Solutions of the multiconfiguration Dirac-Fock equations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Solutions of the multiconfiguration Dirac-Fock equations

Résumé

The multiconfiguration Dirac-Fock (MCDF) model uses a linear combination of Slater determinants to approximate the electronic $N$-body wave function of a relativistic molecular system, resulting in a coupled system of nonlinear eigenvalue equations, the MCDF equations. In this paper, we prove the existence of solutions of these equations in the weakly relativistic regime. First, using a new variational principle as well as results of Lewin on the multiconfiguration nonrelativistic model, and Esteban and Séré on the single-configuration relativistic model, we prove the existence of critical points for the associated energy functional, under the constraint that the occupation numbers are not too small. Then, this constraint can be removed in the weakly relativistic regime, and we obtain non-constrained critical points, i.e. solutions of the multiconfiguration Dirac-Fock equations.
Fichier principal
Vignette du fichier
multidf2.pdf (253.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00823185 , version 1 (16-05-2013)
hal-00823185 , version 2 (15-06-2013)
hal-00823185 , version 3 (22-07-2014)

Identifiants

Citer

Antoine Levitt. Solutions of the multiconfiguration Dirac-Fock equations. 2013. ⟨hal-00823185v2⟩
183 Consultations
686 Téléchargements

Altmetric

Partager

More