Some results on a χ-divergence, an extended Fisher information and generalized Cramér-Rao inequalities - Archive ouverte HAL
Chapitre D'ouvrage Année : 2013

Some results on a χ-divergence, an extended Fisher information and generalized Cramér-Rao inequalities

Résumé

We propose a modified χβ-divergence, give some of its properties, and show that this leads to the definition of a generalized Fisher information. We give generalized Cramér-Rao inequalities, involving this Fisher information, an extension of the Fisher information matrix, and arbitrary norms and power of the estimation error. In the case of a location parameter, we obtain new characterizations of the generalized q-Gaussians, for instance as the distribution with a given moment that minimizes the generalized Fisher information. Finally we indicate how the generalized Fisher information can lead to new uncertainty relations.
Fichier principal
Vignette du fichier
gsi2013_bercher_arxiv.pdf (141.86 Ko) Télécharger le fichier
llncs.cls (41.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Format Autre
Loading...

Dates et versions

hal-00826445 , version 1 (27-05-2013)

Identifiants

Citer

Jean-François Bercher. Some results on a χ-divergence, an extended Fisher information and generalized Cramér-Rao inequalities. F. Nielsen and F. Barbaresco. Geometric Science of Information, Springer, pp.487-494, 2013, First International Conference, GSI 2013, Paris, France, August 28-30, 2013. Proceedings, 978-3-642-40019-3. ⟨10.1007/978-3-642-40020-9_53⟩. ⟨hal-00826445⟩
245 Consultations
507 Téléchargements

Altmetric

Partager

More