6, Lemma 2.20]. We can then

consider the nonlinear profiles. Note that by construction we have ~fn ∈ H0 and,

as usual, we can use (3.89) to show that E(~fn) ≤ C < 2E(Q) for large n. The

corresponding wave map evolution ~fn(t) ∈ H0 is thus global in time and scatters
as t→ ±∞ by [6, Theorem 1.1].

As in the proof of (3.82) it is also easy to show that E(
~̂
bn) ≤ C < 2E(Q) where

here we use (3.84) instead of (3.43).
Again we can use Proposition 3.14, [6, Proposition 2.17] and [6, Lemma 2.18] to

obtain the following nonlinear profile decomposition

~fn(t, r) = ~hn(βnµn/2 + t, r) +
~̂
bn(t, r) +

~̃
ζn(t, r),

‖~̃ζn‖L∞t (H×L2) → 0.
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t = 0 r

t t = r

t =
βnµn

2 ρnµn
βnµn

2

t = sn

ρnµn + νn

|sn|

~hn(βnµn2 ) +~bn(βnµn2 )

~hn(sn) +~bn(sn)

νn

Figure 3. A schematic depiction of the evolution of the de-
composition (3.85) up to time sn. On the interval [sn,+∞), the
decomposition (3.87) holds.

In particular, for

νn := sn − βnµn/2

we have

~fn(νn, r) = ~hn(sn, r) +
~̂
bn(νn, r) +

~̃
ζn(νn, r).

By the finite speed of propagation we have that

~fn(νn, r) = ~gn(sn, r)− (π, 0),

~̂
bn(νn, r) =

~̃
bn(sn, r)

as long as r ≥ ρnµn+νn. Using the fact that ρn � βn we have that sn ≥ ρnµn+νn
and hence,

~gn(sn, r)− (π, 0) = ~hn(sn, r) +
~̃
bn(sn, r) +

~̃
ζn(νn, r) ∀r ∈ [sn,∞).

Setting ~ζn :=
~̃
ζn(νn) we obtain (3.87) and (3.88). With this decomposition we can

now complete the proof.
One the one hand observe that by rescaling, (3.34), and the fact that 2τnsn ≥

τn + τnsn for n large we have

‖~gn(sn)− ~hn(sn)− (π, 0)‖H×L2(r≥sn) = ‖~a(τn + τnsn, τn·)− (π, 0)‖H×L2(r≥sn)

= ‖~a(τn + τnsn)− (π, 0)‖H×L2(r≥τnsn)

≤ ‖~a(τn + τnsn)− (π, 0)‖H×L2(r≥ 1
2 (τn+τnsn))

−→ 0 as n→∞.
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Combining the above with the decomposition (3.87) and (3.88) we obtain that

‖~̃bn(sn)‖H×L2(r≥sn) → 0 as n→∞. (3.90)

On the other hand, combining our assumption (3.71) and Corollary 3.15 we know
that there exists α0 > 0 so that

‖~̃bn(sn)‖H×L2(r≥sn) = ‖~bn(τnsn)‖H×L2(r≥τnsn) ≥ α0δ0.

But this contradicts (3.90). �

We can now complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Let ~a(t) be defined as in (3.33). Recall that by (3.35) we
have

lim
t→∞

E(~a(t)) = E(~ψ)− E(~ϕ). (3.91)

By Proposition 3.1 we have found a sequence of times τn →∞ so that

E(~a(τn))→ E(Q)

as n→∞. This then implies that

lim
t→∞

E(~a(t)) = E(Q).

We now use the variational characterization of Q to show that in fact ‖ȧ(t)‖L2 → 0
as t → ∞. To see this observe that since a(t) ∈ H1 we can deduce by [6, (2.18)]
that

E(Q)← E(a(t), ȧ(t)) ≥
∫ ∞

0

ȧ2(t, r) r dr + E(Q).

Next observe that the decomposition in [6, Lemma 2.5] provides us with a function
λ : (0,∞)→ (0,∞) such that

‖a(t, ·)−Q(·/λ(t))‖H ≤ δ(E(a(t), 0)− E(Q))→ 0.

This also implies that

E(~a(t)− (Q(·/λ(t)), 0))→ 0 (3.92)

as t → ∞. Since t 7→ a(t) is continuous in H for t ∈ [0,∞) it follows from [6,
Lemma 2.5] that λ(t) is continuous on [0,∞). Therefore we have established that

~ψ(t)− ~ϕ(t)− (Q(·/λ(t)), 0)→ 0 in H × L2 as t→∞.

It remains to show that λ(t) = o(t). This follows immediately from the asymptotic
vanishing of ∇t,ra(t) outside the light cone and from (3.92). To see this observe
that by (3.34) with λ = 1 we have that a(t, r)− (π, 0) = o(1) in H × L2(r ≥ t) as
t→∞. Therefore we have

E∞t
λ(t)

(Q) = E∞t (π −Q(·/λ(t))) ≤ E(~a(t)− (Q(·/λ(t)), 0)) + o(1)→ 0

as t → ∞. But this then implies that t
λ(t) → ∞ as t → ∞. This completes the

proof. �
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[7] Côte, R., Kenig, C., Schlag, W. Energy partition for the linear radial wave equation. To

appear in Math. Ann. Preprint 2012. arXiv:1209.3678
[8] Christodoulou, D., Tahvildar-Zadeh, A. S. On the regularity of spherically symmetric wave

maps. Comm. Pure Appl. Math. 46 (1993), no. 7, 1041–1091.

[9] Christodoulou, D., Tahvildar-Zadeh, A. S. On the asymptotic behavior of spherically sym-
metric wave maps. Duke Math. J. 71 (1993), no. 1, 31–69.

[10] Donninger, R., Krieger, J. Nonscattering solutions and blowup at infinity for the critical wave

equation. Preprint 2012. arXiv:1201.3258v1.
[11] Duyckaerts, T., Kenig, C., Merle, F. Universality of blow-up profile for small radial type II

blow-up solutions of the energy-critical wave equation. J. Eur. Math. Soc. (JEMS) 13 (2011),
no. 3, 533–599.

[12] Duyckaerts, T., Kenig, C., Merle, F. Universality of the blow-up profile for small type II

blow-up solutions of energy-critical wave equation: the non-radial case. To appear in J. Eur.
Math. Soc. (JEMS) 14 (2012) no. 5 1389–1454

[13] Duyckaerts, T., Kenig, C., Merle, F. Profiles of bounded radial solutions of the focusing,

energy-critical wave equation. Geom. Funct. Anal. 22 (2012) no. 3, 639–698.
[14] Duyckaerts, T., Kenig, C., Merle, F. Classification of radial solutions of the focusing, energy-

critical wave equation. Preprint 2012. arXiv:1204.0031v1.

[15] Grillakis, M. Classical solutions for the equivariant wave maps in 1+2 dimensions. Preprint,
1991
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