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Abstract. Chemoinformatics aims to predict molecule’s properties through
informational methods. Some methods base their prediction model on the
comparison of molecular graphs. Considering such a molecular represen-
tation, graph kernels provide a nice framework which allows to combine
machine learning techniques with graph theory. Despite the fact that
molecular graph encodes all structural information of a molecule, it does
not explicitly encode cyclic information. In this paper, we propose a new
molecular representation based on a hypergraph which explicitly encodes
both cyclic and acyclic information into one molecular representation
called relevant cycle hypergraph. In addition, we propose a similarity
measure in order to compare relevant cycle hypergraphs and use this
molecular representation in a chemoinformatics prediction problem.
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1 Introduction

Chemoinformatics consists in predicting molecule’s properties from their simi-
larity. Most of existing methods, called fingerprint methods, encode molecules as
collections of chemical descriptors and deduce similarity between molecules from
the similarity of their collections of descriptors. Another approach consists in us-
ing the molecular graph G = (V,E, µ, ν) representation associated to a molecule.
Unlabeled graph (V,E) encodes molecular structural information while labelling
function µ maps each vertex to an atom’s label corresponding to its chemical
element and labelling function ν characterizes each edge by the valency (single,
double, triple or aromatic) of the corresponding atomic bond which connects
two atoms. Hydrogen atoms are implicitly encoded into molecular graph repre-
sentation using the valency of atoms.

Considering molecular graph representation, similarity between molecules
can be deduced from the similarity of their molecular graphs. Graph kernels can
be understood as symmetric graph similarity measures. Using a semi definite
positive kernel, the value k(G,G′), where G and G′ encode two graphs, corre-
sponds to a scalar product between two vectors ψ(G) and ψ(G′) in an Hilbert
space. Graph kernels thus provide a natural connection between structural and
statistical pattern recognition fields.
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A large family of graph kernels defined in chemoinformatics is based on bag
of patterns. These methods extract a bag of patterns from graphs and deduce
similarity between graphs from similarity between their bags. Most of existing
graph kernels based on bags of patterns are defined on linear patterns [8]. Such
methods are generally limited by the lack of expressiveness of linear patterns
to encode structural information of graphs. In order to encode more structural
information, some methods are defined on non-linear patterns. For example, tree-
pattern kernel [9] is based on an implicit enumeration of tree-patterns, i.e. trees
where a vertex can appear more than once. Another approach, called treelet
kernel [4], computes an explicit enumeration of a limited set of subtrees which
allows to perform an a-posteriori feature weighting step [5]. Others graph kernels
aim to transform a molecular graph into a set of chemical relevant groups [3] or
a set of cycles [7, 6] but these methods do not define a valid kernel or do not
allow to encode relationships between cyclic and acyclic parts of a molecule.

In this paper, we propose to define a new molecular representation encoded
by an hypergraph which aims to encode adjacency relationships between cyclic
and acyclic parts of a molecule. After a presentation of existing methods to
encode molecular cyclic information in Section 2, we define in Section 3 our new
molecular representation. In addition, we propose in Section 4 a method to apply
treelet kernel on this new molecular representation. This method allows us to
use our new molecular representation to predict molecule’s properties. Section 5
shows results obtained by our contribution to a chemoinformatics problem.

2 Encoding Cyclic Information

Most of existing graph kernels based on bags of patterns applied to chemoin-
formatics are based on the molecular graph representation (Section 1). Whereas
this representation allows to encode most of the structural information of a given
molecule, it does not explicitly encode some special combinations of atoms, such
as cycles, which may have a particular influence on molecule’s properties. In or-
der to highlight such particular groups of atoms, Frölich et al. [3] have proposed
to encode a molecule by a set of predefined subgraphs composing the associated
molecule. These predefined subgraphs correspond to chemical relevant groups of
atoms and are generally defined by cycles or connected atom groups. Then, simi-
larity between molecules is deduced by an optimal matching between two sets of
relevant groups. Unfortunately, the kernel defined from this optimal assignment
may lead to a non positive definite kernel [12], hence restricting the application
field of this kernel.

Some other approaches aim to encode a molecule by a subset of its cycles. A
first approach, proposed by Horváth [7], consists in computing the set of simple
cycles of a molecule. Then, similarity between two molecules is defined as a sum
of two kernels encoding respectively the cyclic and acyclic similarities between
both molecules. Similarity between cycles is defined by the number of common
simple cycles and similarity between acyclic parts by a tree-pattern kernel [9]. An
extension of this method only computes the set of relevant cycles [6], as defined
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by Vismara [13], of the molecular graph hence providing a better computational
efficiency. Whereas this approach provides an explicit encoding of cyclic infor-
mation, the cyclic system is encoded by a set of cycles which does not encode
relationships between cycles.

In order to encode additional information, Gaüzère et al. [5] have proposed
to encode the set of relevant cycles and their adjacency relationships within
the relevant cycle graph. The similarity between molecules can then be deduced
by combining a kernel on relevant cycle graphs which encodes cyclic system
similarity and a kernel on molecular graphs which encodes the similarity of
molecules based on atom’s relationships. Despite the fact that this approach leads
to good results on experiments involving cyclic molecules, this representation, as
the one of Horváth [6], separates cyclic and acyclic information by defining two
different molecular representations. Then, global similarity between molecules
is computed using two distinct similarity measures, each of them being applied
on one representation. This separation induces a loss of adjacency relationships
between cyclic and acyclic parts of molecules. In the following, we propose a new
molecular representation which aims to merge cyclic and acyclic information into
one molecular representation and hence encodes adjacency relationships between
cyclic and acyclic parts.

3 Encoding Topological Relationships between Cyclic
and Acyclic Parts

In order to encode adjacency relations between cyclic and acyclic parts of a
molecule, we propose to define a molecular representation which aims to repre-
sent a set of atoms encoding a cycle as a single vertex. For any graph G, a simple
cycle is defined as a subgraph C = (V ′, E′, µ, ν) of G = (V,E, µ, ν) where each
vertex v ∈ V ′ has a degree equal to 2. Each cycle C ⊆ G can be represented as
a vector C ∈ {0, 1}|E| where Ci equals 1 if i is an edge of C and 0 otherwise.
Using this vector representation, the set of vectors encoding cycles of G defines
a vector space [13]. Given this vector space, the union of all bases of minimum
length defines the set of relevant cycles, denoted CR. The length of a base is
defined as the sum of lengths of its cycles.

Adjacency relationships between relevant cycles can be encoded by the rel-
evant cycle graph [5]. This graph is defined as GC = (CR, ECR , µCR , νCR) where
each vertex c ∈ CR corresponds to a relevant cycle. Each vertex c is associated
to the set of vertices V (c) corresponding to the set of atoms included within
c and the set of edges E(c) corresponding to the set of atomic bonds forming
cycle c. By extension, E(CR) denotes the set of atomic bonds belonging to a
relevant cycle of CR. An edge (c1, c2) is in ECR if V (c1) ∩ V (c2) 6= ∅, i.e. if c1
and c2 share at least one vertex of the molecular graph (Figure 1). The labelling
function µCR(c) is defined as a canonical code of the cyclic sequence of vertex
and edge labels defining c. In the same way, the label function νCR(e) of an
edge e = (c, c′) is defined as a canonical code of the path common to c and c′.
Despite the fact that this relevant cycle graph encodes adjacency information
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(a) Molecular graph. (b) Relevant cycle graph.

Fig. 1. A cyclic molecular graph and its relevant cycle graph representation.

of the molecular cyclic system, all adjacency information involving vertices and
edges of a molecular graph which are not included within a cycle is missing. For
example, acyclic parts connected to C1, C3 and C4 and connection between C2

and C4 in Figure 1(a) are not encoded within the associated relevant cycle graph
representation (Figure 1(b)).

Therefore, in order to add this information into our molecular representation,
a first approach consists in adding missing vertices and edges to our relevant cycle
graph. Unfortunately, such an approach can not handle the case where an atom
is connected to two distinct relevant cycles. As shown in Figure 2(a), the atom
labeled O is connected by an unique edge to two distinct cycles in the molecular
graph representation. This adjacency relationship can not be encoded by a simple
graph where an edge connects only two vertices. Therefore, in order to handle
such relationships, we propose to define a new hypergraph representation of the
molecular graph.

A directed hypergraph [1, 2] H = (V,E) is defined as a set of vertices V
and a set E = Ee ∪ Eh encoding the union of a set of edges Ee ⊂ V × V
and a set of hyperedges Eh ⊂ P(V ) × P(V ) where P(V ) denotes the set of all
subsets of V . An ordered hyperedge e = (su, sv) with su = {u1, . . . , ui} and
sv = {v1, . . . , vj} defines an adjacency relation between sets {u1, . . . , ui} and
{v1, . . . , vj}, as illustrated in Figure 2(b). In the following, we assume that if
∃e = (s1, s2) ∈ E then ∃e′ = (s2, s1) ∈ E and e and e′ are considered as a same
unique hyperedge. Such a definition allows us to represent relationships between
an acyclic atom and a set of cycles, each cycle being encoded as a vertex.

A molecular graph G = (V,E, µ, ν) can now be encoded as a relevant cycle
hypergraph HRC(G) = (VRC , ERC). Within relevant cycle graph representation,
the set of vertices CR encodes the set of atoms V (CR) and the set of atomic
bonds E(CR) which belong to a cycle. Considering such a representation, miss-
ing molecular graph information corresponds to atoms and atomic bonds not
included within a cycle. These sets are respectively defined by the complement
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O
(a) Acyclic atom connected to two
cycles by an unique edge

O

(b) Hyperedge e representing origi-
nal edge. e = ({C1, C2}, O).

Fig. 2. Special case where a graph can not encode the representation based on relevant
cycle graph.

of V (CR) and E(CR) in V and E. Therefore, in order to include all atom infor-
mation into our relevant cycle hypergraph, VRC is defined by the union of two
subsets:

1. A first subset CR corresponding to the set of relevant cycles,
2. and a second subset V − V (CR) corresponding to the set of atoms not in-

cluded within a cycle.

Considering set of vertices VRC , we define a function p : V → P(VRC) defined
as p(u) = {u} if u /∈ V (CR) and {c ∈ CR | u ∈ V (c)} if not. This function p
encodes the print of vertex v ∈ V on VRC . In the same way as for vertices, the
set of hyperedges ERC is composed of two subsets:

1. A set of edges Ee
RC composed of:

– edges between relevant cycle vertices, corresponding to the set of edges
ECR ,

– edges e = (p(u), p(v)) such that (u, v) ∈ E − E(CR), |p(u)| = 1 and
|p(v)| = 1. This set of edges corresponds to edges of molecular graph
G connecting two acyclic atoms or connecting a single relevant cycle to
another single relevant cycle (C2 and C4 in Figure 1) or an acyclic part
of G (C3 and N in Figure 1),

2. and a set of hyperedges e = (p(u), p(v)) ∈ Eh
RC such that (u, v) ∈ E−E(CR),

|p(u)| > 1 or |p(v)| > 1. This set of hyperedges corresponds to special cases
where an edge connects at least two distinct relevant cycles to another part
of the molecule (Figure 2). This edge is thus encoded by an hyperedge which
connects the two sets of vertices p(u) and p(v).

This molecular hypergraph representation (Figure 3(c)) encodes all atoms v ∈ V
either by a vertex encoding a cycle or by v itself if v /∈ V (CR). In the same way,
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each atomic bond e ∈ E is encoded within our molecular hypergraph represen-
tation. In addition, we note that set of vertices incident to an hyperedge defines
a clique:

Theorem 1. Let be a graph G = (V,E) and its associated relevant cycle hyper-
graph HRC(G) = (VRC , ERC). If ∃e = (s1, s2) ∈ Eh

RC and c1, c2 ∈ VRC such
that {c1, c2} ⊆ s1 or {c1, c2} ⊆ s2, then (c1, c2) ∈ Ee

RC , i.e. c1 is adjacent to c2.

Proof. If c1 ∈ s1 and c2 ∈ s1, then by construction of Eh
RC , ∃e = (u, v) ∈ E such

that {c1, c2} ⊆ p(u) = s1. By definition of function p and since c1, c2 ∈ CR, it
holds that u ∈ V (c1) ∩ V (c2). By definition of relevant cycle graph, (c1, c2) ∈
ECR ⊂ Ee

RC . The proof for c1 ∈ s2 and c2 ∈ s2 is similar.

Algorithm 1 describes the different steps required to transform molecular
graphG into its associated relevant cycle hypergraphHRC . The first step consists
in computing the relevant cycle graph of G, as described in [5], and initializing
our hypergraph by this graph (Algo. 1, Lines 3 and 4). Then, the set of acyclic
parts is included to the current graph representation (Algo. 1, Lines 6 and 7).
Finally, hyperedges are included into our relevant cycle hypergraph (Algo. 1,
Line 9).

4 Similarity between Relevant Cycle Hypergraphs

The previous section defines a molecular representation which provides a new
way to encode adjacency relations between cyclic and acyclic parts of a molecule.
In order to apply QSAR methods on this molecular representation, we have to
define a similarity measure between relevant cycle hypergraphs. Graph kernels,
such as treelet kernel [4], are only defined on molecular graphs and can not be ap-
plied directly on an hypergraph representation of a molecule. In this section, we
propose to adapt treelet kernel to the comparison of relevant cycle hypergraphs.

Treelet kernel is a graph kernel defined as a kernel between two sets of pat-
terns extracted from both graphs to be compared. The set of extracted patterns,

Algorithm 1 Computing relevant cycle hypergraph from molecular graph.

Require: G = (V,E)
Ensure: HRC = (VRC , ERC), ERC = Ee

RC ∪ Eh
RC

1: GC(CR, ECR) = GC(G) {Relevant cycle graph}
2: {Adding all information included within cycles}
3: VRC = CR
4: Ee

RC = ECR
5: {Adding information not included within a cycle}
6: VRC = VRC ∪ {v /∈ V (CR)}
7: Ee

RC = Ee
RC ∪ {(p(u), p(v)) | (u, v) ∈ E, |p(u)| = 1 AND |p(v)| = 1}

8: {Special case (Figure 2).}
9: Eh

RC = {(p(u), p(v)) | (u, v) ∈ E, |p(u)| > 1 OR |p(v)| > 1}
10: return HRC
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(a) Molecular graph G including cycles. (b) Relevant cycle graph GC .
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(c) Relevant cycle hypergraph HRC(G).
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(d) Reduced relevant cycle graph
GRCR(G).

Fig. 3. Different encodings of a same molecule.

denoted T and called treelets, is composed of all labeled trees with a number of
vertices less than or equal to 6. Based on the explicit enumeration of this set of
substructures, each graph G is associated to a vector f(G) encoding the number
of occurrences of each treelet t in G:

f(G) = (ft(G))t∈T (G) with ft(G) = |(tEG)| (1)

where T (G) denotes the set of treelets extracted from G and E the subgraph
isomorphism relationship. Using this vector representation, similarity between
treelet distributions is computed using a sum of subkernels between treelet’s
number of occurrences:

KT (G,G
′) =

∑

t∈T (G)∩T (G′)

k(ft(G), ft(G
′)) (2)

where k(., .) defines any positive definite kernel between real numbers such as
linear kernel, Gaussian kernel or intersection kernel. Despite the fact that this
method may be applied on many kinds of graphs, it can not be directly applied
to hypergraphs.
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An hypergraph encodes global relationships defined between sets of vertices.
At the opposite, treelet kernel is defined on graphs where relationships are de-
fined locally between elementary vertices. Therefore, in order to apply treelet
kernel to our hypergraph representation, we have to transform global relation-
ships defined within our hypergraph representation to local relationships be-
tween elementary vertices. This transformation is performed by merging all sets
of vertices incident to an hyperedge. This merge operation relies to transform
hyperedges to edges.

An equivalence relation ∼ between vertices c ∈ VRC is defined such that
c1 ∼ c2 if and only if ∃e = (s1, s2) ∈ ERC such that {c1, c2} ⊆ s1 or {c1, c2} ⊆ s2.
Using equivalence relation ∼ previously defined, we can now define the equiv-
alence class c̄ = {c′; c ∼ c′} of a vertex c. Intuitively, two cycles sharing a
common hyperedge belong to the same equivalence class. Then, by applying
a contraction kernel on each class c̄, we define a reduced relevant cycle graph
GRCR = (VRCR, ERCR) with:

– VRCR = {c̄, c ∈ VRC},
– ERCR = {e = (c̄1, c̄2), (c1, c2) ∈ ERC , c1 ≁ c2}. Intuitively, the set of edges
ERCR corresponds to the union of the usual edges Ee

RC of HRC and the
transformation of hyperedges Eh

RC into usual edges.

Labelling function µRCR(c̄), c ∈ VRC , is defined in a canonical way by the se-
quence of atom and edge labels encountered during a depth first traversal of
the spanning tree covering c̄ and having the lowest lexicographic order. Such a
spanning tree exists since any pair of vertices {c, c′} sharing a same hyperedge
is connected (Theorem 1).

Given this second representation of a molecule defined by the reduced relevant
cycle graph, our new similarity measure based on treelet kernel is defined in
two parts. A first step aims to extract the set of treelets T1 = T (VRC , E

e
RC).

(VRC , E
e
RC) corresponds to a sub hypergraph of HRC which does not include any

hyperedge e ∈ Eh
RC . Therefore, the set of treelets T1 encodes information which

does not include special cases depicted in Figure 2. Information corresponding
to these special cases, encoded by hyperedges e ∈ Eh

RC , is included into our
similarity measure by the set of treelets T2 extracted from the reduced relevant
cycle Graph GRCR built from the transformation of hyperedges into edges. In
order to avoid redundancy, we reduce the set of treelets T2 to treelets containing
at least one edge corresponding to an hyperedge eh ∈ Eh

RC . Finally, we define the
set of treelets TCR(G) associated to a molecular graph G by T1 ∪ T2. Similarity
between molecules is then defined as a sum of subkernels comparing number of
occurrences of each treelet t ∈ TCR(G) (Equation 2). This approach allows us
to use a set of patterns which encodes most of the adjacency relations between
cyclic and acyclic parts.

5 Experiments

We have tested our new molecule representation on an experiment defined as a
classification problem. This dataset is taken from the Predictive Toxicity Chal-
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Table 1. Classification accuracy on PTC.

Method MM FM MR FR

1 Treelet Kernel (TK) 208 205 209 212
2 TK on cycles (TC) 211 210 203 232
3 Treelet on relevant cycle hypergraph (TCH) 217 224 207 233
4 Cyclic Pattern Kernel [6] 209 207 202 228
5 Gaussian Edit Distance Kernel [10] 223 212 194 234

6 TK + MKL 218 224 224 250
7 TC + MKL 216 213 212 237
8 TCH + MKL 225 229 215 239

9 Combo TK - TC 219 226 226 251
10 Combo TK - TCH 225 230 224 252

lenge [11] which aims to predict carcinogenicity of chemical compounds applied
to female (F) and male (M) rats (R) and mice (M). This experiment is based
on ten different datasets for each class of animal, each of them being composed
of one train set and one test set. The amount of predicted molecules is equals
to 336 for male mice, 349 for female mice, 344 for male rats and 351 for female
rats. Table 1 shows the amount of correctly classified molecules over the ten
test sets for each method and for each class of animal. The first three lines of
Table 1 shows results obtained by a treelet kernel applied on differents molecular
representations. Line 1 corresponds to treelet kernel applied on molecular graph,
Line 2 to relevant cycle graph and Line 3 corresponds to kernel defined in Sec-
tion 3. First, we can note that our new molecular representation obtains the best
results among the three tested representations. This observation validates our
hypothesis on the importance of relationships between cyclic and acyclic parts.
This results can be compared with two other graph kernels. Line 4 shows results
obtained by the kernel defined by Horváth based on the set of relevant cycles
common to two molecules. As we can see, omitting relevant cycles relationships
and adjacency relationships between cyclic and acyclic parts decreases the accu-
racy of this kernel. Line 5 corresponds to a graph kernel based on the notion of
edit distance [10] between molecular graphs. This kernel obtains better results
than treelet kernel applied on relevant cycle hypergraph for two classes over
four. The second part of Table 1 shows results obtained by treelet kernels after a
feature weighting step as defined in [5]. After this weighting step, treelet kernel
applied on our new representation (Table 1, Line 8) obtains best results on two
classes of animals and obtains second best results on the two other classes when
only considering Lines 6 to 8. Note that our sparse feature weighting step reduces
the number of treelets extracted from relevant cycle hypergraphs from 5700 to
25 relevant treelets. In comparison, treelet weighting step applied on molecular
graph reduces the set of treelets from 3500 to 150 treelets. Note that this optimal
weighting step selects both non linear treelets and treelets having 6 nodes which
validates the relevance of using such substructures. Finally, treelet kernel has
been combined with relevant cycle graph (Table 1, Line 9) and our new repre-
sentation (Table 1, Line 10). This combination of two molecular representations
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obtains the best results on three classes over four of animals when compared to
combination of relevant cycle graph and molecular graph representations, hence
showing the relevance of our molecular representation.

6 Conclusion

In this article, we have defined a new molecular representation based on hyper-
graphs which is able to encode adjacency relationships between cyclic and acyclic
parts of a molecule. In addition, we have proposed a method to apply treelet
kernel on our hypergraph representation. Our experiments show that the adja-
cency information encoded by this molecular representation can lead to better
results than methods applied on classic molecular graphs. One outlook of this
work consists in including the relative positioning of bonds connecting acyclic
parts of a molecule on a same cycle.
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4. Benoit Gaüzère, Luc Brun, and Didier Villemin. Two New Graphs Kernels in
Chemoinformatics. Pattern Recognition Letters, 33(15):2038–2047, 2012.
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