Simultaneous local exact controllability of 1D bilinear Schrödinger equations - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré C, Analyse non linéaire Année : 2014

Simultaneous local exact controllability of 1D bilinear Schrödinger equations

Résumé

We consider N independent quantum particles, in an infinite square potential well coupled to an external laser field. These particles are modelled by a system of linear Schrödinger equations on a bounded interval. This is a bilinear control system in which the state is the N-tuple of wave functions. The control is the real amplitude of the laser field. For N=1, Beauchard and Laurent proved local exact controllability around the ground state in arbitrary time. We prove, under an extra generic assumption, that their result does not hold in small time if N is greater or equal than 2. Still, for N=2, we prove using Coron's return method that local controllability holds either in arbitrary time up to a global phase or exactly up to a global delay. We also prove that for N greater or equal than 3, local controllability does not hold in small time even up to a global phase. Finally, for N=3, we prove that local controllability holds up to a global phase and a global delay.
Fichier principal
Vignette du fichier
simultaneous_control_revised_version.pdf (524.95 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00826197 , version 1 (12-11-2014)

Identifiants

Citer

Morgan Morancey. Simultaneous local exact controllability of 1D bilinear Schrödinger equations. Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2014, pp.501-529. ⟨10.1016/j.anihpc.2013.05.001⟩. ⟨hal-00826197⟩
244 Consultations
77 Téléchargements

Altmetric

Partager

More