Relevant Cycle Hypergraph Representation for Molecules - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Relevant Cycle Hypergraph Representation for Molecules

Résumé

Chemoinformatics aims to predict molecule's properties through informational methods. Some methods base their prediction model on the comparison of molecular graphs. Considering such a molecular representation, graph kernels provide a nice framework which allows to combine machine learning techniques with graph theory. Despite the fact that molecular graph encodes all structural information of a molecule, it does not explicitly encode cyclic information. In this paper, we propose a new molecular representation based on a hypergraph which explicitly encodes both cyclic and acyclic information into one molecular representation called relevant cycle hypergraph. In addition, we propose a similarity measure in order to compare relevant cycle hypergraphs and use this molecular representation in a chemoinformatics prediction problem.
Fichier principal
Vignette du fichier
GbR2013_014.pdf (380.39 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00829227 , version 1 (02-06-2013)

Identifiants

  • HAL Id : hal-00829227 , version 1

Citer

Benoit Gaüzère, Luc Brun, Didier Villemin. Relevant Cycle Hypergraph Representation for Molecules. 9th IAPR-TC-15 Graph-Based Representations in Pattern Recognition, May 2013, Austria. pp.111. ⟨hal-00829227⟩
121 Consultations
407 Téléchargements

Partager

More