Some results on a χ-divergence, an extended Fisher information and generalized Cramér-Rao inequalities
Résumé
We propose a modified χβ-divergence, give some of its properties, and show that this leads to the definition of a generalized Fisher information. We give generalized Cramér-Rao inequalities, involving this Fisher information, an extension of the Fisher information matrix, and arbitrary norms and power of the estimation error. In the case of a location parameter, we obtain new characterizations of the generalized q-Gaussians, for instance as the distribution with a given moment that minimizes the generalized Fisher information. Finally we indicate how the generalized Fisher information can lead to new uncertainty relations.
Fichier principal
gsi2013_bercher_arxiv.pdf (141.86 Ko)
Télécharger le fichier
llncs.cls (41.77 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Format | Autre |
---|
Loading...