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Abstract
Using an analogy with an Ising-like spin model, we define microcanonical mea-

sures for the dynamics of three dimensional (3D) axisymmetric turbulent flow in a
Taylor-Couette geometry. We compute the relevant physical quantities and argue
that axisymmetry induces a large scale organization in turbulent flows. We show
that there exists a low energy, low temperature regime, for which the orthoradial
velocity field is organized into vertical stripes, as well as a high energy, infinite
temperature regime where the typical orthoradial vorticity field gets organized into
either a single vertical jet or a large scale dipole, and exhibits infinite fluctuations.
The mechanisms yielding the large scale organizations are argued to be different
from the ones involved in two dimensional (2D) turbulence. This shows that the 3D
axisymmetric case is truly an intermediate case between 2D and 3D turbulence.
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1 Introduction
Statistical mechanics provided powerful tools to study complex dynamical systems in

all fields of physics. However, it proved extremely difficult to apply classical statisti-
cal mechanics ideas to turbulence problems. The main reason is that many statistical
mechanics theories relie on equilibrium or close to equilibrium results, based on the mi-
crocanonical measures. Yet, one of the main phenomena of classical three dimensional
(3D) turbulence is the anomalous dissipation, namely the existence of an energy flux to-
wards small scales that remains finite in the inertial limit of an infinite Reynolds number.
This makes the classical 3D turbulence problem an intrinsic non-equilibrium problem.
Hence, microcanonical measures have long been thought to be irrelevant for turbulence
problems.

A purely equilibrium statistical mechanics approach to 3D turbulence is actually patho-
logical. Indeed, it leads for any finite dimensional approximation to an equipartition spec-
trum, which has no well defined asymptotic behavior in the limit of an infinite number of
degrees of freedom [Bouchet and Venaille, 2011]. This phenomena, related to the Rayleigh-
Jeans paradox of the equilibrium statistical mechanics of classical fields [Pomeau, 1994], is
a sign that an equilibrium approach is bound to fail. This is consistent with the observed
phenomena of anomalous dissipation for the 3D Navier-Stokes and suspected equivalent
anomalous dissipation phenomena for the 3D Euler equations.

The case of the 2D Euler equations and related Quasi-Geostrophic dynamics is a
remarkable exception to the rule that equilibrium statistical mechanics fails for classical
field theories. In this case, the existence of a new class of invariants (Casimirs), among
them enstrophy, leads to a completely different picture. Onsager first anticipated this
difference when he studied the statistical mechanics of the point vortex model, which is a
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class of special solutions to the 2D Euler equations [Onsager, 1949,Eyink and Sreenivasan,
2006]. After the initial works of Robert, Sommeria and Miller in the nineties [Miller,
1990, Robert and Sommeria, 1991, Robert and Sommeria, 1992] and subsequent work
[Michel and Robert, 1994, Jordan and Turkington, 1997, Ellis et al., 2004, Majda and
Wang, 2006,Bouchet and Corvellec, 2010], it is now clear that microcanonical measures
taking into account all invariants exist for the 2D Euler equations. These microcanonical
measures can be built through finite dimensional approximations. The finite dimensional
approximate measure has then a well defined limit, which verifies some large deviations
properties (see for instance [Potters et al., 2013] for a recent simple discussion of this
construction). The physics described by this statistical mechanics approach is a self-
organization of the flow into a large scale coherent structure corresponding to the most
probable macrostate.

The three dimensional axisymmetric Euler equations describe the motion of a perfect
three dimensional flow, assumed to be symmetric with respect to rotations around a fixed
axis. Such flows have additional Casimir invariants (toroidal Casimirs and generalized
Helicities, defined below). By contrast with the 2D Euler equations, it has yet never been
proven that Casimir constraints should prevent an energy cascade towards smaller and
smaller scales, although it has been stated that the dynamics of such flows will lead to
predictable large scale structures [Monchaux et al., 2006]. Based on these remarks, the
three dimensional axisymmetric Euler equations seem to be an intermediate case between
2D and 3D Euler equations, as previously suggested in [Leprovost et al., 2006,Naso et al.,
2010a]. It is then extremely natural to address the issue of the existence or not of non-
trivial microcanonical measures.

In this paper we define approximate microcanonical measures on spaces of finite dimen-
sional approximations of axisymmetric flows, compatible with a formal Liouville theorem.
As the constrained invariant subspace of the phase space is not bounded, we also have to
consider an artificial cutoff M on the accessible vorticity values. From these approximate
microcanonical measures, we compute the probability distribution of poloidal and toroidal
part of the velocity field. The microcanonical measure of the 3D axisymmetric equations
is defined as a weak limit of sequences of those finite dimensional approximate micro-
canonical measures, when the cutoff M goes to infinity. More heuristically stated, we will
show that finite dimensional approximations of the Euler equations can be mapped onto
an Ising-like model whose thermodynamic limit corresponds to a microcanonical measure
of the Euler equations. We prove that this limit exists and that it describes non-trivial
flow structures.

The main physical result is the existence of two kinds of statistical equilibria, de-
pending on the values of the energy. Low energy equilibria are caracterized by a positive
microcanonical temperature and describe large scale toroidal coherent structures with a
vanishing poloidal field. High energy equilibria are caracterized by an infinite microcanon-
ical temperature. Those equilibria correspond to a uniform and completely intertwined
toroidal field. The typical poloidal field is dominated by large scales and exhibits infinitely
large fluctuations.

Prior to the present work, Leprovost, Chavanis and Dubrulle [Leprovost et al., 2006,
Naso et al., 2010a] attempted to describe statistical equilibria of the 3D axisymmetric
equations. These previous works where not building microcanonical measure theoretically
from the Liouville theorem, but were rather treating the toroidal part of the hydrody-
namical field by analogy with the statistical mechanics of the 2D Euler equation, and
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neglecting the effect of possible poloidal fluctuations. Wether such an approach should
lead to invariant measures of the axisymmetric 3D Euler equation is not clear. We note
that with our more natural approach, we obtain the same results as Leprovost, Chavanis
and Dubrulle in the limit when the cutoffM goes to zero, whereas the actual microcanon-
ical measures are obtained in the limit M →∞.

A very interesting question is the interest of the microcanonical measure for exper-
imental 3D flows in an axisymmetric geometry. This issue is extremely subtle, and we
postpone the discussion to brief comments in the conclusion and to a forthcoming paper.

In Section 2 we introduce the axisymmetric Euler equations together with their
associated Casimir functions. We then relate the axisymmetric statistical equilibria to the
asymptotic equilibria of an Ising-like spin model. In Section 3 we compute and describe
the equilibria in the simplified case where the correlations between the toroidal and the
poloidal fields are ignored. Those correlations are restored in Section 4. We discuss the
main physical results and comment on the case M = 0 in section 5.

2 Mapping the axisymmetric Euler equations onto a
spin model

In this section, we introduce the axisymmetric Euler equations and their invariants.
We discretize them and observe that the corresponding equilibrium statistical model is
equivalent to an Ising like spin model with non local interactions. We argue that the
microcanonical thermodynamic limit of the spin model, corresponding to the continuous
limit of the fluid mechanics model induces an invariant measure of the axisymmetric Euler
equations.

2.1 Axisymmetric Euler equations and dynamical invariants
2.1.1 Equations

The starting point of the study are the Euler equations for incompressible flows inside
a domain D made of two concentric cylindric walls of height 2h, with internal radius Rin

and outer one Rout. Those equations read

∂tv + v.∇v = −∇p and ∇.v = 0. (1)

We use cylindrical coordinates (r, θ, z) and consider axisymmetric flows with a cylin-
drical geometry. They are defined through the three velocity components vr, vθ and vz
depending on r and z only. Instead of the usual velocity variables v, it is convenient
to write the Euler equations for axisymmetric flows in terms of a toroidal field σ = rvθ,
together with a poloidal field ξ = ωθ

r
= ∂zvr − ∂rvz

r
. It is also more convenient to use the

coordinate y = r2

2 instead of r, and we write dx = dydθdz the infinitesimal cylindrical
volume element at position (x) = (y, θ, z).

In the present study, we focus on velocity fields which are 2h-periodic along the
vertical direction and which satisfy an impermeability boundary condition on the two
cylindric walls. Because the flow is incompressible (∇.v = 0), we know (Helmholtz
decomposition) that there exists a periodic stream function ψ and a constant C such that
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(2y) 1
2vr = −∂zψ + C and vz = ∂yψ. The stream function is unique up to an additive

constant. The impermeability boundary condition v.n|∂D = 0 – with n the unit vector
normal to the boundary ∂D – imposes that C = 0, ψ is constant on the outer wall and on
the inner wall. Because ψ is defined up to a constant, the first constant can be chosen equal
to zero without lack of generality. We note that ψ|R2

in/2− ψ|R2
out/2 = (2h)−1

∫
dydz∂yψ =

(2h)−1
∫

dydzvz =Mz. The velocity field is z-periodic so the quantityMz is a constant
of motion. Therefore, we can choose to consider the referential for which this constant is
zero and thus ψ|R2

in/2 = ψ|R2
out/2 = 0.

The fields ξ and ψ are related through

−ξ = ∆?ψ = 1
2y∂zzψ + ∂yyψ, and ψ = 0 on both the inner and the outer walls. (2)

There is thus a one to one relation between (σ, ξ) and the incompressibility relation on
one hand, and the velocity field on the other hand.

The axisymmetric Euler equations for the (σ, ξ) variables read [Leprovost et al.,
2006]

∂tσ + {σ, ψ} = 0 and ∂tξ + {ξ, ψ} = ∂z
σ2

4y . (3)

The inner-brackets represent the advection terms and are defined by {f, g} = ∂yf∂zg−
∂zf∂yg.

Unless stated otherwise we will assume from now on that Rin is non-zero (Rin > 0).
We denote |D| = 2hπ (R2

out −R2
in) the volume of the domain D.

2.1.2 Dynamical invariants

It is straightforward to check that the kinetic energy E = 1
2

∫
D
dxv2 is a conserved

quantity of the axisymmetric Euler equations (3). The kinetic energy can be written in
terms of the fields σ and ξ as

E = 1
2

∫
D
dx

[
σ2

2y + ξψ

]
. (4)

As a consequence of Noether’s theorem (for the relabelling symmetry) and the de-
generacy of its Hamiltonian structure ( [Morrison, 1998, Szeri and Holmes, 1988]), the
axisymmetric Euler equations have infinitely many Casimir invariants. They fall into two
families: the toroidal Casimirs Cf and the generalized Helicities Hg, defined by

Cf =
∫
D
dx f (σ) and Hg =

∫
D
dx ξg (σ) , (5)

where f and g can be any sufficiently regular functions.

Note that the well-known invariants of the incompressible Euler equations corre-
spond to specific choices for the functions f and g. The conservation of the usual helicity
H =

∫
D dxv.ω is for instance recovered by setting g(x) ≡ 2x in equation (5). Setting

f(x) ≡ x gives the conservation of the z-component of the angular momentum. Setting
g(x) ≡ 1 gives the conservation of the circulation of the velocity field along a closed loop
following the boundary of a meridional plane.
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2.2 Dynamical invariants seen as geometrical constraints
We can give an alternative, more geometric, description of the Casimirs constraints (5).

We introduce the indicator function 1B(x). This function takes value 1 if B(x) is true
and 0 otherwise. Now, given a value q for the toroidal field, let us set f ≡ g ≡ 1σ(x)≤q
in equation (5). Doing so, we obtain the specific toroidal Casimirs Cq(σ) =

∫
D dx1σ(x)≤q

together whith the specific generalized Helicities Hq(σ, ξ) =
∫
D dx ξ (x) 1σ(x)≤q.

Cq represents the area of D where the toroidal field is lower than a prescribed
value q. Hq can be interpreted as the poloidal circulation on the contour of the domain
corresponding to Cq. Deriving Cq and Hq with respect to q, we find that the distribution
of the poloidal field Aq = 1

|D|
dCq
dq together with the partial circulations Xq = 1

|D|
∂Hq

∂q
are

dynamical invariants of the axisymmetric equations.

The conservations of the areas Aq together with that of the partial circulations
Xq is in fact equivalent to the conservations of the toroidal Casimirs together with the
generalized helicities since for sufficiently regular functions f and g we can write Cf and
Hg as

Cf [σ] = |D|
∫
R
dqAq [σ] f(q) and Hg [σ, ξ] = |D|

∫
R
dqXq [σ, ξ] g(q). (6)

Now, consider a discrete poloidal distribution, say f(σ) =
K∑
k=1

Ak
|D|

1σ=σk . Let SK =

{σ1, σ2...σK} be the discretized set of possible values for the poloidal field. In this simpli-
fied yet general situation, the conservation of the Casimirs is equivalent to the conservation
of the K areas and K partial circulations

Ak [σ] =
∫
dx1σ(x)=σk and Xk [σ, ξ] =

∫
dx ξ1σ(x)=σk . (7)

2.3 Discretization of the fluid and analogy with an Ising-like
spin model

Discretization Let us cut a slice of fluid along a meridional plane P , and draw a
N × N regular lattice on it. We can consider a discretization of the toroidal field and
the poloidal field (σN , ξN) = (σN,ij, ξN,ij)1≤i,j≤N . Each node of the grid corresponds to a
position (xN,ij) in the physical space, on which there exist a two-degree-of-freedom object
that we refer to as an elementary “Beltrami spin”. One degree of freedom is related to the
toroidal field, while the other is related to the poloidal field. The discretization procedure
is sketched on Figure 1.

We associate to every spin configuration a discretized version of the axisymmetric
energy (4), that is discretized into the sum of a toroidal energy and a poloidal energy,
namely

E [σN , ξN ] = Etor[σN ] + Epol[ξN ] (8)

with Etor[σN ] = 1
4
|D|
N2

∑
(i,j)∈[[1;N ]]2

σ2
N,ij

yi
and Epol[ξN ] = 1

2
|D|
N2

∑
(i,j)∈[[1;N ]]2

(i′,j′)∈[[1;N ]]2

ξN,ijJiji′j′ξN,i′j′ . (9)
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Figure 1: Discretization of the axisymmetric Euler equations onto an assembly of Beltrami
spins (Impressionistic view). For each Beltrami spin, we represent the toroidal degree of
freedom by an arrow, and the poloidal degree of freedom by a circle whose radius is
proportionnal to the amplitude of the poloidal field. Red (green) circles denote negative
(positive) vorticy.

Jiji′j′ denotes a discretized version of the operator − (∆?)−1 with vanishing boundary
conditions on the walls and periodic conditions along the vertical direction.

We also introduce the discretized version of the Casimir constraints (7) as

Ak [σN ] = |D|
N2

∑
(i,j)∈[[1;N ]]2

1σN,ij=σk and Xk[σN , ξN ] = |D|
N2

∑
(i,j)∈[[1;N ]]2

ξN,ij1σN,ij=σk . (10)

Here, the indicator function 1σN,ij=σk is the function defined over the N2 nodes of the
grid, that takes value 1 when σN,ij = σk and 0 otherwise.

For convenience we also introduce the discrete total poloidal circulation, X [σN , ξN ] =
K∑
k=1
Xk[σN , ξN ].

To make the constraints more picturesque, we have sketched on Figure 2 different
configurations of an assembly of four Beltrami spins with K = 2, S2 = {−1, 1} corre-

sponding to A1 = A−1 = |D|2 and X1 = X−1 = 0.

The microcanonical measure We consider the set C of 2K + 1 constraints given by

C = {E, {Ak}1≤k≤K , {Xk}1≤k≤K}. (11)

Given N , we define the configuration space GN(E, {Ak}, {Xk}) ⊂ (K × R)N
2
the space

of spin-configurations (σN , ξN) that are such that E ≤ E [σN , ξN ] ≤ E + ∆E and ∀1 ≤
k ≤ K, Ak [σN ] = Ak, and Xk [σN , ξN ] = Xk. As will be clear later on, the number of
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Figure 2: An assembly of four Beltrami Spins satisfying the same constraints on their
toroidal Casimirs and partial circulations.

configurations will increase exponentially with N . Then in the limit of large N , due to
this large deviation behavior, the microcanonical measure will not depend on ∆E.

Because the poloidal degrees of freedom may make GN infinite, we also introduce the
bounded ensembles GM,N made of the spin-configurations of GN that satisfy (supij |ξN,ij| ≤
M). For every ensemble GM,N , we can then define aM,N dependent microcanonical mea-
sure dPM,N together with a M,N dependent microcanonical average <>M,N by assigning
a uniform weight to the spin configurations in GM,N . The construction of dPM,N and
<>M,N is explicitly carried out in sections (3.1) and (4.1).

The present paper aims at building a thermodynamic limit by letting successively
(N → ∞) and (M → ∞) for this set of microcanonical measures, and to describe this
limit. We will refer to this problem as problem P . Let us emphasize, that the two limits
(N → ∞) and (M → ∞) most probably do not commute. We argue that the relevant
limit is the limit (N →∞) first. Taking the limit (N →∞) first, we make sure that we
describe a microcanonical measure that corresponds to the dynamics of a continuous field
(a fluid). The microcanonical measure at fixed M then corresponds to an approximate
invariant measure, for which the maximum value of the vorticity is limited. Such a fixed
M measure could be relevant as a large, but finite time approximation if the typical
time to produce large values of the vorticity is much longer than the typical time for the
turbulent mixing. Finally, for infinite time, we recover the microcanonical measure by
taking the limit (M →∞). For these reasons, we think that the physical limit is the limit
(N →∞) first.

As for the physics we want to understand, it is the following. Consider an assembly
of Beltrami spins with a given energy E. What is the fraction of E that typically leaks
into the toroidal part and into the poloidal part ? What does a typical distribution of
Beltrami spins then look like ?

2.4 How is the microcanonical measure related to the axisym-
metric Euler equations ?

Interpreting the invariants as geometrical constraints on a well- defined assembly of spin-
like objects allowed us to map the microcanonical measure of discretized hydrodynamical
fields and invariants to an “Ising-like model”. Taking the thermodynamical limit (N →∞)
allows to retrieve continuous hydrodynamical fields and invariants. How is the limit
microcanonical measure related to the axisymmetric Euler equations ? Is it an invariant
measure of the axisymmetric Euler equations ?
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The answer is positive but not trivial. The very reason why this should be true relies
in the existence of a formal Liouville theorem – i.e. an extension of Liouville theorem
for infinite dimensional Hamiltonian systems – for the axisymmetric Euler equations. An
elementary proof concerning the existence of a formal Liouville theorem can be found
in [Thalabard, 2013]. This formal Liouville theorem guarantees that the thermodynamic
limit taken in a microcanonical ensemble induces an invariant measure of the full axisym-
metric equations.

The same issue arises in the simpler framework of the 2D Euler equations. A similar
mapping onto a system of vortices that behaves as a mean-field Potts model, and definition
of the microcanonical measure is can be found in [Miller, 1990,Ellis et al., 2004,Bouchet
and Venaille, 2011]. In [Bouchet and Corvellec, 2010], it is discussed why the microcanon-
ical measure is an invariant measure of the 2D Euler equations. The proof is adaptable
to the axisymmetric case but goes beyond the scope of the present paper.

It is thus expected that the microcanonical measure of ensembles of Beltrami spins is
an invariant measure of the Euler axisymmetric equations, therefore worth of interest.
This motivates the present study.

3 Statistical mechanics of a simplified problem with-
out helical correlations

Before tackling the full problem, we investigate a simplified instance of the problem, where
the toroidal part is entirely decoupled from the poloidal part. This is a much simpler case
whose results will prove fruitful to understand the full problem.

3.1 Definition of the simplified problem
It is illuminating to look beforehands at a slightly modified version of problem P ob-

tained by replacing the K constraints on the partial circulations by a single contraint on
the total circulation Xtot. This new problem will be much simpler to understand and can
be completely worked out analytically. The set of 2K + 1 constraints C is here replaced
by a set C̃ of K + 2 constraints, defined as

C̃ = {E, {Ak}1≤k≤K , Xtot =
K∑
k=1

Xk}. (12)

In this new problem P̃ , the correlations between the toroidal field and the poloidal
field due to the toroidal Casimirs and the generalized helicities disappear. The only
coupling left between those two fields is a purely thermal one: the only way the fields can
mutually interact is by exchanging some energy between each other. In order to make
this statement more rigorous, we now need to get into some finer details and build the
microcanonical measure for problem P̃ . This is the subject of the next paragraph.

3.1.1 Explicit construction of the microcanonical measure

In order to exhibit a configuration of Beltrami spins (σN , ξN) that satisfies the constraints
C̃, it suffices to pick a toroidal configuration σN = (σN,ij)1≤i,j≤N with areas Ak and toroidal
energy Etor together with a poloidal configuration ξN = (ξN,ij)1≤i,j≤N with a poloidal
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circulation Xtot and poloidal energy Epol = E − Etor. It is thus natural to introduce
the toroidal spaces of configurations GtorN (E, {Ak}) together with the poloidal spaces of
configurations GpolM,N(E,Xtot) defined as

GtorN (E, {Ak}) = {σN ∈ SN2

K | Etor (σN) = E and ∀k ∈ [[1;K]]Ak [σN ] = Ak}, (13)
and GpolM,N(E,Xtot) = {ξN ∈ [−M ;M ]N2 | Epol (ξN) = E and X [ξN ] = Xtot}. (14)

For finite N , there is only a finite number of toroidal energies Etor for which the space
of toroidal configurations GtorN (E, {Ak}) is non empty. The space of bounded Beltrami-
spin configurations GM,N(E, {Ak}) is then simply a finite union of disjoint ensembles, that
can be formally written as

GM,N(E, {Ak}, Xtot) =
⋃

0≤Etor≤E
GtorN (Etor, {Ak})× GpolM,N(E − Etor, Xtot). (15)

Definition of the M,N-dependent microcanonical measure The M,N - de-
pendent microcanonical measure dPM,N is defined as the uniform measure on the space of
configurations GM,N(E, {Ak}, Xtot). In order to specify this measure explicitly, we need to
define theM,N -dependent volume ΩM,N(E, {Ak}, Xtot) of GM,N(E, {Ak}, Xtot). To do so,
we write Ωtor

N (E, {Ak}) the number of configurations in GtorN (E, {Ak}) and Ωpol
N (E,Xtot)

the hypervolume in RN2 of GpolM,N(E,Xtot), so that

Ωtor
N (E, {Ak}) =

∑
σN∈SN

2
K

1σN∈GtorN (E,{Ak}), (16)

and Ωpol
M,N (E,Xtot) =

∏
(i,j)∈[[1;N ]]2

∫ +∞

−∞
dξN,ij1ξN∈GpolM,N (E,Xtot). (17)

Note that the integral defining the poloidal volume is finite since GpolM,N(E,Xtot) is a
bounded subset of RN2 . Using equation (15), the phase-space volume can then be written
as

ΩM,N(E, {Ak}, Xtot) =
∫ E

0
dEtor Ωtor

N (Etor, {Ak}) Ωpol
M,N(E − Etor, Xpol). (18)

The microcanonical weight dPM,N(C) of a configuration C = (σN , ξN) lying in the
space GM,N(E, {Ak}, Xtot) can now be explicitly written as

dPM,N(C) = 1
ΩM,N (E, {Ak}, Xtot)

∏
(i,j)∈[[1;N ]]2

dξN,ij. (19)

Provided that G is a compact subset of SK
N2 × RN2 it is convenient to use the

shorthand notation∫
G
dPM,N ≡

1
ΩM,N (E, {Ak}, Xtot)

∑
σN∈SN

2
K

 ∏
(i,j)∈[[1;N ]]2

∫ ∞
−∞

dξN,ij

1(σN ,ξN )∈G, (20)

so that the M,N dependent microcanonical average <>M,N of an observable O can now
be defined as

〈O〉M,N =
∫
GM,N (E,{Ak},Xtot)
dPM,N O [σN , ξN ] =

∫ E

0
dEtor

∫
GtorN (Etor,{Ak})×GpolM,N (E−Etor,Xtot)

dPM,N O [σN , ξN ] . (21)
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Definition of the limit measures It is convenient to use observables to define
the limit microcanonical measures. We define the M -dependent microcanonical measure
<>M and the microcanonical measure <> by letting successively N →∞ and M →∞,
so that for any observable O, < O >M and < O > are defined as

〈O〉M = lim
N→∞

〈O〉M,N , and 〈O〉 = lim
M→∞

〈O〉M . (22)

3.1.2 Observables of physical interest

Without any further comment about observables and the kind of observables that we
will specifically consider, equations (21) and (22) may appear to be slightly too casual.
Let us precise what we mean. In our context, we need to deal both with observables
defined for the continuous poloidal and toroidal fields and for their discretized counter-
parts. Given a continuous field (σ, ξ) we consider observables O that can be written as
O =

∫
D dx fO(x)(σ, ξ) where fO(x) is a function defined over SK

D × RD × D. The discrete
counterpart of O is then defined as

O(σN , ξN) = |D|
N2

∑
(i,j)∈[[1;N ]]2

fO(xN,ij)(σN , ξN), (23)

and the distinction between discrete and continuous observables is made clear from the
context.

To learn about the physics described by the microcanonical measure, a first non triv-
ial functionnal to consider is the toroidal energy functionnal Etor defined in equation (9),
whose microcanonical average will tell what the balance between the toroidal and poloidal
energy for a typical configuration Beltrami spins is. In order to specify the toroidal and
poloidal distributions in the thermodynamic limit we will then estimate the microcanon-
ical averages of specific one-point observables, namely

O({σ}, {ξ}) =
∫
D
dx δ (x− x0)σ (x)p ξ (x)k = Otor({σ})Opol({ξ}) (24)

with Otor({σ}) = σ (x0)p and Opol({ξ}) = ξ (x0)k defined for any point (x0) ∈ D. The
microcanonical averages of those observables provide the moments of the one-point prob-
ability distributions and therefore fully specify them. 1

Just as for the 2D Euler equations, and slightly anticipating on the actual compu-
tation of the microcanonical measures, we can expect the axisymmetric microcanonical
measures to behave as Young measures, that is to say that the toroidal and poloidal
distributions at positions (x) are expected to be independent from their distributions at
position (x′) 6= (x). Therefore, specifying the one-point probability distributions will
hopefully suffice to completely describe the statistics of the poloidal and of the toroidal
field in the thermodynamic limit.

3.1.3 Specificity of problem P̃

Looking at equation (21), it is yet not so clear that problem P̃ is easier to tackle than
problem P , nor that the limit measures prescribed by equation (22) can be computed.

1One can observe that one-point moments may be ill-defined in the discrete case so that their limit
may be ill-defined too. One way to deal with this situation is to consider dyadic discretizations, namely
choose N = 2n. Then for any point (x) whose coordinates are dyadic rationnal numbers, the discretized
quantities are non trivially zero when n is large enough. The microcanonical averages can then be
extended to any position in D by continuity.

11



The reason why we should keep hope owes to large deviation theory. Using classical
arguments from statistical physics we argue hereafter that problem P can be tackled by
defining appropriate poloidal and toroidal measures that can be studied separately from
each other.

Let us for instance consider the Boltzmann entropies per spin

StorN (E, {Ak}) = 1
N2 log Ωtor

N (E, {Ak}), SpolM,N(E,Xtot) = 1
N2 log Ωpol

N (E,Xtot), (25)

and SM,N(E, {Ak}, Xtot) = 1
N2 log ΩN(E, {Ak}, Xtot). (26)

As N →∞, it can be expected that the toroidal entropies StorN (E, {Ak}) together with
the poloidal entropies SpolM,N(E,Xtot) converge towards a finite limit if they are properly
renormalized. If this is the case, then those entropies can be asymptotically expanded as

StorN (E, {Ak}) =
N→∞

ctorN ({Ak}) + Stor(E, {Ak}) + o (1), (27)

and SpolM,N(E,Xtot) =
N→∞

cpolM,N(Xtot) + SpolM (E,Xtot) + o (1). (28)

Plugging the entropies into equation (18), we get, when N →∞

ΩM,N(E) = eN
2(ctorN +cpolM,N)+o(N2)

∫ E

0
dEtor eN2(Stor(Etor)+SpolM (E−Etor)). (29)

For clarity, we have not mentionned the {Ak} and Xtot dependence of the different en-
tropies. Using Laplace’s method to approximate integrals, taking logarithm of both sides
of equation (29), dividing by N2, and setting cM,N ({Ak}, Xtot) = ctorN ({Ak})+cpolM,N (Xtot)
we obtain

SM,N(E) =
N→∞

cM,N+Stor(E?
M) + SpolM (E − E?

M) + o(1),

where E?
M = arg max

x∈[0;E]
{Stor(x) + SpolM (E − x)}. (30)

A heuristic way of interpreting equation (30) is to say that when N � 1, “most of” the
configurations in GM,N(E, {Ak}, Xtot) have a toroidal energy equal to E?

M and a poloidal
energy equal to E − E?

M .

We can refine the argument, and ask what the typical value of a one-point observable
O = OtorOpol as described in equation (24) becomes in the thermodynamic limit N →∞.

Let us then introduce theM,N dependent toroidal and poloidal partial microcanonical
measures as

dP tor,EN (σN) = 1
Ωtor
N (E, {Ak})

and dPpol,EM,N (ξN) = 1
Ωpol
M,N(E,Xtot)

∏
(i,j)∈[[1;N ]]2

dξN,ij, (31)

together with the shorthand notations∫
G
dP tor,EN ≡ 1

Ωtor
N (E, {Ak})

∑
σN∈SN

2
K

1σN∈G,

and
∫
G
dPpol,EM,N ≡

1
Ωpol
M,N(E,Xtot)

 ∏
(i,j)∈[[1;N ]]2

∫ ∞
−∞

dξN,ij

1ξN∈G. (32)
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Respectively defining theM,N dependent toroidal and poloidal partial microcanonical
means as

〈Otor〉tor,EN =
∫
GtorN (E,{Ak})

dP tor,EN Otor [σN ] and 〈Opol〉pol,EM,N =
∫
GpolM,N (E,Xtot)

dPpol,EM,N Opol [ξN ] , (33)

it stems from equation (21) that

〈O〉M,N =
∫ E

0
dEtor PM,N(Etor) 〈Otor〉tor,EtorN 〈Opol〉pol,E−EtorM,N , (34)

with PM,N(Etor) =
Ωtor
N (Etor) Ωpol

M,N(E − Etor)
ΩM,N(E) . (35)

The latter equation means that the full microcanonical measure<>M,N can be deduced
from the knowledge of the partial measures <>tor,E

N and <>pol,E
M,N . As N → ∞, the limit

measure can be expected to be dominated by one of the partial measures, provided that
the limit measures <>tor,E, <>pol,E

M – defined accordingly to equation (22) behave as
predicted by equations (27) and (28).

If for example one considers an observable O that is bounded independently from N
, then its limit microcanonical mean can be estimated from equation (34) as

〈O〉M = 〈Otor〉tor,E?M 〈Opol〉pol,E−E
?
M

M . (36)

Thermodynamically stated, this means that the statistical equilibria related to prob-
lem P̃ can be interpreted as thermal equilibria between the toroidal field and the poloidal
field. It is therefore relevant to study separately the typical toroidal configurations and
the typical poloidal configurations in order to understand what the typical configurations
of Beltrami spins configurations are depending of the constraints C̃. This is what we do
in the next three sections.

3.2 Statistical mechanics of the toroidal field
It is possible to estimate the toroidal entropies StorN (E, {Ak}) for very specific values of
the energy using common counting in statistical mechanics. We first present those. Then,
we show that those specific cases are retrieved with a more general calculation involving
a large deviation theorem.

3.2.1 Traditionnal counting

The contribution to the toroidal energy of a toroidal spin σk0 ∈ SK placed at a radial

distance y = r2

2 from the center of the cylinder is
|D|σ2

k0

4yN2 . Clearly, the energy is extremal

when the σ2
k are fully segregated in K stripes, parallel to the z axis, each of width wk =

(R2
out −R2

in)Ak
2 |D| +O

( 1
N

)
. The minimum (resp. maximum) of energy Emin (resp. Emax)

is obtained when the levels of σ2
k are sorted increasingly (resp. decreasingly) from the

internal cylinder. The number of toroidal configurations that corresponds to each one of
those extremal energy states is therefore at most of order N . Using definition (25) and
equation (27) , one therefore finds Stor(Emin, {Ak}) = Stor(Emax, {Ak}) = 0.
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Further assuming that Stor(E, {Ak}) is sufficiently regular on the interval [Emin;Emax]
, the latter result implies that there exists an energy value E? ∈ [Emin;Emax] for which
the entropy Stor(E, {Ak}) is maximal. The value of Stor(E?, {Ak}) can be estimated by
counting the total number of toroidal configurations – regardless of their toroidal energies
2. Indeed,

N2!∏K
k=1 Nk!

=
∫ Emax

Emin
dE Ωtor

N (E, {Ak}) =
∫ Emax

Emin
dE eN2StorN (E,{Ak}), (37)

where Nk = N2Ak
|D|

.

Then, taking the limit N → ∞, using Stirling formula for the l.h.s and estimating the
r.h.s with the method of steepest descent, we obtain

Stor(E?, {Ak}) = −
K∑
k=1

Ak
|D|

log Ak
|D|

. (38)

This value corresponds to the levels of σ2
k being completely intertwined.

3.2.2 Large deviation approach

We can work out the entropy for any value of the energy by using the more modern
framework of large deviation theory.

For a given N , let us consider the set of random toroidal configurations that can be
obtained by randomly and independently assigning on each node of the lattice a level of σk
drawn from a uniform distribution over the discrete set SK . There are KN2 such different
configurations. Among those, there exist some that are such that ∀k ∈ [[1;K]]Ak[σN ] = Ak
together with E tor[σN ] = E. The number of those configurations is precisely what we
have defined as Ωtor

N (E, {Ak}). Can we estimate Ωtor
N (E, {Ak}) for N � 1? The answer

is provided by a large deviation theorem called Sanov theorem (see Appendix E for a
detailed statement of the theorem).

Through a coarse graining, we define the local probability pk (x) that a toroidal spin
takes the value σk in an infinitesimal area dx around a point (x). With respect to the
ensemble of configurations, the functions (p1, ..., pK) define a toroidal macrostate. Each
macrostate therefore satisfies the local normalization constraint:

∀x ∈ D,
K∑
k=1

pk (x) = 1. (39)

We denote Qtor the set of all the toroidal macrostates – the set of all p = (p1, ..., pK)
verifying (39). As explained in Appendix E, from Sanov theorem we can compute the
number of configurations corresponding to the macrostate p = (p1, ..., pK). This number
is equivalent for large N to N2 times the exponential of the macrostate entropy

Stor[p] = − 1
|D|

∫
D
dx

K∑
k=1

pk (x) log pk (x) . (40)

2We here tacitly work in the case where the σ2
k are all distinct –otherwise we need to group the levels

with the same value of σ2
k.
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The constraints on the area Ak occupied by each level σk of the toroidal variable,
and the toroidal energy constraint, can be expressed as linear constraints on the toroidal
macrostates:

∀k ∈ [[1;K]]Ak[p] =
∫
D
dx pk (x) and Etor[p] =

∫
dx

K∑
k=1

pk (x) σ
2
k

4y , (41)

where Etor[p] and Ak[p] are the energy and areas of a macrostate p = (p1, ..., pK). As
the log of the entropy is proportional to the number of configurations, the most probable
toroidal macrostate will maximize the macrostate entropy (40) with the constraints ∀k ∈
[[1;K]], Ak[p] = Ak and Etor[p] = E. Moreover, using Laplace method of steepest descent,
we can conclude that in the limit of large N , the total entropy is equal to the entropy of
the most probable macrostate. Therefore,

Stor(E, {Ak}) = lim
N→∞

1
N2 log Ωtor

N (E, {Ak}) (42)

= sup
p∈Qtor

{Stor[p] | ∀k ∈ [[1;K]]Ak[p] = Ak and Etor[p] = E}. (43)

The optimization problem which appears in the r.h.s. of equation (43) can be solved
using some Lagrange multipliers αk and βtor to respectively enforce the constraints on the
areas Ak and the energy E. The critical points p?,E of the macrostate entropy for the
constraints E and Ak can then be written as

p?,Ek (x) = 1
Z? (x) exp{αk − β

σ2
k

4y} with Z
? (x) =

K∑
k=1

exp{αk − β
σ2
k

4y}. (44)

αk and βtor are such that∫
D
dx

∂ logZ? (x)
∂αk

= Ak and −
∫
D
dx

∂ logZ? (x)
∂βtor

= E. (45)

Note that if we don’t enforce the energy constraint in (43), it is easily checked that
the maximum value of the macrostate entropy is Stor[p?] = −∑K

k=1
Ak
|D|

log Ak
|D|

obtained

for the macrostate p defined by p?k (x) = Ak
|D|

. This shows the consistency of our cal-

culation since the latter macrostate can also be found by setting βtor = 0 in (45). A
vanishing βtor corresponds to the energy constraint E = E?, so that Stor(E?, {Ak}) =
−∑K

k=1
Ak
|D|

log Ak
|D|

, and equation (38) is retrieved. The value of E? can be computed

from (41) and (45) as E? = ∑K
k=1

Akσ
2
k

2 |D| log Rout

Rin

.

Equation (45) can also be used to numerically estimate the toroidal entropy for
abitrary values of E. Such an estimation is shown on Figure 3 for the specific case where
K = 2, S2 = {0, 1}, and A0 = A1 = |D|2 .

Finally, the microcanonical toroidal moments can be deduced from the critical dis-
tribution p?,E that achieves the maximum macrostate entropy. Those moments read

15



0

log 2

0 Ẽ⋆
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Figure 3: Numerical estimation of the toroidal entropy for K=2 , S2 = {0, 1} and A0 =
A1 = D

2 . The height of the domain is 2h = 1, its outer radius is Rout =
√

2 and its
inner radius is Rin = 0.14 ,0.63 or 1. Insets show typical toroidal fields 〈σ (x)〉tor,E for
Rin = 0.14. They correspond to E = 0.1, E = 0.5, and E = 0.9 from left to right. The
grayscale ranks from 0 (white pixels) to 1 (black pixels).

〈σ (x)p〉tor,E =
K∑
k=1

p?,Ek (x)σpk. (46)

In the thermodynamic limit, the microcanical measure <>tor,E= limN→∞ <>tor,E
N behaves

as a product measure, so that equation (46) completely describes the toroidal micocanon-
ical measure.

3.3 Statistical mechanics of the poloidal field
3.3.1 Computation of the M-dependent partial measures <>pol,E

M

Dealing with the partial poloidal measure is slightly more subtle. The problem is that
the poloidal energy constraint cannot be exactly expressed as a constraint on the poloidal
macrostates. We however argue that Sanov therorem can still be applied because the
poloidal degrees of freedom interact through long range interactions, which gives the
poloidal problem a mean-field behavior.

We consider the set of random poloidal configurations that can be obtained by randomly
and independently assigning on each node of the lattice a random value of ξ from the
uniform distribution over the interval [−M,M ]. We then define through a coarse graining
the local probability pM (ξ,x) that a poloidal spin takes a value between ξ and ξ + dξ in
an infinitesimal area dx around a point (x). With respect to the ensemble of poloidal
configurations, the distributions pM = {pM(ξ, ·)}ξ∈[−M ;M ] define a poloidal macrostate.
Each poloidal macrostate satisfies the local normalization constraint :

∀x ∈ D,
∫ M

−M
dξpM (ξ,x) = 1. (47)

We denote Qpol the sets of all the poloidal macrostates – the set of all pM verifying (47).
The number of configurations corresponding to the macrostate pM is then N2 times the
exponential of the poloidal macrostate entropy
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SpolM [pM ] = − 1
|D|

∫
D
dx

∫ M

−M
dξpM (ξ,x) log pM (ξ,x) . (48)

The constraint on the total circulation Xtot can be expressed as a linear constraint on the
poloidal macrostates

Xtot[pM ] =
∫
D
dx

∫ M

−M
dξ ξpM (ξ,x) . (49)

The subtle point arises when dealing with the constraint on the poloidal energy.
The energy of a poloidal macrostate is defined as

Epol[pM ] = 1
2

∫
D
dxψ (x)

∫ M

−M
dξ ξpM (ξ,x) , (50)

with ψ (x) =
∫
D
dx ′G(x,x′)〈ξ (x′)〉pol

M , (51)

G(x,x′) being the Green function of the operator −∆? with vanishing boundary condi-
tions on the walls and periodic boundary conditions along the vertical direction. The
energy E [ξN ] of a poloidal configuration (9) is therefore not exactly the energy of the
corresponding macrostate (50). In order to deal with this situation, one needs to make
the coarse-graining procedure more explicit. Dividing the N × N lattices into Nb × Nb

contiguous blocks each composed of n2 = bN/Nbc2 spins, and taking the limit N →∞ at
fixed Nb, and then letting Nb →∞ , one obtains

Epol[ξN ] =
N→∞
Nb→∞

Epol[pM ] + o

(
1
N2
b

)
. (52)

We see that in the continuous limit, the energy of most of the configurations con-
centrate close to the energy of the macrostate pM ( see [Ellis et al., 2000,Potters et al.,
2013] for a more precise discussion in the context of the 2D Euler equations). This is a
consequence of the poloidal degrees of freedom mutually interacting through long range
interactions. We can therefore enforce the constraint on the configuration energy as a
macrostate constraint.

Following the argumentation yielding to (43) in the toroidal case, we conclude that
in the limit of large N , the total poloidal entropy is equal to the poloidal entropy of the
most probable poloidal macrostate which satisfies the constraints. Therefore,

Spol(E,Xtot) = sup
pM∈Qpol

{Spol[p] | Xtot[pM ] = Xtot and Epol[pM ] = E}. (53)

The critical distributions p?M (ξ,x) of the poloidal macrostate entropy can be written in
terms of two Lagrange multipliers β(M)

pol and h(M), respectively related to the constraints
on the poloidal energy and on the poloidal circulation as

p?,EM (ξ,x) = 1
MZ?

M (x) exp{
h(M) −

β
(M)
pol ψ (x)

2

 ξ},
with Z?

M (x) =
∫ 1

−1
dξ exp{

h(M) −
β

(M)
pol ψ (x)

2

Mξ}. (54)

17



The Lagrange multipliers h(M) and β(M)
pol are defined through

Xtot =
∫
D
dx

∂ logZ?
M (x)

∂h(M) and E = −
∫
D
dx

∂ logZ?
M (x)

∂β
(M)
pol

. (55)

The moments of the one-point poloidal distribution can now be estimated from equa-
tion (54) as

∀p ∈ N, 〈ξ (x)p〉pol,EM =
∫ M

−M
dξ p?M (ξ,x) ξp = ∂p logZ?

M (x)
∂h(M)p . (56)

Taking p = 1 in equation (56) and using equation (51) yield the M -dependent self-
consistent mean-field equation

∂ logZ?
M (x)

∂h(M) = −∆?ψ. (57)

We now need to let M →∞ to describe the microcanonical poloidal measure.

3.3.2 M →∞: Computation of the partial limit measures <>pol,E

We suppose in this section that the energy is non zero. Otherwise ψ ≡ 0 and the equilib-
rium state is trivial.

Scaling of the Lagrange parameters In order for equation (55) to be satisfied
whatever the value of M , the Lagrange multipliers need to be M -dependent. It seems
reasonable to assume that β(M) and h(M) can be developped in powers of M when
M → ∞. If γ denotes the maximum between the leading orders of β(M) and h(M),
so that β(M)

pol = Mγβ?pol + o(Mγ) , h(M) = Mγh? + o(Mγ) and (β?, h?) 6= (0, 0), then neces-
sarily γ = −2 (see Appendix A for a justification). One is therefore led to work with the
reduced Lagrange multipliers

h? = lim
M→∞

M2h(M), and β? = lim
M→∞

β(M). (58)

Mean-field equation and infinite temperature

Using the scaling (58) and letting M →∞ in equations (54) and (56) yield

〈ξ (x)〉 = −
β?polψ (x)

6 + h?

3 , and ∀p > 1, |〈ξ (x)p〉| =∞. (59)

The limit mean-field equation stems from equation (59) combined with equation (57).
It reads

∆?ψ =
β?polψ (x)

6 − h?

3 . (60)

This equation is very reminiscent of the equation that describes the low energy equi-
libria or the strong mixing limit of the bidimensionnal Euler equations (see e.g. [Chavanis
and Sommeria, 1998, Bouchet and Venaille, 2011]). It is thoroughly solved in appendix
(B), and we qualitatively describe below its solutions.
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The differential operator −∆? is a positive definite operator. We denote by φkl and
κkl the eigenfunctions and corresponding eigenvalues of −∆?, such that

∫
D dxφkl 6= 0. We

denote φ′kl and κ′kl the eigenfunctions and corresponding eigenvalues such that
∫
D dxφ′kl =

0. As shown in appendix B, three kinds of situations can be encountered for a solution ψ
of (60).

• If −β?/6 is not one of the eigenvalue κ2
kl, equation (60) has a unique solution

ψ(β?, h?), which is non-zero if h? is non zero. If h? 6= 0, each ψ(β?, h?) can be
expressed as a sum of contributions on the modes φkl only. This family of solution
is continuous for values of −β?/6 between two eigenvalues κ2

kl, and diverge for −β?/6
close to κ2

kl. In particular, it is continuous for −β?/6 = κ′,2kl .

• If β? = −6κ′2k0l0 , ψ is the superposition of the eigenmode φ′k0l0 with the solution from
the continuum at temperature β? = −6κ′2k0l0 . In this case, we will say that ψ is a
“mixed solution”.

• If β? = −6κ2
k0l0 , ψ is proportional to an eigenmode φk0l0 .

Entropy and phase diagram All of the solutions described are critical points for the
macrostate entropy. For given E and Xtot we selected among those critical points those
that have the correct E and Xtot. If more than one solution exist, we select the ones that
do indeed maximize the macrostate entropy. The computation of the entropy and the
selection of the most probable states is carried out explicitly in appendix C.

The kind of solutions for which the macrostate entropy is maximal depends on the
quantity X

2
tot

2E . We first define quantities necessary in order to describe the results. There
exist two threshold values T− < T+ for this quantity, whose values can be found in
appendix C. The value T− depends on the geometry of the domain. It is close to T+
for thin cylinders (h � R) and close to 0 (but not 0) for wide cylinders (h � R). We
recall that κ2

01 is the minimal eigenvalue of the operator −∆?. We denote κ′2 the minimal
eigenvalue associated to the eigenfunctions φ′. Then κ′ = κ′02 for wide cylinders and
κ′ = κ′11 for thin cylinders.

Then:

• For X
2
tot

2E > T+, there is only one set of values (β?,h?) such that the critical points
ψ(β?, h?) satisfy the constraints on the energy and on the circulation. This is a
solution from the continuum with β? strictly greater than −6κ2

01. This unique

critical point is the entropy maximum. When X2
tot

2E � T+, the typical poloidal field

is uniform. As X
2
tot

2E → T+
+ , the typical poloidal field gets organized into a single

large-scale vertical jet.

• For X
2
tot

2E ∈ [T−;T+], the entropy is maximized for a solution from the continuum.

The value of h? and β? are not uniquely determined by the value X2
tot

2E and the

selected solution is the one that corresponds to |β?| ≤ 6κ′. As X
2
tot

2E → T+
− , the

vertical jet gets thinner.

• For X
2
tot

2E ≤ T−, the entropy is maximized by a mixed solution, associated to the
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eigenvalue κ′. As X
2
tot

2E → 0, the vertical jet gets transformed into a dipolar flow.
The dipoles are vertical for wide cylinders and horizontal for thin cylinders.

Those results and the equilibrium poloidal fields 〈ξ (x)〉pol are summarized on the phase
diagram shown on Figure 4. Note that the entropy of the equilibrium state is

SM [p?,EM ] =
M→∞

log 2M + 1
2 |D|M2 (β?E − h?Xtot) + o

( 1
M2

)
, (61)

where for each energy the values of β? and h? are the ones described above.
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Figure 4: Left : Minus the poloidal entropy M2DM = 2 |D|M2(log 2M − SM) as a
function of the circulation Xtot and of the poloidal energy E. The entropy was numerically
estimated for a domain with height 2h = 1, outer radius Rout =

√
2 and inner radius

Rout = 0.63 (up) and Rin = 0.14 (down) . Xtot is rescaled by a factor c1 =
√
|D|
32h and the

entropy by a factor c2 =
(
|D|
2hπ

)2
so that the value of T+ is 1. Right: The corresponding

poloidal phase diagrams. The typical poloidal fields 〈ξ (x)〉pol,E are shown E = 1 and
various values of Xtot. Those fields are renormalized by a factor supD

∣∣∣〈ξ (x)〉pol,E
∣∣∣ so that

the colormap ranks from -1 (blue) to 1 (red). With our choice of units the blue parabola
has equation X2

tot = 2E. The red parabola separates the solutions from the continuum
from the mixed solutions (see text and appendix C for details).

3.4 Statistical mechanics of the simplified problem
As explained in paragraph (3.1.3), we will now couple the toroidal and poloidal degrees

of freedom in order to solve the simplified problem P̃ . The total entropy is then

SM(E) = sup
Etor

{SpolM (E − Etor) + Stor(Etor)}, (62)
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Figure 5: Phase diagram of problem P̃ .

where Etor is the toroidal energy, E − Etor the poloidal one, the toroidal entropy Stor is
depicted in Figure 3, and the poloidal entropy is given by (61). The extrema condition
leads to the equality of the poloidal and toroidal inverse temperatures

βpolM = ∂SpolM (Epol, Xtot)
∂Epol

∣∣∣∣∣
Xtot

= βtor = ∂Stor(Etor, {Ak}
∂Etor

)
∣∣∣∣∣
{Ak}

. (63)

The fundamental remark is that in the limit M →∞, because the number of poloidal
degrees of freedom scales with M , the inverse poloidal temperature is equal to zero when-
ever the poloidal energy is non zero – see Eq. (61), and use that β? → ∞ for Epol → 0.
When the inverse poloidal temperature is zero, so is the inverse toroidal temperature.
This prescribes that the toroidal energy reaches its extremal value E? – see Figure 3. We
are therefore left with two alternatives:

• E < E? then Epol = 0 and Etor = E.

• E > E? then Epol = E − E? and Etor = E?.

The phase diagram corresponding to problem P̃ is then quite simple. It is shown
on Figure 5, and we can describe the two kinds of equilibria it exhibits.

For small energies, (e.g E < E?
tor), there is a large scale organization of the toroidal

flow. In this region, the microcanonical temperature βtor−1 is positive. The smaller E is,
the smaller the toroidal temperature is and the less the toroidal energy fluctuates. As for
the poloidal flow, it is vanishing. In the case where Xtot is non-zero, the limit Epol → 0
exists but yields a singular distribution for the poloidal field, since it corresponds to a
typical poloidal field having a non-zero momentum while having a vanishing energy.

For high energies, (e.g E > E?
tor), the equilibria describe toroidal fields that are

uniform, the levels of SK being completely intertwined. The poloidal fields have infinite
fluctuations. This is a consequence of the microcanonical temperature being infinite.
When the poloidal energy is small, typically Epol �

1
2X

2
tot, the typical poloidal field is

uniform over the domain. For larger poloidal energies, the typical poloidal field gets
organized into a single vertical jet (Epol '

1
2X

2
tot) or a large-scale dipole (Epol �

1
2X

2
tot).

4 Statistical mechanics of the full problem
We now consider the full problem. It is quite straightforward to generalize the construction
carried out for the simplified problem in order to build and compute a microcanonical
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measure for the Euler axisymmetric equations. We find that the correlations play no
role in selecting the equilibria, so that the phase diagram of the full problem is the same
as the one found in the non-helical case. This is quite a striking result which is due
to the temperature being infinite whenever the poloidal energy is non vanishing. As a
result, the correlations average themselves out at every point of the domain, so that the
coarse-grained equilibria only depend and on the circulation and on the total energy. The
mathematical developments related to the full problem are presented in the next two
subsections. The axisymmetric equilibria are described in (4.3).

4.1 Construction of the microcanonical measure
Unlike in the reduced problem P̃ , the poloidal and the toroidal fields are now coupled

not only trough their respective energies, but also through the K partial circulations
{Xk}. In this case, it is not very useful to introduce the toroidal and poloidal spaces of
configurations. We therefore cut through this step and directly define the space of bounded
Beltrami-spin configurations GM,N(E, {Ak}, {Xk}) together with the phase space volume
ΩM,N(E, {Ak}, {Xk}) as

GM,N(E, {Ak}, {Xk}) =
{

(σN , ξN) ∈ (SK × [−M ;M ])N
2
| E (σN , ξN) = E

and ∀k ∈ [[1;K]], Ak [σN ] = Ak and Xk [σN , ξN ] = Xk} ,

and ΩM,N(E, {Ak}, {Xk}) =
∑

σN∈SN
2

K

∏
(i,j)∈[[1;N ]]2

∫ +∞

−∞
dξN,ij1(σN ,ξN )∈GM,N (E,{Ak},{Xk}.

(64)

It is then straightforward to generalize equations (19) and (21), and define the micro-
canonical weight dPM,N of a configuration C = (σN , ξN) ∈ GM,N(E, {Ak}, {Xk}), together
with the M,N -dependent microcanonical averages <>M,N . The microcanonical averages
<>M and <> are then defined by letting successively N →∞ and M →∞, accordingly
to equation (22).

4.2 Estimate of <>M and <> when Epol 6= 0
Estimate of <>M We assume in the next two paragraphs that Epol is prescribed
and non negative. To obtain the limit N → ∞ of the M,N dependent phase space
volume, we follow the steps described in paragraphs (3.2) and (3.3) in order to write
ΩM,N(E, {Ak}, {Xk}) in terms of a macrostate entropy provided by Sanov theorem.

Randomly and independently assigning on each node of the lattice a random value of
ξ from the uniform distribution over the interval [−M ;M ] together with a random value
of σk drawn from the uniform distribution over SK , we then define through a coarse-
graining procedure the local probability pk,M (ξ,x) that a Beltrami spin takes a toroidal
value σk together with a poloidal value between ξ and ξ + dξ in an infinitesimal area
dx around a point (x). The distributions pM = {pk,M(ξ, ·)} k∈[[1;K]]

ξ∈[−M ;M ]
define a poloidal

macrostate, which satisfies the local normalization constraint :

∀x ∈ D,
K∑
k=1

∫ M

−M
dξ pk,M (ξ,x) = 1. (65)

We denote Q the sets of all the macrostates. The macrostate entropy is then given by
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SM [pM ] = − 1
|D|

∫
D
dx

K∑
k=1

∫ M

−M
dξ pk,M (ξ,x) log pM (ξ,x) , (66)

and the constraints for the configurations of Beltrami spins can be related to con-
straints for the macrostates as

Ak[pM ] =
∫
D
dx

∫ M

−M
dξ pk,M (ξ,x) , Xk[pM ] =

∫
D
dx

∫ M

−M
dξ ξpk,M (ξ,x) ,

and E [pM ] = 1
2

∫
D
dx

K∑
k=1

∫ M

−M
dξ {σ

2
k

2y + ψ (x) ξ}pk,M (ξ,x) .
(67)

Then, the total entropy is given by the entropy of the most probable poloidal macrostate
which satisfies the constraints. Therefore,

S(E, {Ak}, {Xk}) = sup
pM∈Q

{SM [pM ] | ∀k ∈ [[1;K]] Ak[pM ] = Ak,

Xk[pM ] = Xk and E [pM ] = E} .
(68)

The critical distributions p?M (ξ,x) of the optimization problem (68) can be written using
2K + 1 Lagrange multipliers as

p?M,k (ξ,x) = 1
MZ?

M (x) exp{α(M)
k − β(M)σ2

k

4y +
(
h

(M)
k − β(M)ψ (x)

2

)
ξ},

with Z?
M (x) =

K∑
k=1

∫ 1

−1
dξ exp{α(M)

k − β(M)σ2
k

4y +
(
h

(M)
k − β(M)ψ (x)

2

)
Mξ},

(69)

where the Lagrange multipliers α(M)
k , h(M)

k , β(M) are determined through

Ak =
∫
D
dx

∂ logZ?
M (x)

∂α
(M)
k

, Xk =
∫
D
dx

∂ logZ?
M (x)

∂h
(M)
k

,

and E = −
∫
D
dx

∂ logZ?
M (x)

∂β(M) .

(70)

From (70), we can compute the one-point moments as

〈σp (x)〉M =
K∑
k=1

∫ M

−M
dξ σpk p?M,k (ξ,x) and 〈ξp (x)〉M =

K∑
k=1

∫ M

−M
dξ ξpp?M,k (ξ,x) . (71)

In particular, the stream function solves

∆?ψ (x) = −〈ξ (x)〉M = −
K∑
k=1

∂ logZ?
M (x)

∂h
(M)
k

. (72)

Finally, note that the average one-point helicities read :

〈σ (x) ξ (x)〉M =
K∑
k=1

∫ M

−M
dξ ξσk p?M,k (ξ,x) . (73)
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Estimate of <> and mean-field closure equation In order to take the limitM →∞
in (71) and (72), one has to specify a scaling for the Lagrange parameters, as done in the
purely poloidal case. Generalizing the argument exposed in Appendix A, one is led to
define the following reduced Lagrange multipliers

αk = lim
M→∞

M0α
(M)
k , h?k = lim

M→∞
M2h

(M)
k , and β? = lim

M→∞
M2β(M). (74)

Using the scalings (74) to take the limit M →∞ in (72) and (71), one readily obtains

∀p ≥ 1 〈σp (x)〉 = σpk , (75)

together with 〈ξ (x)〉 = −β
?

6 ψ (x) + 1
3h

?
k, and ∀p ≥ 2 |〈ξp (x)〉| = +∞, (76)

where for any {Ok}1≤k≤K , Ok is defined by Ok ≡
∑K
k=1

Ak
|D|
Ok.

The equilibrium streamfunction then solves

∆?ψ = β?

6 ψ −
1
3h

?
k, (77)

which is very similar to equation describing ψ in the purely poloidal problem (60).
The one-point helicities (73) read

〈σ (x) ξ (x)〉 = σkh?k
6 + 〈σ (x)〉〈ξ (x)〉. (78)

Hence, the toroidal and the poloidal fields remain correlated in the limit M →∞. They
first term of the r.h.s can be interpreted as an extra small-scale contribution to the total
helicity.

The critical points of the macrostate entropy (66) are not necessarily maximizers
of the macrostate entropy, and we still need to determine the values of h?k and β? that
actually solve the optimization problem (71) for large values of M . To do so, we compute
an asymptotic expansion of the critical values of the macrostate entropy. The computation
is explained in Appendix D. We obtain

SM [p?M ] =
M→∞

log 2M −
K∑
k=1

Ak
|D|

log Ak
|D|

+ 1
2 |D|M2

(
β?Epol − h?kXtot

)

+ 3
2M2

(
Xk

Ak
− Xtot

|D|

)2

+ o
( 1
M2

)
.

(79)

This expression compares with the poloidal macrostate entropy (61) computed in the
reduced problem. We conclude that the selection of the most poloidal probable state only
depends on the value of Epol and Xtot. For a given value of Epol the selected macrostates
are the same in the poloidal simplified problem and in the full problem.

4.3 Phase diagram of the full problem
In last section, we have obtained in formula (75) that the levels σk are completely

mixed. As a consequence, Etor = E?. In order to get this result, we have assumed that
ψ 6= 0 or equivalently Epol 6= 0. We thus deduce the same alternative as in the reduced
problem:
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• If E ≥ E?
tor, then Etor = E?

tor and Epol = E − E?
tor.

• If E < E?
tor, then Etor = E and Epol = 0.

E?
tor is computed from (75) as E?

tor = ∑K
k=1

Akσ
2
k

2 |D| log Rout

Rin

. Therefore, the phase diagram
describing how the total energy is dispatched between the toroidal and the poloidal degrees
of freedom is the same as the one described for the simplified problem and corresponds
to Figure 5. Hence, the axisymmetric equilibria are akin to the equilibria described in
paragraph (3.4) for the non-helical problem and are of two different kinds.

Positive temperature, low energy equilibria When E ≤ Etor
? , the poloidal energy

is zero. Therefore, the stream-function is uniformly zero. h(M)
k → 0 as M → ∞, so that

to second order in M , the partition function Z?
M of equation (69) is exactly the toroidal

partition function given by equation (45). From this observation, we conclude that there
is no difference between the low energy equilibria of the simplified problem and the low
energy equilibria of the full problem. The toroidal flow is organized in vertical stripes,
whose boundaries fluctuate more and more as the energy gets close to E?

tor. The poloidal
flow is vanishing. In the limit where E is infinitely close to E?

tor, the microcanonical
temperature becomes infinitely large, yielding the toroidal stripes to vanish.

Infinite temperature, high energy equilibria When E ≥ Etor
? , the poloidal energy

is prescribed Epol = E − E?
tor. The toroidal field is uniform, correspondind to the levels

of SK being completely intertwined, regardless of the position in the domain D. The
poloidal field exhibits infinitely large fluctuations around a large scale organization. For
prescribed values of the constraints, the entropy of the full problem (79) is the one of the
poloidal problem (61) up to some constants terms. Hence, the large scale organization of
the poloidal field is exactly the one summarized on Figure 4.

4.4 Link to previous work.
We have argued that the limitM →∞ is required to describe microcanonical measures

for the axisymmetric Euler equations. In this limit, the typical fields (76) satisfy some
relations that are very different from the relations found in previous works [Leprovost
et al., 2006,Naso et al., 2010a]. In those papers it is found that the typical fields correspond
to Beltrami flows, such that 〈σ (x)〉 = Bψ (x) and 〈ξ (x)〉 = B〈σ〉/2y + C, where B and
C are related to the Lagrange multipliers associated to the constraints of energy, helicity
and angular momentum – see for example equations (36) and (37) of [Naso et al., 2010a].
There are two reasons for this difference : (i) in the previous papers only three invariants
are taken into account, and (ii) (more importantly) no fluctuations on the poloidal field
are considered.

We can however retrieve this limit of vanishing fluctuations with our approach. No
fluctuations on the poloidal field means that not only the areas Ak and partials circulations
Xk = Xk[σ, ξ] =

∫
D dx ξ1σ(x)=σk are prescribed but also the partial moments Wp,k[σ, ξ] =∫

D dx ξp1σ(x)=σk . In such a toy model, each Beltrami spin has a “frozen” poloidal degree
of freedom. Hence, the toroidal degrees of freedom mutually interact trough the long
range correlations between the poloidal degrees of freedom, which makes the situation
very similar to the 2D case.It is straightforward to see that in the simple case where we
consider only two symmetric levels for the toroidal degrees of freedom (say -1 and +1),
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the typical toroidal field and poloidal field both satisfy sinh- Poisson like relations, namely
:

〈σ (x)〉 = tanh 1
2 [A+Bψ (x)] ,

and 〈ξ (x)〉 =

X+

A+
e

A+Bψ (x)
2 + X−

A−
e
−
A+Bψ (x)

2

2 cosh 1
2 [A+Bψ (x)]

.

(80)

where A and B are functions of the Lagrange multipliers and hence functions of the Ak
and the energy E. In the limit of a vanishing stream function, one retrieves an affine
relationship both between the toroidal field and the stream function and between the
poloidal field and the stream function, akin to the Beltrami states of [Leprovost et al.,
2006].

Those “quenched” axisymmetric measures can therefore be thought of seen as a bridge
between 2D-like axisymmetric measures and the axisymmetric measures described in this
paper. Let us once again emphasize, that there is no physical reason for this quench.

5 Discussion
Technical comments It was not so obvious from the beginning that the construc-
tion of microcanonical measures à la Robert-Miller-Sommeria for the axisymmetric Euler
equations could be carried out extensively, nor that it would yield non trivial insights to
understand the physics of axisymmetric flows. What can be considered as the key point
here is the accurate renormalization of the inverse temperature and associated Lagrange
multipliers with respect to the phase space volume. This allowed us to build an asymp-
totic limit consistent with the physical constraints and prevented us from encountering
an avatar of the Jeans paradox. The renormalization was not carried out in the previous
works concerning axisymmetric equilibria. Here, it is crucial in order to take into account
the invariants related to the poloidal degrees of freedom that live in an infinite phase
space. Other choices could have been made to renormalize the phase space. Instead of
a cutoff M , it is also possible to make the divergent integrals converge by integrating
over the ν dependent measures e−νξ2dξ – rather than over the M dependent measures
1[−M ;M ]dξ – , introduce the ν dependent Lagrange multipliers βν = νβ?, hν = νh? and
let ν → 0 subsequently. The limit measures obtained with the latter renormalization are
consistent with the ones we described in this paper.

Note also that in order to carry out our analysis, we restricted ourselves to the
case where the inner cylinder has a non-vanishing radius Rin, so that we worked in the
framework of a “Tayor-Couette geometry”. It is yet not so clear how to extend the analysis
to the limit case Rin → 0 corresponding to a “von Kármán geometry”. The problem
comes from the blow up of the equilibrium toroidal energy E?

tor = ∑K
k=1

Akσ
2
k

2 |D| log Rout

Rin

if

we simply let Rin → 0. 3

3One naive way to cope with this issue and obtain a specific class of equilibria for the von Kármán

geometry is to renormalize each toroidal level σ2
k in SK as σ2

k →
σ2
k

log Rout
Rin

. Another possibility is to
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Physical insights about axisymmetric turbulence

The physics described by the micrononical measure is interesting. Let us first com-
ment about the role of the invariants. We may have built a measure by taking into
account every kind of inviscid invariant of the axisymmetric Euler equations, it turns
out that most of the physics comes from a reduced set of invariants, namely the en-
ergy, the toroidal Casimirs and the total circulation. In particular, our result shows that
the helicity – which relates to the correlation between the toroidal and the poloidal de-
grees of freedom – plays no role in the description of large scale structure at the level of
the macrostates. This is consistent with the traditionnal picture of a downward helicity
cascade in 3D turbulence. This may also explain why previous attempts to find axisym-
metric equilibria [Leprovost et al., 2006,Naso et al., 2010a] by neglecting the fluctuations
of the poloidal field while keeping a constraint on the helicity would only lead to unstable
equilibria, likely to be destabilized by small-scaled perturbations.

The axisymmetric equilibria are very different from those obtained in the 2D case.
In the low temperature, low energy regime, the large scale stripes come from the inter-
action of the toroidal degrees of freedom with the position field – the interaction being
inhomogeneous and invariant with respect to vertical translations. As for the infinite
temperature, high energy regime, the toroidal Casimirs play no role in it. The linear re-
lationship between the poloidal field and the stream function may be seen as the axisym-
metric ananalogue of the low energy limit of the sinh-Poisson relation in 2D turbulence.
Yet, the infinite fluctuations related to the poloidal field may be heuristically interpreted
as a very 3D turbulent feature and may be related to the tendency of vortices to leak
towards the smallest scales available in 3D turbulence. Therefore, neither regimes have
strict analogues in 2D.

Perspectives.

Extensions to closely related flows. Let us mention the close analogy between
axisymmetric flows and other flows of geophysical and astrophysical interests such as two-
dimensional stratified flows in the Boussinesq approximation (Boussinesq flows) [Szeri
and Holmes, 1988,Abarbanel et al., 1986] and two-dimensional magnetohydrodynamics
(2D MHD). In the former case, it almost suffices to replace the word “poloidal” by the
word “vorticity” and the word “toroidal” by the word “density ” in the present paper to
obtain mutatis mutandi a statistical theory for ideal Boussineq flows. The case of 2D
MHD is slightly more subtle. The Casimir invariants of ideal 2D MHD are similar to
the axisymmetric Casimir invariants but the energies slightly differ. It would therefore
be very interesting to generalize the method described in the present paper to the 2D
MHD case, which is more documented than the axisymmetric case, and for which invicid
statistical theories have recently been reinvestigated [Weichman, 2012].

Are microcanical measures relevant for real turbulence ? It is finally tempt-
ing to ask wether some of the axisymmetric equilibrium features can be recognized in
real turbulent experiments. An example of a turbulent flow likely to be modelized by the
axisymmetric Navier-Stokes is von Kármán turbulence [Herbert et al., 2012,Saint-Michel

impose a local smoothing condition near the center of the cylinder that could be enforced at the level
of the macrostates. It would suffice for instance to prescribe < σ (x) >M =

r→0
O(rε) with ε being non

negative in order to avoid a blow up of the equilibrium toroidal energy.
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et al., 2013]. Using the Particle Image Velocity (PIV) technique, it is possible to investi-
gate the properties of the large scale structures –if any– in such turbulent configurations.
Preliminary results tend to show a connection between a M = 0 scenario and some tur-
bulent stationnary states obtained in von Kármán turbulence. There exist many caveats
concerning a thorough investigation of the link between the axisymmetric measures and
turbulent experiments. We therefore postpone the discussion to a forthcoming paper.
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A Scaling of the Lagrange multipliers to compute the
poloidal partial measures

We suppose that the energy is non zero and finite. We show that in order to enforce
the constraint on the energy as M →∞, the Lagrange multipliers β(M)

pol and h(M) have to

scale as 1
M2 .

Let γ be a yet unprescribed parameter, and let us define

β? = lim
M→∞

M−γβ
(M)
pol and h? = lim

M→∞
M−γh(M). (81)

Let us now consider a fluid element in the vicinity of a point (x0) where the quantity
f ?0 = h?− 1

2β
?ψ (x0) is non zero – this point exists otherwise the stream function ψ would

be constant over the domain D and the poloidal energy would be zero. ψ being continuous
in the limit N →∞, we may assume ψ (x0) > 0 on a small volume of fluid |dx0| centered
around (x0). To leading order in M , this small volume of fluid contributes to the poloidal
energy as

E (x0) |dx0| = −
∂ logZ?

M (x0)
∂β

(M)
pol

|dx0| =
Mψ (x0) |dx0|

2

∫ 1
−1 dξξe

f?0M
γ+1ξ∫ 1

−1 dξe
f?0M

γ+1ξ
. (82)

If γ + 1 ≥ 0 then E (x0) |dx0| → ∞, and the divergence is exponential when γ > 1.

Therefore, necessarily γ + 1 ≤ 0. In that case E (x0) |dx0| ∼
M→∞

Mγ+2ψ (x0) f ?0
12 |dx0|

which is finite and non zero only when γ = −2.

B Solutions of the mean-field equation
We show here how to solve the closure equations (60) and (77) for fields that are 2h-

periodic along the z direction and are vanishing on both of the walls of the cylinder.
Those two equations can be written as

∆?ψ = β?

6 ψ −
h?

3 with ∆? = 1
2y∂zz + ∂yy. (83)

We will solve those equations in terms of the eigenmodes of the operator ∆? with
periodic conditions along the z direction and vanishing boundary conditions on both
walls.

B.1 Explicit computation of the eigenmodes of the operator ∆?

The eigenmodes of ∆? correspond to the solutions of the eigenvalue problem ∆?φκ =
−κ2φκ with the prescribed boundary conditions. Let φκ be such an eigenmode. We can
Fourier decompose φK and write φK(y, z) =

∑
k∈Z

fk(y) exp ikπz
h

. φK is a solution to the

eigenvalue probleme iff each one of the functions fk satisfies

f ′′k (y) +
(
κ2 − k2π2

2h2y

)
fk(y) = 0, (84)

or equivalently f̃ ′′k (ỹ) +
(

1− k2π2

2h2κỹ

)
f̃k(ỹ) = 0 putting ỹ = κy and f̃k(ỹ) = fk(y). (85)

Equation (85) is an equation known as a “Coulomb Wave equation”.
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If k = 0, then f0(y) = A sin κ (y − Yin) +B cosκ (y − Yin). f0(Yin) = 0 gives B = 0.
f0(Yout) = 0 gives κ = κ0l = lπ

Yout − Yin
. For each value of l ≥ 0, we write φ0l =

sin [κ0l (y − Yin)]√
h(Yout − Yin)

. φ0l is an eigenmode of ∆? so that ∆?φ0l = −κ2
0lφ0l. The normalization

factor is chosen so that
∫ Yout

Yin
dy
∫ 2h

0
dzφ2

0l = 1.

If k 6= 0, f̃k(ỹ) = C1F0 (ηk, ỹ) + C2G0 (ηk, ỹ) where F0 and G0 are respectively the

regular and singular Coulomb Wave functions associated to the parameter ηk = k2π2

4h2κ
.

The non trivial solutions are determined using the vanishing boundary conditions on the
walls. For each value of k, the horizontal modes correspond to the values κkl for wich the
quantity

W (κ) =

∣∣∣∣∣∣∣∣∣∣
F0

(
k2π2

4h2κ
, κYin

)
G0

(
k2π2

4h2κ
, κYin

)

F0

(
k2π2

4h2κ
, κYout

)
G0

(
k2π2

4h2κ
, κYout

)
∣∣∣∣∣∣∣∣∣∣

is vanishing. (86)

Each mode κkl is therefore related to two eigenmodes φ±kl = Akl exp
(
±ikπz

h

)
fk(κkly),

such that ∆?φkl = −κ2
klφkl. The normalization factor is chosen so that

∫ Yout

Yin
dy
∫ 2h

0
dzφ2

Kl =
1.

The Fourier decomposition of φK can now be rewritten as φK(y, z) =
∑
k,l∈Z

aklφkl(y, z).

Two modes corresponding to two different eigenvalues are orthogonal for the scalar prod-
uct (f |g) ≡

∫
D
dydzf̄g. Hence, φK is a solution of ∆?ψ = −κ2φK iff there exists (k, l)

such that κ2
kl = κ2.

As an illustration, a numerical estimation for different domain shapes of the first eigen-
values of ∆? together with their corresponding eigenmode is provided on Figure 6.
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1

2

0 2 4 6 8

κ̃

2h(Yout − Yin)
−1/2

b
κ̃02

κ̃11

κ̃01

≃ 0.67

2h

0
0 Rin Rout

2h

0
0Rin Rout

2h

0
0Rin Rout

2h

0
0 Rin Rout

Figure 6: Numerical estimation of the first eigenvalues of ∆? as functions of the domain
size. The eigenvalues κ are adimensionnalised and κ̃ = κ

π(Yout − Yin) . The estimation was

made with a fixed height 2h = 1 and fixed outer radius Rout =
√

2. The inserted pictures
represent maps of the corresponding eigenmodes.
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B.2 Types of solutions for equation (83).
Let ψ be a solution of equation (83) and let us decompose ψ as ψ =

∑
k,l

pklφkl.

Then necessarily,

∀(k, l) ∈ Z2 pkl

(
κ2
kl + β?

6

)
= h?

3 (1|φkl). (87)

Let us note that the only modes with a non vanishing integral over the domain, –e.g
such that (1|φkl) 6= 0 – are the modes obtained for k = 0 and l odd. To describe the
solutions of equation (87) we need to consider the three following different cases.

Solutions from the continuum If ∀(k, l), β? 6= −6κ2
kl, then necessarily

∀(k, l) pkl = h?(1|φkl)

3
(
κ2
kl + β?

6

) . (88)

In this case, ψ can be written as

ψ = h?

3
∑
k,l

(1|φkl)(
κ2
kl + β?

6

)φkl = h?

3
∑
l odd

(1|φ0l)(
κ2

0l + β?

6

)φ0l (89)

For any odd value of l, this family of solution is continuous for values of −β?/6 between
two eigenvalues κ2

0l and κ2
0l+2 , and diverge for −β?/6 close to κ2

0l. In particular, it is
continuous for values of −β?/6 = κ2

mn such that (1|φmn) = 0. Following the terminology of
[Naso et al., 2010b], we therefore refer to those solutions as solutions “from the continuum”.

Mixed solutions and eigenmodes Otherwise there exists (k0, l0) such that β? =

−6κ2
k0l0 . Then necessarily ∀(k, l) 6= (k0, l0) pkl = h?(1|φkl)

3
(
κ2
kl − κ2

0l0

) .
• Mixed Solutions. If (1|φk0l0) = 0, – e.g if k0 6= 0 or l0 is even –, then ψ can be

written as ψ = pk0l0φk0l0 + h?

3
∑
l odd

(1|φ0l)(
κ2

0l − κ2
k0l0

)φ0l. The coefficient pk0l0 can take any

value. ψ can be seen as a superposition of a solution from the continuum with the
eigenmode φk0l0 , and we therefore call these solutions “mixed solutions”.

• Odd eigenmodes. Otherwise, (1|φk0l0) 6= 0 – e.g k0 = 0 and l0 is odd. Equation (87)
considered for (k, l) = (0, l0) implies h? = 0. In this case ψ is proportionnal to the
odd eigenmode φ0l0 , namely ψ = Aφ0l0 .

C Maximizers of the macrostate entropy for the sim-
plified poloidal problem.

The constraints E and Xtot being given, we want to determine the values of h? and β?

that minimize the poloidal macrostate entropy (48).
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C.1 Computation of the macrostrate entropy for the critical
distributions p?,EM .

The critical distributions p?,EM are described by equations (54) and (55). Their macrostate
entropy reads

SpolM [p?,EM ] = − 1
|D|

∫
D
dx

∫ M

−M
dξ p?,EM (ξ,x) log p?,EM (ξ,x)

= − 1
|D|

∫
D
dx

∫ M

−M
dξ p?,EM (ξ,x) {

(
h(M) − β(M)ψ (x)

2

)
ξ − logM − logZ?

M (x)}

= logM − 1
|D|

(
h(M)Xtot − β(M)E

)
+ 1
|D|

∫
D

logZ?
M (x) . (90)

The last equality is obtained using
∫ M

−M
d ξ p?,EM (ξ,x) = 1 on one hand, and remem-

bering that∫
D
dx

∫ M

−M
dξ p?,EM (ξ,x) = Xtot and

∫
D
dx

∫ M

−M
dξ ψ2 ξ p

?,E
M (ξ,x) = E on the other hand.

The asymptotic development of logZ?
M (x) for large M yields

logZ?
M (x) =

M→∞
log{2 +

∫ 1

−1
dξ

ξ2

2M2

(
h? − β?ψ (x)

2

)2

+ o
( 1
M2

)
}

=
M→∞

log 2 + 1
6M2

(
h? − β?ψ (x)

2

)2

+ o
( 1
M2

)
. (91)

Therefore, ∫
D
dx logZ?

M (x) =
M→∞

|D| log 2 + 1
2M2 (h?Xtot − β?E) + o

( 1
M2

)
. (92)

From (90) and (92), we finally obtain

SpolM [p?,EM ] =
M→∞

log 2M + 1
2 |D|M2 (β?E − h?Xtot) + o

( 1
M2

)
. (93)

C.2 Maxima of the entropy over the set of critical macrostates
p?,EM .

Using equation (93), let us now determine which distributions among the critical dis-
tributions achieve the maximum of the macrostate entropy, when M is large. In the next
paragraphs, we will work with the reduced entropy

D(β?, h?) =
def

lim
M→∞

{−2M2 |D| SpolM [p?M ] + log 2M} = (h?Xtot − β?E) . (94)

The minima of D(β?, h?) are the maxima of the macrostate entropy.
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Let us introduce the auxiliary functions

f(z) =
∑
l odd

(1|φ0l)2κ2
0l

(κ2
0l − z) , together with F = f 2

f ′
. (95)

f is defined on R−{κ2
0(2l+1), l ∈ N}. F is defined continuously over R by taking F(κ0l) =

(1|φ0l)2κ2
0l = 16π/ |D| for every odd value of l. Those functions are sketched on Figure 7.

Using f and F , it is straightforward to relate h? and β? to E and Xtot for each kind of
solutions.

For a solution from the continuum,

Xtot = h?

3 f
(
−β?

6

)
, 2E = h?2

9 f ′
(
−β?

6

)
, and X2

tot = 2EF
(
−β?

6

)
. (96)

For a mixed solution,

Xtot = h?

3 f
(
κ2
k0l0

)
, 2E = p2

k0l0κ
2
k0l0 + h?2

9 f ′
(
κ2
k0l0

)
, and X2

tot ≤ 2EF
(
κ2
k0l0

)
. (97)

For an odd eigenmode,

X2
tot = 2E0κ

2
0l0(1|φ0l0)2 = 2E0F

(
κ2

0l0

)
. (98)
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Figure 7: F and f as functions of κ. The minimum value κ? for which both F and f are
zero is greater than κ02.

It is clear from Figure 7 and equations (96), (97) and (98) that we need to make a

distinction between the cases X
2
tot

2E > F(κ2
01), X

2
tot

2E = F(κ2
01), and X2

tot

2E < F(κ2
01).

C.2.1 Case
X2
tot

2E > F(κ2
01)

In this case, there exists only one set of values for the Lagrange multipliers (h?, β?) for
which the constraints are satisfied. This set corresponds to a solution from the continuum.
This solution is therefore the selected solution. As illustrated on Figure 7, there is a one
to one correspondance between the value of β? and the value of X

2
tot

2E . We can therefore

write without ambiguity β? = −6F−1
(
X2
tot

2E

)
.
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If X
2
tot

2E < F(0) , then β? < 0 and we define κ(β?) =
√
−β?/6. Otherwise, X

2
tot

2E ≥

F(0), and β? ≥ 0. We then define κ(β?) = −
√
β?/6. In both cases, κ(β?) < κ01 and the

other Lagrange multiplier is uniquely determined as h? = 3Xtot

f (−β?/6) = 3Xtot

f (κ3/|κ|) .

C.2.2 Case
X2
tot

2E < F(κ2
01)

This case seems at first sight more intricated. First, there exist an infinite number
of solutions from the continuum for which the constraints are satisfied. Indeed, for any
odd value of l, there exist two values for the inverse temperature

√
−β?/6 in the interval

[κ0l; [κ0l+2[ – denoted by κ and κ′ on Figure 7. Second, there can exist an eigenvalue κ2
k0l0

associated to an eigenmode φk0l0 with (1|φk0l0) = 0 such that F(κk0l0) > X2
tot/2E. In this

case, there also exists a mixed solution associated to the eigenvalue κ2
k0l0 for which the

constraints are satisfied.
The situation is however easily settled because the following result holds true:

Result C.1 Between two solutions that satisfy the same constraints, the one associated
with the lower value of |β?| has the lower reduced entropy – and hence achieves the higher
macrostate entropy.

From (C.1) we deduce that if κmin denotes the smallest eigenvalue whose associated
eigenfunction has a vanishing mean on the domain, then

• if F(κ2
min) ≤ X2

tot

2E < F(κ2
01), the selected solution is the solution from the contin-

uum with inverse temperature −6β? = κ2 < κ2
min and h? = 3Xtot/f(κ2) uniquely

determined from (96).

• if X
2
tot

2E ≤ F(κ2
min), the selected solution is the mixed solution, with inverse tem-

perature satisfying −6β? = κ2
min and h? = 3Xtot/f(κ2

min) uniquely determined from
(97).

What remains to show is that (C.1) actually holds true. This is carried out in the
next two paragraphs.

Maxima of the macrostate entropy achieved by solutions from the continuum.
Let us first focus on solutions from the continuum. Those solutions are uniquely deter-
mined by the value of the inverse temperature β?. Indeed, from equation (96), given a

value β? such that F (−β?/6) = X2
tot

2E , h? is uniquely determined as h? = 3Xtot/f(−β?/6).

Defining κ(β?) =
√
−β?/6, we can write the reduced entropy of such a continuum solution

as

D(c)(κ(β?)) = 6κ(β?)2E + 3X2
tot

f (κ(β?)2) . (99)

Let us now define
κ = min{κ′

∣∣∣F (κ′2) = X2
tot

2E }. (100)
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It is clear from Figure 7 that κ ∈ [κ01;κ?[ where κ? is the first zero of F . Then, κ also
achieves the minimal value of the reduced entropy (99), namely

Dc (κ) = min{Dc (κ′)
∣∣∣F (κ′2) = X2

tot

2E }. (101)

Indeed, let κ′′ > κ such that F(κ′′2) = F(κ2) = X2
tot

2E .

• If f(κ′′2) > 0, then

D(c)(κ)−D(c)(κ′′) = 6E

<0︷ ︸︸ ︷(
κ2 − κ′′2

)
+3X2

tot

<0︷ ︸︸ ︷(
1

f(κ2) −
1

f(κ′′2)

)
< 0. (102)

• Otherwise, let κ′ = sup{κ|κ < κ′′ and F(κ2) = F(κ′′2)}. Then f(κ′2) > 0 (see
Figure 7), and

D(c)(κ′)−D(c)(κ′′) < 6E
(
κ′

2 − κ′′2
)

+ 3X2
tot

κ′′2 − κ′2

F(κ′2) ≤ 0. (103)

The first inequality of equation (103) is obtained by using Tayor inequality at first
order and by noticing that (1/f)′ = −1/F , while the second inequality stems froms
the fact that X2

tot = 2EF(κ′2) = 2EF(κ′′2).
Hence,

D(c)(κ)−D(c)(κ′′) = D(c)(κ)−D(c)(κ′) +D(c)(κ′)−D(c)(κ′′) < 0. (104)

Maxima of the macrostate entropy for continuum and mixed solutions. Let
us now determine whether mixed solutions can achieve a higher macrostate entropy than
solutions from the continuum. Consider for instance a mixed solution associated to the
eigenvalue κ2

0 = κ2
k0l0 . Equation (97) tells that this solution exists provided X2

tot ≤
2EF(κ2

0). Let us suppose this is the case. For this solution, the Lagrange multipliers are
then uniquely determined as β? = −6κ2

0, and h? = 3Xtot

f (κ2
0) . The corresponding reduced

entropy reads

D(m)(κ0) = 6κ2
0E + 3 X2

tot

f(κ2
0) . (105)

We know from the preceding paragraph, that the minimum of D(c)(κ′) is achieved for
κ ∈ [κ01;κ?[ uniquely determined. We therefore need to compare D(c)(κ) and D(m)(κ0).

• If κ0 > κ?, then inequalities similar to inequalities (102) and (103) yield D(c)(κ) <
D(m)(κ0), so that the solution from the continuum has a lower reduced entropy and
hence a higher macrostate entropy than the mixed solution.

• Otherwise, we need to have κ0 < κ < κ? in order for both solutions to exist. Then,

D(m)(κ0)−D(c)(κ) ≤ 6E
(
κ2

0 − κ2
)

+ 3X2
tot

κ2 − κ2
0

F(κ2) < 0, (106)

and the mixed solution has a lower reduced entropy – and hence higher macrostate
entropy – than any solution from the continuum that correspond to the same values
of E and Xtot.
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Similar inequalities show that when two mixed solutions can coexist, it is the one
associated with the lower value of κ that also achieves the higher macrostate entropy.

This concludes the proof of (C.1).

C.2.3 Case
X2
tot

2E = F(κ2
01)

On this parabola, the only solutions that can exist are mixed solutions and pure odd
mode solutions. For the odd eigenmodes, h? = 0, the reduced entropy simply reads
D(o)(κ0l) = 6Eκ2

0l. It is then clear, that the eigenmode with the lowest value of D(o) is
the gravest mode κ01.

One can also notice that D(c)(κ01 +ε) →
ε→0

D(o)(κ01). We can then extend by continuity

inequality (106), so that if there also exists a mixed solution on the parabola X2
tot

2E =
F(κ2

01), it is the gravest odd mode that solves the extremization problem.

C.2.4 Conclusion:

We can now conclude the discussion. Recall that κmin denotes the smallest eigenvalue
with vanishing mean on the domain. Note that κmin is lower than the first zero of F (see
Figure 7).

• For X2
tot > 2EF(κ2

01), the selected solution is a solution from the continuum, with
κ < κ01 uniquely determined by E and Xtot.

• For X2
tot = 2EF(κ2

01), the selected solution is the gravest eigenmode κ2
01.

• For 2EF(κ2
01) > X2

tot ≥ 2EF(κ2
min), the selected solution is the one from the con-

tinuum associated to the value κ2
01 < κ2 ≤ κ?2.

• For 2EF(κ2
min) ≥ X2

tot the selected solution is the mixed solution associated to the
eigenvalue κ2

min.

D Computation of the critical points of the macros-
trate entropy for the full problem.

We show how to compute the macrostate entropy (66) achieved by the critical distributions
p?M (70) using the scaling (74). In addition to the reduced Lagrange multipliers defined
in (74), we also define α?k = limM→∞M

2(α(M)
k − αk).

To derive the expression for the macrostate entropy, it is useful to express the Lagrange
multipliers h?k and αk in terms of the constraints. It is easily obtained from (67) and (70)
that

Ak = |D| expαk∑K
k′=1 expαk′

and Xk = Akh
?
k

3 − βAk
6 |D|

∫
D
dxψ (x) , (107)

from which it follows that αk = log Ak
|D|

– up to an unphysical constant that can be

absorbed in the partition function – and Xtot

|D|
− Xk

Ak
= 1

3
(
h?k − h?k

)
.
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The critical points of the macrostate entropy read

SM [p?M ] = − 1
|D|

∫
D
dx

K∑
k=1

∫ M

−M
dξ p?M,k (ξ,x) log p?M,k (ξ,x)

= − 1
|D|

∫
D
dx

K∑
k=1

∫ M

−M
dξ p?M,k (ξ,x)

{
α

(M)
k − β(M)σ

2
k

4y (108)

+
(
h

(M)
k − β(M)ψ (x)

2

)
ξ − logM − logZ?

M (x)
}

= logM − 1
|D|

(
K∑
k=1

α
(M)
k Ak +

K∑
k=1

h
(M)
k Xk − β(M)E

)
+ 1
|D|

∫
D

logZ?
M (x) . (109)

The last equality is obtained using
∫ M

−M
d ξ p?,EM (ξ,x) = 1 on one hand, and using

equation (67) to compute Ak, Xk, and E on the other hand. The asymptotic development
of Z?

M (x) for large M yields

Z?
M (x) =

M→∞
2

K∑
k=1

eαk{1 + 1
M2

α?k − β?σ2
k

4y + 1
6

(
h?k − β?

ψ (x)
2

)2
+ o

( 1
M2

)
}. (110)

Hence,

∫
D
dx logZ?

M (x) =
M→∞

|D| log 2 + 1
M2

{
|D|α?k − β?E?

tor + 1
2

K∑
k=1

h?kXk −
β?

2 Epol
}

+ o
( 1
M2

). (111)

From (111) and (109), we finally obtain

SM [p?M ] =
M→∞

log 2M−
K∑
k=1

Ak
|D|

log Ak
|D|

+ 1
2 |D|M2

(
β?Epol −

K∑
k=1

h?kXk

)
+o

( 1
M2

)
, (112)

and equivalently the expression (79).

E Sanov theorem and entropy
Let us consider n independent and identically distributed random variables {sk}1≤k≤n

drawn with probability f0 (s) ds. We consider the sum Sn = 1
n

n∑
k=1

sk of these n variables

and its distribution function

fn(s) = 1
n

n∑
k=1

δ(s− sk), (113)

Let us consider the probability distribution functionnal of ρn:

Pn [f ] ≡ 〈δ [f − fn]〉 , (114)

where the bracket is the average over the sampling of the variables {sk}1≤k≤K . Sanov
theorem is a statement on the asymptotic behavior of Pn [f ]. It states that

logPn [f ] ∼
n→∞

−n
∫
f log

(
f

f0

)
ds, (115)

if
∫
f ds = 1 and −∞ otherwise.
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In the specific case when the variable s takes only K possible values {σk}1≤k≤K with
probability {πk}1≤k≤K

f0 (s) =
K∑
k=1

πkδ (s− σk) , (116)

with ∑K
k=1 πk = 1, then fn = ∑K

k=1 ρk,nδ (z − σk).
We consider

Pn (ρ1, ..., ρK) ≡ 〈δ (ρk,1 − ρ1, ..., ρK,1 − ρK)〉 (117)
the probability distribution function of (ρ1,n, ..., ρK,n). Then Sanov theorem states that

logPn (ρ1, ..., ρK) ∼
n→∞

−n
K∑
k=1

ρk log
(
ρk
πk

)
, (118)

if ∑K
k=1 ρk = 1 and −∞ otherwise.

We now consider a uniform network withN sites, as a discretization of a two dimensional
surface of area |D|. We denote by r = (x, y) points in this space. We consider a random
s variable over this network. We assume that the values of s on each network point are
uncorrelated among each other, and that at each point the variable can take one of the
values {sk}1≤k≤K with probability 1/K. We can associate to this random variable s a set,
an ensemble CN = [[1;N ]]K of network realizations. The number of possible configurations,
the cardinal of CN is NK . Through a coarse graining, we compute the local probability
ρk (r) to observe a value of s egual to σk in an infinitesimal area dr around a point r. We
can apply Sanov theorem (118) to this case in order to compute PN (ρ1 (r) , ..., ρK (r)) to
observe the values of s equal to σk in an infinitesimal area dr around a point r. Using
n = Ndr/ |D| and πk = 1/K, we get

logPN (ρ1 (r) , ..., ρK (r)) ∼
N→∞

−Ndr
|D|

K∑
k=1

ρk log (Kρk) , (119)

if ∑K
k=1 ρk(r) = 1 and −∞ otherwise. We can compute the probability PN [ρ1, ..., ρK ] to

observe a field of local probabilities (ρ1 (r) , ..., ρK (r)) over the whole space D. Using that
the values of s at different network locations are uncorrelated, we get

logPN [ρ1, ..., ρK ] ∼
N→∞

− N

|D|

K∑
k=1

∫
D
ρk log (Kρk) dr, (120)

if for all r ∑K
k=1 ρk(r) = 1 and −∞ otherwise.

With respect to the ensemble of network configurations, the functions (ρ1, ..., ρK)
define a macrostate : all the realizations of the network that correspond to the local prob-
abilities (ρ1 (r) , ..., ρK (r)). We consider ΩN [ρ1, ..., ρK ] the number of such microscopic
configurations corresponding to this macrostate. We define as

SN [ρ1, ..., ρK ] ≡ 1
N

log ΩN [ρ1, ..., ρK ] (121)

the specific entropy of this macrostate. This number of configuration is ΩN = PNN
K

(using that the number of networks in the ensemble is NK). From (119), using that∑K
k=1 ρk(r) = 1, we get

S [ρ1, ..., ρK ] ≡ lim
N→∞

SN [ρ1, ..., ρK ] = − 1
|D|

K∑
k=1

∫
D
ρk log (ρk) dr, (122)

for all r ∑K
k=1 ρk(r) = 1 and −∞ otherwise.
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We now consider CN(A1, ..., Ak) the ensemble of networks such that the number of
σk on network sites is exactly Nk = NAk/ |D|. This subset of CN is exactly the ensemble
used in order to define the microcanonical ensemble. A very classical combinatorial result
gives that the cardinal is ΩN(A1, ..., Ak) ≡ ]CN(A1, ..., Ak) = N !/ΠK

k=1Nk!. Using Stirling
formula, we get that

S(A1,...Ak) = lim
N→∞

1
N

ΩN(A1, ..., Ak) = −
K∑
k=1

Ak
|D|

log
(
Ak
|D|

)
. (123)

Let us show that we can get this result from the entropy result (122), thus avoiding
combinatorial computations. The constraints Nk = NAk/ |D| are equivalent to∫

D
ρk dr = Ak. (124)

Then
S(A1,...Ak) = sup

{ρ|
∫

D ρk dr=Ak and ∑K

k=1 ρk(r)=1}
{S [ρ1, ..., ρK ]}. (125)

Using for instance Lagrange multipliers, it is easily proven that the supremum is
reached for ρk = Ak/ |D|, from which we conclude once more the result (123). We can
easily enforce other constraints. For instance the energy when it is meanfield like.
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