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Abstract. We propose a modified χβ-divergence, give some of its prop-
erties, and show that this leads to the definition of a generalized Fisher
information. We give generalized Cramér-Rao inequalities, involving this
Fisher information, an extension of the Fisher information matrix, and
arbitrary norms and power of the estimation error. In the case of a lo-
cation parameter, we obtain new characterizations of the generalized
q-Gaussians, for instance as the distribution with a given moment that
minimizes the generalized Fisher information. Finally we indicate how
the generalized Fisher information can lead to new uncertainty relations.

1 Introduction

In this communication, we begin with a variation on a χβ-divergence, which in-
troduces an averaging with respect to an arbitrary distribution. We give some
properties of this divergence, including monotonicity and a data processing in-
equality. Then, in the context of parameter estimation, we show that this induces
both an extension of the standard Fisher information, that reduces to the stan-
dard Fisher information in a particular case, and leads to an extension of the
Cramér-Rao inequality for the estimation of a parameter. We show how these
results can be expressed in the multidimensional case, with general norms. We
also show how the classical notion of Fisher information matrix can be extended
in this context, but unfortunately in a non-explicit form.

In the case of a translation parameter and using the concept of escort distribu-
tions, the general Cramér-Rao inequality leads to an inequality for distributions
which is saturated by generalized q-Gaussian distributions. These generalized
q-Gaussians are important in several areas of physics and mathematics. They
are known to maximize the q-entropies subject to a moment constraint. The
Cramér-Rao inequality shows that the generalized q-Gaussians also minimize
the generalized Fisher information among distributions with a fixed moment. In
information theory, the de Bruijn identity links the Fisher information and the
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derivative of the entropy. We show that this identity can be extended to general-
ized versions of entropy and Fisher information. More precisely, the generalized
Fisher information naturally pops up in the expression of the derivative of the
entropy. Finally, we give an extended version of the Weyl-Heisenberg uncertainty
relation as a consequence of the generalized multidimensional Cramér-Rao in-
equality. Due to the lack of space, we will omit or only sketch the proofs, but
will reference to the literature whenever possible.

2 Context

Let f1(x; θ), f2(x; θ) and g(x; θ) be three probability distributions, with x ∈ X ⊆
R

k and θ a parameter of these densities, θ ∈ R
n. We will deal with a measure of

a divergence between two probability distributions, say f1(x) and f2(x), and we
will also be interested in the estimation of a vector h(θ) ∈ R

m, with T (x) the
corresponding estimator.

If ‖.‖ is an arbitrary norm on R
m, its dual norm ‖.‖∗ is defined by

‖Y ‖∗ = sup
‖X‖≤1

X.Y,

where X.Y is the standard inner product. In particular, if ‖.‖ is an Lp norm,
then ‖.‖∗ is an Lq norm, with p−1 + q−1 = 1. A very basic idea in this work
is that it may be useful to vary the probability density function with respect
to which are computed the expectations. Typically, in the context of estima-
tion, if the error is T (x) − h(θ), then the bias can be evaluated as Bf (h(θ)) =
´

X
(T (x)− h(θ)) f(x; θ)dx = Ef [T (x)− h(θ)] while a general moment of an ar-

bitrary norm of the error can be computed with respect to another probability

distribution, say g(x; θ), as in Eg

[

‖T (x)− h(θ)‖
β
]

=
´

X
‖T (x)− h(θ)‖

β
g(x; θ)dx.

The two distributions f(x; θ) and g(x, θ) can be chosen very arbitrary. However,
one can also build g(x; θ) as a transformation of f(x; θ) that highlights, or on the
contrary scores out, some characteristics of f(x; θ). For instance, g(x; θ) can be a
weighted version of f(x; θ), i.e. g(x; θ) = h(x; θ)f(x; θ), or a quantized version as
g(x; θ) = [f(x; θ)] , where [.] denotes the integer part. Another important special
case is when g(x; θ) is defined as the escort distribution of order q of f(x; θ),
where q plays the role of a tuning parameter: f(x; θ) and g(x; θ) are a pair of
escort distributions, which are defined as follows:

f(x; θ) =
g(x; θ)q
´

g(x; θ)qdx
and g(x; θ) =

f(x; θ)q̄
´

f(x; θ)q̄dx
, (1)

where q is a positive parameter, q̄ = 1/q, and provided of course that involved
integrals are finite. These escort distributions are an essential ingredient in the
nonextensive thermostatistics context. Actually, the escort distributions have
been introduced as an operational tool in the context of multifractals, c.f. [8],
[4], with interesting connections with the standard thermodynamics. Discussion
of their geometric properties can be found in [1,14]. Escort distributions also
prove useful in source coding, as noticed by [5].



Finally, we will see that in our results, the generalized q-Gaussians play an im-
portant role. These generalized q-Gaussians appear in statistical physics, where
they are the maximum entropy distributions of the nonextensive thermostatis-
tics [16]. The generalized q-Gaussian distributions, which reduce to the standard
Gaussian in a particular case, define a versatile family that can describe problems
with compact support as well as problems with heavy tailed distributions. They
are also analytical solutions of actual physical problems, see e.g. [13], [15] and are
sometimes known as Barenblatt-Pattle functions, following their identification
by Barenblatt and Pattle. We shall also mention that the Generalized q-Gaussian
distributions appear in other fields, namely as the solution of non-linear diffu-
sion equations, or as the distributions that saturate some sharp inequalities in
functional analysis [10], [9].

3 The modified χ
β-divergence

The results presented in this section build on a beautiful, but unfortunately
overlooked, work by Vajda [17]. In this work, Vajda presented and characterized
an extension of the Fisher information popping up as a limit case of a χα diver-
gence (for consistency with our notations in previous papers, we will use here
the superscript β instead of α as in Vajda’s paper). Here, we simply make a step
beyond on this route.

The χβ-divergence between two probability distributions f1 and f2 is defined
by

χβ(f1, f2) = Ef2

[

∣

∣

∣

∣

1−
f1
f2

∣

∣

∣

∣

β
]

, (2)

with β > 1. In the case β = 2, and a parametric density fθ(x) = f(x; θ), it is
known that the Fisher information of fθ is nothing but

I2,1[fθ; θ] = lim
|t|→0

χ2(fθ+t, fθ)/t
2.

In [17], Vajda extended this to any β > 1, and defined a generalized Fisher

information as Iβ [fθ; θ] = lim|t|→0 χ
β(fθ+t, fθ)/ |t|

β
= Efθ

[

∣

∣

∣

ḟθ
fθ

∣

∣

∣

β
]

, assuming

that fθ is differentiable wrt to θ. Let us consider again a χβ-divergence as in (2),
but modified in order to involve a third distribution g(x; θ) :

χβ
g (f1, f2) = Eg

[

∣

∣

∣

∣

f2 − f1
g

∣

∣

∣

∣

β
]

.

Obviously, this formula includes the standard divergence. For θ ∈ R
n, let us de-

note by ∂ifθ the partial derivative with respect to the ith component, and let ti be
a vector that increments this component. Then, we have lim|ti|→0 χ

β(fθ+ti , fθ)/ |t|
β
=

Egθ

[

∣

∣

∣

∂ifθ
gθ

∣

∣

∣

β
]

. Doing this for all components and summing the resulting vector,



we finally arrive at the following definition

Iβ [fθ|gθ; θ] =
∑

i

Egθ

[

∣

∣

∣

∣

∂ifθ
gθ

∣

∣

∣

∣

β
]

= Egθ

[

∥

∥

∥

∥

∇fθ
gθ

∥

∥

∥

∥

β

β

]

, (3)

where ∇fθ denotes the gradient of fθ and ‖.‖β is the β-norm. A version involving
a general norm instead of the β-norm is given in [7]. Vajda’s generalized Fisher
information [17] corresponds to the scalar case and gθ = fθ. We will see that
this generalized Fisher information, which includes previous definitions as par-
ticular cases, is involved in a generalized Cramér-Rao inequality for parameter
estimation.

The modified χβ-divergence enjoys some important properties:

Property 1. The modified χβ-divergence has information monotonicity. This me-
ans that coarse-graining the data leads to a loss of information. If f̃1,f̃2 and g̃
denote the probability densities after coarse-graining, then we have χβ

g (f1, f2) ≥

χβ
g̃ (f̃1, f̃2). A proof of this result can be obtained following the lines in [2]. A

consequence of this result is a data processing inequality: if Y = φ(X), and if

fφ
1 ,f

φ
2 and gφ denotes the densities after this transformation, then

χβ
g (f1, f2) ≥ χβ

gφ(f
φ
1 , f

φ
2 ),

with equality if the transformation Y = φ(X) is invertible. It must be men-
tioned here that this also yields an important data processing inequality for the
generalized Fisher information: Iβ [fθ|gθ; θ] ≥ Iβ [f

φ
θ |g

φ
θ ; θ].

Property 2. Matrix Fisher data processing inequality. Consider the quadratic
case, i.e. β = 2, θ ∈ R

n and t an increment on θ. Assuming that the partial
derivatives of f wrt the components of θ exist and are absolutely integrable, a
Taylor expansion about θ gives fθ+t = fθ +

∑

i ti∂ifθ +
1
2

∑

i

∑

j titj∂
2
ijfθ + . . .

Hence, to within the second order terms,

χ2
g(fθ, fθ+t) = Eg





(

∑

i

ti
∂ifθ
g

)2


 = Eg





∑

i

∑

j

titj
∂ifθ∂jfθ

g2



 = tT I2,g[θ] t,

where I2,g[θ] = Eg

[

ψgψ
T
g

]

= Eg

[

∇fθ
gθ

∇fT
θ

gθ

]

is a Fisher information matrix com-

puted wrt to gθ and ψg is a generalized score function. By information mono-

tocity, χ2
g(fθ, fθ+t) ≥ χ2

gφ(f
φ
θ , f

φ
θ+t), and therefore we get that

I2,g[θ] ≥ I2,gφ [θ]

(the difference of the two matrices is positive semi definite) which is a data
processing inequality for Fisher information matrices.



Property 3. If T (X) is a statistic, then with α−1 + β−1 = 1, α ≥ 1, we have

|Ef2 [T ]− Ef1 [T ]| ≤ Eg [|T |
α
]
1

α χβ
g (f1, f2)

1

β . (4)

It suffices here to consider
∣

∣

∣
Eg

[

T
(

f2−f1
g

)]
∣

∣

∣
= |Ef2 [T ]− Ef1 [T ]| and then apply

the Hölder inequality to the left hand side.

4 The generalized Cramér-Rao inequality

The Property 3 above can be used to derive a generalized Cramér-Rao inequality
involving the generalized Fisher information (3). Let us consider the scalar case.
Set f2 = fθ+t, f1 = fθ, and denote η = Ef [T (X)− h(θ)]. Then divide both side
of (4) by t, substitute T (X) by T (X)−h(θ), and take the limit t→ 0. Assuming
that we can exchange the order of integrations and derivations, and using the
definition(3) in the scalar case, we obtain

Eg [|T (X)− h(θ)|
α
]
1

α Iβ [fθ|gθ; θ]
1

β ≥

∣

∣

∣

∣

d

dθ
η

∣

∣

∣

∣

(5)

which reduces to the standard Cramér-Rao inequality in the case α = β = 2 and
g = f . A multidimensional version involving arbitrary norms can be obtained
by the following steps: (a) evaluate the divergence of the bias, ∇θ. Bf (θ), (b)
introduce an averaging with respect to g in the resulting integral (c) apply a
version of the Hölder inequality for arbitrary norms. The proof can be found
in [7] for the direct estimation of the parameter θ. For the estimation of any
function h(θ), we have a generalized Cramér-Rao inequality that enables to lower
bound a moment of an arbitrary norm of the estimation error, this moment being
computed wrt any distribution g.

Proposition 1. [Generalized Cramér-Rao inequality, partially in [7]] Under some
regularity conditions, then for any estimator T (X) of h(θ),

Eg [‖T (X)− h(θ)‖α]
1

α Eg

[

∥

∥

∥

∥

H
∇θf(X ; θ)

g(X ; θ)

∥

∥

∥

∥

β

∗

]
1

β

≥
∣

∣m+∇h(θ). Bf (h(θ))
∣

∣ (6)

where α and β are Hölder conjugate of each other, i.e. α−1 + β−1 = 1, α ≥ 1,
with Hij = ∂θj/∂h(θ)i, and where the second factor in the left side is actually

Iβ [fθ|gθ;h(θ)]
1

β .

Many consequences can be obtained from this general result. For instance, if one
chooses h(θ) = θ and an unbiased estimator T (X) = θ̂(X), then the inequality
above reduces to

Eg

[∥

∥

∥
θ̂(X)− θ

∥

∥

∥

α] 1

α

Eg

[

∥

∥

∥

∥

∇θf(X ; θ)

g(X ; θ)

∥

∥

∥

∥

β

∗

]
1

β

≥ n. (7)



Taking f = g, we obtain an extension of the standard Cramér-Rao inequality,
featuring a general norm and an arbitrary power; in the scalar case, we obtain
the Barankin-Vajda result [3,17], see also [19].

When h(θ) is scalar valued, we have the following variation on the theme
(proof omitted), which involves a Fisher information matrix, but unfortunately
in a non-explicit form: for any matrix A, we have

Eg [|T (X)− h(θ)|α]
1

α ≥
|∇θh(θ)

tA∇θh(θ)|

Eg [|∇h(θ)tAψg|β ]
1

β

, (8)

where ψg = ∇θf(x;θ)
g(x;θ) is a score function. We define as Fisher information ma-

trix the matrix A which maximizes the right hand side. In the quadratic case
α = β = 2, and using the inequality (xtx)2 ≤ (xtBx)

(

xtB−1x
)

valid for any
positive definite matrix B, one can check that the maximum is precisely at-
tained for A−1 = I2,g[θ] = Eg[ψgψ

t
g], that is the Fisher information matrix we

obtained above in Property 2, in the quadratic case. The inequality reduces to
the inequality Eg

[

|T (X)− h(θ)|2
]

≥ ∇θh(θ)
t A∇θh(θ) which is known in the

standard case.
In the quadratic case, it is also possible to obtain an analog of the well known

result that the covariance of the estimation error is greater than the inverse of
the Fisher information matrix (in the Löwner sense). The proof follows the lines
in [11, pp. 296-297] and we get that

Eg

[

(T (X)− h(θ)) (T (X)− h(θ))
t
]

≥ η̇tI2,g[θ]
−1η̇ (9)

with η̇ the matrix defined by η̇ = ∇θEf [θ̂
t], and with equality iff η̇I2,g[θ]

−1ψg(X) =
λ (T (x)− h(θ)), with λ > 0.

Let us now consider the case of a location parameter θ ∈ R
n for a translation

family f(x; θ) = f(x − θ). In such a case, we have ∇θf(x; θ) = −∇xf(x − θ).
Let us also assume, without loss of generality, that f(x) has zero mean. In these

conditions, the estimator T (X) = θ̂(X) = X is unbiased. Finally, taking θ = 0,
the relation (7) leads to

Proposition 2. [Functional Cramér-Rao inequality] For any pair of probability
density functions, and under some technical conditions,

(
ˆ

X

‖x‖
α
g(x) dx

)
1

α

(

ˆ

X

∥

∥

∥

∥

∇xf(x)

g(x)

∥

∥

∥

∥

β

∗

g(x) dx

)
1

β

≥ n, (10)

with equality if ∇xf(x) = −K g(x)‖x‖α−1∇x‖x‖.

At this point, we can obtain a interesting new characterization of the general-
ized q-Gaussian distributions, which involves the generalized Fisher information.
Indeed, if we take f(x) and g(x) as a pair of escort distributions, with q̄ = 1/q,

f(x) =
g(x)q
´

g(x)qdx
and g(x) =

f(x)q̄
´

f(x)q̄dx
, (11)



Proposition 3. [q-Cramér-Rao inequality [7]] For any probability density g, if
mα[g] = E [‖x‖α] is the moment of order α of the norm of x, and if

Iβ,q [g] = (q/Mq [g])
β
Eg

[

g(x)β(q−1) ‖∇x ln g(x)‖
β
∗

]

(12)

is the Fisher information of order (β, q), with Mq[g] =
´

g(x)qdx, then

mα[g]
1

α Iβ,q [g]
1

β ≥ n (13)

with equality if and only if g(x) is a generalized Gaussian of the form

g(x) ∝ (1− γ(q − 1)‖x‖α)
1

q−1

+ (14)

Let us simply note here that g(x) is also called stretched q-Gaussian, become a
stretched Gaussian for q = 1, and a standard Gaussian when in addition α = 2.
The inequality (13) shows that the generalized q-Gaussians minimize the gen-
eralized Fisher information among all distributions with a given moment. Let
us also note and mention that the inequality (13) is similar, but different, to an
inequality given by Lutwak et al [12] which is also saturated by the generalized
Gaussians (14). Finally, for a location parameter, the matrix inequality (9) re-

duces to Eg [XX
t] ≥ (I2,g)

−1 = Eg

[

ψgψ
t
g

]−1
, with equality iff f is a generalized

q-Gaussian with covariance matrix (I2,g)
−1.

The generalized Fisher information (12) also pops up in an extension of the
de Bruijn identity. This identity is usually shown for the solutions of a heat
equation. An extension is obtained by considering the solutions of a doubly-
nonlinear equation [18]

∂

∂t
f = ∆βf

m = div
(

|∇fm|β−2 ∇fm
)

. (15)

Proposition 4. [Extended de Bruijn identity [6]] For q = m+ 1− α
β
, Mq[f ] =

´

f q and Sq[f ] =
1

1−q
(Mq[f ]− 1) the Tsallis entropy, we have

d

dt
Sq[f ] =

(

m

q

)β−1

Mq[f ]
β Iβ,q[f ]. (16)

Of course, the standard de Bruijn identity is recovered in the particular case
α = β = 2, and q = m = 1.

We close this paper by indicating that it is possible to exhibit new uncertainty
relations, beginning with the generalized Cramér-Rao inequality (13). These in-
equalities involve moments computed with respect to escort distributions like
(11). We denote by Eq[.] an expectation computed wrt an escort of order q. If ψ
is a wave function, x and ξ two Fourier conjugated variables, then



Proposition 5. [Uncertainty relations ] For k = β/ (β(q − 1) + 1) , λ = n(q −
1) + 1, and γ ≥ 2, θ ≥ 2,

M k
2

[|ψ|2]
1

2

M kq
2

[|ψ|2]
E k

2

[‖x‖
γ
2 ]

1

γ E
[

‖ξ‖
θ
2

]
1

θ

≥
n

2πkq
. (17)

For γ = θ = 2, the lower bound is attained if and only is |ψ| is a generalized
Gaussian. For γ = θ = 2, q = 1, this inequality yields a multidimensional
version of the Weyl-Heisenberg uncertainty principle. For 3

2 −
1
β
> q, we also get

the inequality

(

E k
2

[‖x‖
γ
2 ]
)

1

γ
(

E
[

‖ξ‖
θ
2

])

1
θλ

>
1

M k
2

[|ψ|2]
1

kλ

(

E k
2

[‖x‖
γ
2 ]
)

1

γ
(

E
[

‖ξ‖
θ
2

])

1
θλ

≥ K.
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