Statistical mechanics of the 3D axisymmetric Euler equations in a Taylor-Couette geometry - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Statistical mechanics of the 3D axisymmetric Euler equations in a Taylor-Couette geometry

Simon Thalabard
  • Fonction : Auteur
  • PersonId : 942129
Freddy Bouchet

Résumé

Using an analogy with an Ising-like spin model, we define microcanonical measures for the dynamics of three dimensional (3D) axisymmetric turbulent flow in a Taylor-Couette geometry. We compute the relevant physical quantities and argue that axisymmetry induces a large scale organization in turbulent flows. We show that there exists a low energy, low temperature regime, for which the orthoradial velocity field is organized into vertical stripes, as well as a high energy, infinite temperature regime where the typical orthoradial vorticity field gets organized into either a single vertical jet or a large scale dipole, and exhibits infinite fluctuations. The mechanisms yielding the large scale organizations are argued to be different from the ones involved in two dimensional (2D) turbulence. This shows that the 3D axisymmetric case is truly an intermediate case between 2D and 3D turbulence.
Fichier principal
Vignette du fichier
Main.pdf (1.57 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00829488 , version 1 (05-06-2013)
hal-00829488 , version 2 (06-06-2013)
hal-00829488 , version 3 (16-11-2013)

Identifiants

Citer

Simon Thalabard, Bérengère Dubrulle, Freddy Bouchet. Statistical mechanics of the 3D axisymmetric Euler equations in a Taylor-Couette geometry. 2013. ⟨hal-00829488v2⟩
291 Consultations
224 Téléchargements

Altmetric

Partager

More