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SOLUTIONS OF THE MULTICONFIGURATION DIRAC-FOCK

EQUATIONS

ANTOINE LEVITT

Abstract. The multiconfiguration Dirac-Fock (MCDF) model uses a linear combi-
nation of Slater determinants to approximate the electronic N -body wave function of
a relativistic molecular system, resulting in a coupled system of nonlinear eigenvalue
equations, the MCDF equations. In this paper, we prove the existence of solutions of
these equations in the weakly relativistic regime. First, using a new variational principle
as well as results of Lewin on the multiconfiguration nonrelativistic model, and Este-
ban and Séré on the single-configuration relativistic model, we prove the existence of
critical points for the associated energy functional, under the constraint that the occu-
pation numbers are not too small. Then, this constraint can be removed in the weakly
relativistic regime, and we obtain non-constrained critical points, i.e. solutions of the
multiconfiguration Dirac-Fock equations.
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1. Introduction

Consider an atom or molecule with N electrons. Nonrelativistic quantum mechanics
dictates that, under the Born-Oppenheimer approximation, the electronic rest energy is
given by the lowest fermionic eigenvalue of the N -body Hamiltonian. The complexity
of this problem grows exponentially with N , and approximations are used to keep the
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problem tractable. Hartree-Fock theory uses the variational ansatz that the N -body
wavefunction is a single Slater determinant. The optimization of the resulting energy
over the orbitals gives rise to a nonlinear eigenvalue problem, which is solved iteratively.

It is well-known that this method overestimates the true ground state energy by a
quantity known as the correlation energy, whose size can be significant in many cases
of chemical interest [SO89]. This can be remedied by considering several Slater deter-
minants, a technique known as multiconfiguration Hartree-Fock (MCHF) theory. This
brings the model closer to the full N -body problem, and, in the limit of an infinite number
of determinants, one recovers the true ground state energy.

Another source of errors is that the Hamiltonian used is non-relativistic. Indeed, in
large atoms, the core electrons reach relativistic speeds (in atomic units, of the order of
Z, compared with the speed of light c ≈ 137). This causes a length contraction which
affects the screening by the core electrons of the attractive potential of the nucleus. This
has important consequences for the valence electrons and the chemistry of elements.
Neglecting these effects leads to incorrect conclusions, and for instance fails to account
for the difference in color between silver and gold [PD79].

For a fully relativistic treatment of the electrons, one should use quantum electrody-
namics (QED). But this very precise theory is also extremely complex for all but the sim-
plest systems. Therefore, physicists and chemists use approximate Hamiltonians to avoid
working in the full Fock space of QED. The multiconfiguration Dirac-Fock (MCDF) model
is obtained by using the Dirac operator in the multiconfiguration Hartree-Fock model. It
incorporates relativistic effects into the multiconfiguration Hartree-Fock model, and has
been used successfully in a number of applications [DFJ07, Gra07].

Although these models, and more complicated ones, are used routinely by physicists,
many problems still remain in their mathematical analysis. The first rigorous proof of
existence of ground states of the Hartree-Fock equations was given by Lieb and Simon
[LS77] and later generalized to excited states by Lions [Lio87]. The multiconfiguration
equations were studied by Le Bris [LB94], who proved existence in the particular case of
doubly excited states. Friesecke later proved the existence of minimizers for an arbitrary
number of determinants [Fri03a], and Lewin generalized his proof to excited states, in
the spirit of the method of Lions [Lew04]. For relativistic models, Esteban and Séré
proved existence of single-configuration solutions to the Dirac-Fock equations [ES99],
and studied their non-relativistic limit [ES01]. To our knowledge, the present work is the
first mathematical study of a relativistic multiconfiguration model.

The main mathematical difficulty of the multiconfiguration equations, apart from the
increased algebraic complexity, is that one cannot simultaneously diagonalize the Fock
operator and the matrix of Lagrange multipliers. Lewin rewrote the Euler-Lagrange
equations in a vector formalism and used the same arguments as in the Hartree-Fock
case [LS77, Lio87] to prove the existence of solutions.

The Dirac-Fock equations are considerably more difficult to handle than the Hartree-
Fock equations. The main difficulty is that the Dirac operator is not bounded from below.
This fact, which causes important problems already in the linear theory, complicates the
search for solutions of the equations, because every critical point has an infinite Morse
index. One can therefore no longer minimize the energy functional, or even use standard
critical point theory. Esteban and Séré [ES99], later generalized by Buffoni, Esteban and
Séré [BES06], used the concavity of the energy with respect to the negative directions of
the free Dirac operator to reduce the problem to one whose critical points have a finite
Morse index.
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The MCDF model combines the two mathematical problems and adds the difficulty
that, for the theory to make sense, the speed of light has to be above a constant that
depends on a lower bound on the occupation numbers. Note that this difficulty with
small occupation numbers is also encountered in numerical computations [ID93], and
theoretical studies of the nonrelativistic evolution problem [BCMT10].

In this paper, we prove the existence of solutions, when the speed of light is large
enough (weakly relativistic regime). We now describe our formalism.

2. Definitions

In atomic units, the Dirac operator is given by

Dc = −ic(α · ∇) + c2β. (1)

In standard representation, α and β are 4 × 4 matrices given by

αk =

(
0 σk
σk 0

)
, βk =

(
I2 0
0 −I2

)
,

where the σk are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The speed of light c has the physical value c ≈ 137.
The operator Dc is self-adjoint on L2(R3,C4) with domain H1(R3,C4) and form domain

H1/2(R3,C4). It verifies the relativistic identity D2
c = c4 − c2∆. More precisely, it admits

the spectral decomposition

Dc = P+
√
c4 − c2∆P+ − P−√

c4 − c2∆P−, (2)

where the projectors P± are given in the Fourier domain by

P±(ξ) =
1
2

(
1C4 + ±cα · ξ + c2β√

c4 + c2ξ2

)
. (3)

We denote by

E = H1/2(R3,C4) (4)

the form-domain of Dc, and E± = P±E the two positive and negative spectral subspaces.
We will use three scalar products in this paper:

〈ψ, φ〉L2 =
∫

R3
ψ∗φ,

〈ψ, φ〉E =
〈
ψ,

√
1 − ∆φ

〉

L2
,

〈ψ, φ〉c =

〈
ψ,

√

1 − ∆
c2
φ

〉

L2

,

with associated norms ‖ψ‖L2 ,‖ψ‖E ,‖ψ‖c. The purpose of this last norm is to simplify
several estimates. It is related to the change of variables dc(ψ)(x) = c−3/2ψ(x

c
) used in

[ES01] in the sense that

〈Ψ,Φ〉c =
〈
dc(Ψ), dc(Φ)

〉
E
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A molecule made of M nuclei with positions zi and charges Zi creates an attractive
potential

V (x) = −
M∑

i=1

Zi
|x− zi|

.

More generally, we consider a charge distribution µ ≥ 0 with µ(R3) = Z, which creates a
potential

V = −µ ⋆ 1
|x| . (5)

In the sequel, we shall always assume that N < Z + 1, which is the only case where we
can prove existence of solutions to our equations. This assumption is made in existence
proofs for the Hartree-Fock model to ensure that an electron cannot “escape to infinity”,
because it will then feel the effective attractive potential (N−1)−Z

|x| [Lio87, LS77]. Math-
ematically, it is used to prove that second order information on Palais-Smale sequences
implies that the Lagrange multipliers are not in the essential spectrum.

The Hamiltonian Dc + V has a spectral gap around zero as long as

Z <
2

π/2 + 2/π
c.

This is related to the following Hardy-type inequality (see [Tix98, Her77, Kat66]) :

∣∣〈ψ, V ψ〉
∣∣ ≤ Z

2
(π/2 + 2/π)

〈
ψ,

√
1 − ∆ψ

〉
(6)

for all ψ ∈ E±, a refinement of the Kato inequality

∣∣〈ψ, V ψ〉∣∣ ≤ Zπ

2

〈
ψ,

√
−∆ψ

〉
(7)

for all ψ ∈ E, which we will use extensively in this paper. We also recall the standard
Hardy inequality:

‖V φ‖L2 ≤ 2Z‖∇φ‖L2 (8)

for all φ ∈ H1.
The N -body relativistic Hamiltonian is given by

HN =
N∑

i=1

(Dc,xi
+ V (xi)) +

∑

1≤i<j≤N

1∣∣∣xi − xj
∣∣∣
.

This Hamiltonian acts on
∧N L2

a(R
3,C4), the fermionic N -body space. Its interpreta-

tion is problematic : in particular, its essential spectrum is all of R, and it is not even
known whether eigenvectors exists [Der12].

For a given K ≥ N , the multiconfiguration ansatz is

ψ =
∑

1≤i1<···<iN ≤K
ai1,...,iN

∣∣∣ψi1 . . . ψiN
〉
, (9)

where
∣∣∣ψi1 . . . ψiN

〉
(X1, . . . , XN) =

1√
N !

det(ψik(Xl))k,l
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with Xl = (xl, sl), xl ∈ R3, sl ∈ {1, 2, 3, 4} are Slater determinants, and a ∈ S,Ψ ∈ Σ,
where

S = {a ∈ C(K
N),‖a‖2 =

∑

1≤i1<···<iN ≤K

∣∣∣ai1,...,iN

∣∣∣
2

= 1}, (10)

Σ = {Ψ ∈ EK ,Gram Ψ = 1}, (11)

= {Ψ ∈ EK ,
〈
ψi, ψj

〉

L2
= δij}.

Our convention here and in the rest of this paper is to use lower case greek letters for
orbitals ψ ∈ E, and upper case greek letters for vectors of orbitals Ψ ∈ EK . We extend
in a straightforward way the scalar products 〈·, ·〉L2 , 〈·, ·〉E and 〈·, ·〉c to the space EK :

〈Ψ,Φ〉∗ =
K∑

k=1

〈ψk, φk〉∗ .

Following [Lew04], we define

αi1...iN =





0 if #(i1 . . . iN) < N,
ǫ(σ)√
N !
aiσ(1),...,iσ(N)

otherwise,

where, for all i1, . . . , iN with #(i1 . . . iN) = N , σ is the unique permutation such that
iσ(1) < · · · < iσ(N).

With this definition,

ψ(X1, . . . , XN) =
∑

1≤i1≤N, ..., 1≤iN ≤N,
αi1,...,iNψi1(X1) . . . ψiN (XN).

Then, substituting into the relativistic energy
〈
ψ,HNψ

〉
, we obtain [Lew04]

E(a,Ψ) =
〈

Ψ,
(
DcΓa + V Γa +Wa,Ψ

)
Ψ
〉

(L2(R3,C4))K
, (12)

with the K ×K Hermitian matrices

(Γa)i,j = N
∑

k2...kN

α∗
i,k2...kN

αj,k2...kN
,

(Wa,Ψ)i,j =
N(N − 1)

2

∑

k3...kN

∑

k,l

α∗
i,k,k3...kN

αj,l,k3...kN

(
ψ∗
kψl ⋆

1
|x|

)
.

The eigenvalues γi of Γa, for a ∈ S, satisfy 0 ≤ γi ≤ 1, and are called occupation
numbers. They measure the total weight of the corresponding orbital in the N -body
wave function.

For reference, we define similarly the multiconfiguration Hartree-Fock energy

EHF(a,Φ) =

〈
Φ,

(
−1

2
∆ Γa + V Γa +Wa,Φ

)
Φ

〉

(L2(R3,C2))K

, (13)

on S × {Φ ∈ (H1(R3,C2))K ,Gram Φ = 1}.
One can define a group action on S×Σ that leaves E invariant : for any unitary matrix

U ∈ U(K),

U · (a,Ψ) = (a′, UΨ), (14)

where a′ is defined via the equivalent variables α′ :

α′
i1,...,iN

=
∑

j1,...,jN

(U∗)i1,j1 . . . (U
∗)iN ,jN

αj1,...,jN
,
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where U∗ is the adjoint of U . This group action is the multiconfiguration analogue of the
well-known unitary invariance of the Hartree-Fock equations.

The MCDF equations, obtained as the Euler-Lagrange equations of E under the con-
straints a ∈ S and Ψ ∈ Σ, are, for Ψ and a respectively,

Ha,ΨΨ = ΛΨ, (15)

HΨa = Ea, (16)

where

Ha,Ψ = DcΓa + V Γa + 2Wa,Ψ (17)

is the Fock operator, and

(HΨ)I,J =
〈
ψi1 . . . ψiN

∣∣∣HN
∣∣∣ψj1 . . . ψjN

〉
(18)

are the coefficients of the
(
K
N

)
×
(
K
N

)
matrix of the N -body Hamiltonian HN in the basis

of the Slater determinants. Our goal in this paper is to prove the existence of solutions
to (15) and (16) by finding critical points of E on S × Σ.

3. Strategy of proof

There are several major mathematical difficulties in the study of the MCDF model.
Unlike in the single-configuration case, one can use the group action (14) to diagonalize Γ
or Λ, but not both at the same time. Worse, because Wa,Ψ does not in general commute
with Γ, one can only prove that the Fock operator Ha,Ψ has a spectral gap around 0
for values of c that depend on a lower bound on the eigenvalues of Γ. This gap is used
centrally to prove the convergence of Palais-Smale sequences. Therefore, one needs a
lower bound on Γ.

To obtain this lower bound, we consider the (formal) nonrelativistic limit of the mul-
ticonfiguration Dirac-Fock model, the multiconfiguration Hartree-Fock model. Let

IK = inf
{
EHF(a,Φ), a ∈ S,Φ ∈ (H1(R3,C2))K ,Gram Φ = 1

}
(19)

be the ground-state energy of the nonrelativistic multiconfiguration method of rank K ≥
N . IN is the Hartree-Fock energy. IK is non-increasing, and converges to I∞, the
Schrödinger energy. The behavior of IK is not precisely known, but a result by Friesecke
[Fri03b] shows that IK+2 < IK . Therefore, IK < IK−1 at least for one every two K.
When this strict inequality holds, every minimizer satisfies Γ > 0 in the sense of Hermitian
matrices. Because of the compactness of these minimizers (implicitly proved in [Lew04]),
there is a uniform bound γ0 > 0 such that for every minimizer, Γa ≥ γ0 in the sense of
Hermitian matrices.

Because there is no well-defined “ground state energy” in the relativistic case, we cannot
use information of this type directly. Instead, we fix γ < γ0, and use a min-max principle
to look for solutions in the domain

Sγ = {a ∈ S,Γa ≥ γ}.
By arguments inspired by [ES99, ES01, Lew04], we prove that the min-max principle

yields solutions of Ha,ΨΨ = ΛΨ, for c large enough. But these are only solutions of the
equation HΨa = Ea if the constraint is not saturated, i.e. if Γa > γ.

To prove that this is the case, we take the nonrelativistic (c → ∞) limit of the critical
points found in the first step. By arguments similar to the ones in [ES01], we prove that
these critical points converge, up to a subsequence, to a minimizer of the Hartree-Fock
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functional. Therefore, for c large, the constraint Γa ≥ γ is not saturated, and we obtain
solutions of the MCDF equations.

In the rest of this paper, we will always assume that IK < IK−1, so that Γ ≥ γ0 on the
nonrelativistic minimizers. γ > 0 is a fixed constant, taken to be less than γ0. We also
assume N < Z + 1.

First, for all Ψ ∈ (L2)K such that Gram Ψ > 0, we define the normalization

g(Ψ) = (Gram Ψ)−1/2Ψ. (20)

This normalization was used in [ES01] to prove another variational principle for the
relativistic “ground state”, which we shall not use here.

Define

Σ+ = Σ ∩ (E+)K ,

=
{

Ψ ∈ (E+)K ,Gram Ψ = 1
}
.

We will find solutions to our equations as a result of the following variational principle:

Ic,γ = inf
a∈Sγ ,Ψ+∈Σ+

sup
Ψ−∈(E−)K

E(a, g(Ψ+ + Ψ−)). (21)

4. Results

Our first result is the well-posedness of our variational principle:

Theorem 1. There are constants K1, K2 > 0 such that, for c large enough, there is a
triplet a∗ ∈ Sγ,Ψ+

∗ ∈ Σ+,Ψ−
∗ ∈ (E−)K solution of the variational principle (21):

E(a∗, g(Ψ+
∗ + Ψ−

∗ )) = max
Ψ−∈(E−)K

E(a∗, g(Ψ+
∗ + Ψ−)),

= min
a∈Sγ ,Ψ+∈Σ+

max
Ψ−∈(E−)K

E(a, g(Ψ+ + Ψ−)).

Denoting Ψ∗ = g(Ψ+
∗ + Ψ−

∗ ), Ψ∗ is a solution of the equation Ha∗,Ψ∗
Ψ∗ = Λ∗Ψ∗ in Σ.

The Hermitian matrix of Lagrange multipliers Λ∗ satisfies the estimates

(c2 −K1)Γ∗ ≤ Λ∗ ≤ (c2 −K2)Γ∗. (22)

Furthermore, if Γ∗ > γ, then a∗ is a solution of HΨ∗
a∗ = Ic,γa∗.

We now study the nonrelativistic limit of these solutions, thanks to the control (22) on
the Lagrange multipliers:

Theorem 2. Let cn → ∞, and let (an,Ψn) be the solution of (21) obtained by Theorem 1
with c = cn. Then, up to a subsequence,

an → a,

Ψn →
(

Φ
0

)

in H1 norm, where (a,Φ) ∈ Sγ × (H1(R3,C2))K is a minimizer of

IK = inf
{
EHF(a,Φ), a ∈ S,Φ ∈ (H1(R3,C2))K ,Gram Φ = 1

}
. (23)

The min-max level Ic,γ satisfies the asymptotics

Ic,γ = Nc2 + IK + oc→∞(1).

Since any minimizer of (23) must satisfy Γ ≥ γ0 > γ, we immediately obtain
7



Corollary 1. For c large enough, there are solutions of the multiconfiguration Dirac-Fock
equations (15)-(16).

The remainder of this paper is dedicated to the proof of Theorems 1 and 2.
For Theorem 1, we first begin with Lemma 1, a convergence result for Palais-Smale

sequences of the functional E with Lagrange multipliers bounded away from the essential
spectrum of DcΓ. Then, at (a,Ψ+) ∈ Sγ × Σ+ fixed, we study the variational principle

sup
Ψ−∈(E−)K

E(a, g(Ψ+ + Ψ−))

in Lemma 2, under the condition that E(a,Ψ+) < Nc2. We prove in Lemma 6 an
upper bound on the asymptotic behavior of Ic,γ which will enable us to restrict to this
domain, and finally, we prove in Lemma 7 that Palais-Smale sequences with Morse-type
information for the functional

Fa(Ψ+) = sup
Ψ−∈(E−)K

E(a, g(Ψ+ + Ψ−))

satisfy the hypotheses of Lemma 1, and therefore are precompact. Their limit up to
extraction is a solution of our min-max problem (21).

To prove Theorem 2, we use the estimates (22) on the Lagrange multipliers to prove
the compactness of the sequence (an,Ψn), and the asymptotic behavior from Lemma 7
to show that the limit is a minimizer.

5. Proof of Theorem 1

Our first result is the convergence of Palais-Smale sequences with bounds on the
Lagrange multipliers. The proof proceeds as in Lemma 2.1 of [ES99] for the single-
configuration case.

5.1. Palais-Smale sequences for the energy functional.

Lemma 1. For c large enough, if (an,Ψn) ∈ Sγ × Σ satisfies:

(i) Han,ΨnΨn − ΛnΨn = ∆n → 0 in H−1/2 with Λn Hermitian matrices,
(ii) lim inf Λn > 0,

(iii) lim sup c2Γn − Λn > 0,

then, up to extraction, (an,Ψn) → (a,Ψ) in Sγ ×Σ, where (a,Ψ) is a solution of Ha,ΨΨ =
ΛΨ.

Proof.

Step 1 : convergence in H
1/2
loc

. Let Ψ ∈ EK , and Ψ± = P±Ψ. Using the inequality (6),
〈
Ψ+, Han,ΨnΨ+

〉
≥
〈
Ψ+,Γn

√
c4 − c2∆Ψ+

〉
+
〈
Ψ+,ΓnVΨ+

〉
,

≥
〈
Ψ+,Γn

√
c4 − c2∆Ψ+

〉
− C1

∥∥∥Ψ+
∥∥∥

2

E
,

≥ (γc2 − C1c)
∥∥∥Ψ+

∥∥∥
2

c
,

where C1 > 0. Similarly,
〈
Ψ−, Han,ΨnΨ−

〉
≤ −(γc2 − C2c)

∥∥∥Ψ−
∥∥∥

2

c
,

with C2 > 0.
Now, Ψ+ and Ψ− are orthogonal for the c scalar product, so

‖Ψ‖2
c =

∥∥∥Ψ+
∥∥∥

2

c
+
∥∥∥Ψ−

∥∥∥
2

c
=
∥∥∥Ψ+ − Ψ−

∥∥∥
2

c
.
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Denoting by ‖·‖∗
c the dual norm of ‖·‖c,

∥∥∥Han,ΨnΨ
∥∥∥

∗

c
≥ 1

‖Ψ‖c

〈
Ψ+ − Ψ−, Han,ΨnΨ

〉
,

=
1

‖Ψ‖c

(〈
Ψ+, Han,ΨnΨ+

〉
−
〈
Ψ−, Han,ΨnΨ−

〉)
,

≥ 1
‖Ψ‖c

(
c2γ − cmax(C1, C2)

)(∥∥∥Ψ+
∥∥∥

2

c
+
∥∥∥Ψ−

∥∥∥
2

c

)
,

≥ h0‖Ψ‖c , (24)

with h0 > 0 when c is large enough.
We then have

lim sup
n→∞

‖Ψn‖c ≤ lim sup
n→∞

1
h0

∥∥∥Han,ΨnΨn

∥∥∥
∗

c
,

≤ lim sup
n→∞

1
h0

(
‖∆n‖∗

c +‖ΛnΨn‖L2

)
.

Therefore, Ψn is bounded in c norm, i.e. in H1/2. Extracting a subsequence, again
denoted by (an,Ψn), we may assume that an → a, Γn → Γ, Λn → Λ, and Ψn → Ψ weakly
in H1/2, strongly in Lploc, 2 ≤ p < 3.

Since Ha,Ψn is self-adjoint from EK to (EK)∗ and bounded away from zero, it is invert-
ible. Define Ψ′

n by
Ha,ΨnΨ′

n = ΛΨn.

Ψ′
n is bounded in H1/2, and therefore precompact in Lploc, 2 ≤ p < 3.
We partially invert

Ψ′
n = (DcΓ + V Γ)−1(ΛΨn − 2Wa,ΨnΨ′

n).

From Young’s inequality, Wa,ΨnΨ′
n is precompact in Lploc, 1 ≤ p < 3, so ΛΨn−2Wa,ΨnΨ′

n

is precompact in L2
loc. Therefore, Ψ′

n is precompact in H1/2
loc . We extract again and impose

Ψ′
n → Ψ in H

1/2
loc . But since

Ha,Ψn(Ψn − Ψ′
n) → 0

in H−1/2, from (24), Ψn → Ψ in H
1/2
loc .

Step 2 : convergence in H1/2. We now have convergence of Ψn to Ψ in H
1/2
loc . Ψ

satisfies

Ha,ΨΨ = ΛΨ.

We now look at the convergence in H1/2 by obtaining an approximate Euler-Lagrange
equation satisfied by the error εn = Ψn − Ψ. We have the Euler-Lagrange equations
satisfied by Ψn and Ψ:

(DcΓ + V Γ + 2Wa,Ψn)Ψn − ΛΨn = ∆′
n,

(DcΓ + V Γ + 2Wa,Ψ)Ψ − ΛΨ = 0.

with ∆′
n → 0 in H−1/2. Subtracting and using the fact that εn → 0 weakly in H1/2 and

strongly in H
1/2
loc , we get

Lnεn → 0 (25)

in H−1/2, where

Ln = DcΓ + 2Wa,Ψn − Λ (26)
9



is the Hamiltonian “at infinity” seen by εn.
We now use a concavity argument to extract information on the positive and negative

components ε±
n = P±εn of εn separately.

Define the quadratic functional Qn on (E−)K by

Qn(δ−) =
〈
εn + δ−, Ln(εn + δ−)

〉
.

The second order terms are
〈
δ−, Lnδ

−
〉

=
〈
δ−, (DcΓ + 2Wa,Ψn − Λ)δ−

〉
,

≤ −(c2γ − C2c)
∥∥∥δ−

∥∥∥
2

c
− 〈δn,Λδn〉 . (27)

Since Λ > 0, we obtain that Qn is strictly concave for n large.
The concavity allows us to write

〈
ε+
n , Lnε

+
n

〉
= Qn(−ε−

n )

≤ Qn(0) − ∇Qn(0)[ε−
n ],

= 〈εn, Lnεn〉 − 2
〈
ε−
n , Lnεn

〉
,

≤ 3‖εn‖E‖Lnεn‖E∗ .

Hence

lim sup
n→∞

〈
ε+
n , Lnε

+
n

〉
≤ 0.

But
〈
ε+
n , Lnε

+
n

〉
≥
〈
ε+
n , (c

2Γ − Λ)ε+
n

〉

Since Λ < c2Γ, this implies convergence to 0 of ε+
n in L2 and then in H1/2. But, by (25),

this implies that Lnε− → 0 in H−1/2 and therefore that
〈
ε−
n , Lnε

−
n

〉
→ 0. By (27), we

deduce ε−
n → 0 in H1/2, which proves that Ψn → Ψ strongly in Σ. �

5.2. The reduced functional. For (a,Ψ+) ∈ Sγ × Σ+, define the functional

Fa,Ψ+(Ψ−) = E(a, g(Ψ+ + Ψ−))

on (E−)K . Our goal in this section is to prove

Lemma 2. There is a constant M > 0 such that, for c large enough, for all (a,Ψ+) ∈
Sγ × Σ+ with E(a,Ψ+) ≤ Nc2, the functional Fa,Ψ+ has a unique maximizer h(a,Ψ+) in
(E−)K. The map h is smooth, and satisfies

∥∥∥h(a,Ψ+)
∥∥∥
c

≤ M−
c
. (28)

We first begin with estimates on Ψ+, for which we use the property E(a,Ψ+) ≤ Nc2.

Lemma 3 (A priori bounds on Ψ+). There are M+,MD > 0 such that, for c large, if
(a,Ψ+) ∈ Sγ × Σ+ verifies E(Ψ+) ≤ Nc2, then

∥∥∥Ψ+
∥∥∥
E

≤ M+, (29)

Dc|Span({ψ+
i }) ≤ c2 +MD. (30)

10



Proof.

E(Ψ+) =
〈
Ψ+, Ha,Ψ+Ψ+

〉
,

≥
〈
Ψ+, DcΓΨ+

〉
− C

〈
Ψ+,

√
−∆Ψ+

〉
. (31)

Here and in the rest of this paper, C denotes various positive constants independent of
c. Since E(a,Ψ+) < Nc2 and

〈
Ψ+,ΓΨ+

〉
= N ,

〈
Ψ+,

(√
c4 − c2∆ − c2 − C

γ

√
−∆

)
ΓΨ+

〉
≤ 0.

In the Fourier domain, we can write for all 0 < α < c2 by the Cauchy-Schwarz inequality
√
c4 + c2|ξ|2 ≥ c2

(
1 − α

c2

)
+ c|ξ|

√

1 −
(

1 − α

c2

)2

,

= c2 − α +|ξ|
√

2α − α2

c2
.

Therefore, we obtain
〈

Ψ+,


−α +




√

α − α2

c2
− C

γ




√

−∆


ΓΨ+

〉
≤ 0,

so
〈
Ψ+,

√
−∆ΓΨ+

〉
≤ Nα
√
α − α2

c2 − C
γ

.

Taking α >
√
C/γ and c large,

〈
Ψ+,

√
−∆ΓΨ+

〉
is bounded independently of c. Since

Γ ≥ γ, so is
∥∥∥Ψ+

∥∥∥
E

, and (29) is proved.
Now, using (31) again along with our new estimate (29), we have

〈
Ψ+, DcΓΨ+

〉
≤ Nc2 + CM2

+,
〈
Ψ+, (Dc − c2)ΓΨ+

〉
≤ CM2

+,

trA ≤ CM2
+,

where A is the K ×K Hermitian matrix

Aij = Γij
〈
ψ+
i , (Dc − c2)ψ+

j

〉
.

A is positive semi-definite and its trace is bounded by CM2
+, so A ≤ CM2

+. Since
Γ ≥ γ, we conclude that

(〈
ψ+
i , (Dc − c2)ψ+

j

〉)

1≤i,j≤K
≤ CM2

+

γ
,

and therefore (30) is proved. �

We now restrict our search for a maximizer to a neighborhood of zero.

Lemma 4 (A priori bounds on Ψ−). There is a constant M− > 0 such that, for c large
enough, for all (a,Ψ+) ∈ Sγ × Σ+ with E(a,Ψ+) ≤ Nc2,

sup
Ψ−∈(E−)K

Fa,Ψ+(Ψ−)

cannot be achieved outside a neighborhood of zero of size M−

c
in the c norm.

11



Proof. Let Ψ− ∈ (E−)K , G = Gram(Ψ+ + Ψ−), Ψ = G−1/2(Ψ+ + Ψ−). Using (30),

〈Ψ, DcΓΨ〉 = (c2 +MD) 〈Ψ,ΓΨ〉 +
〈
Ψ, (Dc − c2 −MD)ΓΨ

〉
,

≤ N(c2 +MD) +
〈
G−1/2Ψ−, (Dc − c2 −MD)ΓG−1/2Ψ−

〉
,

≤ N(c2 +MD) − γc2
∥∥∥G−1/2Ψ−

∥∥∥
2

c
.

On the other hand,
〈
Ψ, (V Γ + 2Wa,Ψ)Ψ

〉
≤ C

∥∥∥G−1/2Ψ+
∥∥∥

2

E
+ C

∥∥∥G−1/2Ψ−
∥∥∥

2

E
,

≤ CM+ + Cc
∥∥∥G−1/2Ψ−

∥∥∥
2

c
.

All together,

Fa,Ψ+(Ψ−) ≤ Nc2 +NMD + CM+ −
(
γc2 − Cc

)∥∥∥G−1/2Ψ−
∥∥∥

2

c
.

But we also have

Fa,Ψ+(0) = E(Ψ+)

≥
〈
Ψ+, (DcΓ + V Γ)Ψ+

〉
,

≥ Nc2 − C
∥∥∥Ψ+

∥∥∥
2

E
,

≥ Nc2 − CM2
+.

Therefore,

Fa,Ψ+(Ψ−) ≤ Fa,Ψ+(0) +NMD + 2CM2
+ −

(
γc2 − Cc

)∥∥∥G−1/2Ψ−
∥∥∥

2

c
.

So, in order to have Fa,Ψ+(Ψ−) ≤ Fa,Ψ+(0), Ψ− must satisfy
∥∥∥G−1/2Ψ−

∥∥∥
2

c
≤ O(1/c2),

∥∥∥Ψ−
∥∥∥

2

c
≤ O(1/c2)(1 +‖Ψ−‖2

L2),

≤ O(1/c2)(1 +‖Ψ−‖2
c),

and therefore
∥∥∥Ψ−

∥∥∥
2

c
= O(1/c2).

�

Restricting now to this domain, we prove that Fa,Ψ+ is strictly concave:

Lemma 5. For c large, for all (a,Ψ+) ∈ Sγ × Σ such that E(a,Ψ+) ≤ Nc2, for all Ψ−

in the region
∥∥∥Ψ−

∥∥∥
c

≤ M−

c
, for all Φ− ∈ (E−)K,

Fa,Ψ+(Ψ−)′′[Φ−,Φ−] ≤ −γc2

2

∥∥∥Φ−
∥∥∥

2

c
.

Proof. We have g(Ψ+ + Ψ−) = (1 + 1
c
B(Ψ−))(Ψ+ + Ψ−), where B is a matrix-valued

function. In the region
∥∥∥Ψ−

∥∥∥
c

≤ M−

c
, B and its derivatives are bounded independently
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of c. Let Ψ− be such that
∥∥∥Ψ−

∥∥∥
c

≤ M−

c
, and define G = Gram(Ψ+ + Ψ−). Then, for all

Φ− ∈ (E−)K ,

1
2
F ′′
a,Ψ+(Ψ−)[Φ−,Φ−] = ∂Ψ E(Ψ)

[
1
c
B′(Ψ−)[Φ−]Φ− +

1
2c
B′′(Ψ−)[Φ−,Φ−](Ψ+ + Ψ−)

]

+
1
2
∂2

Ψ E(Ψ)

[
G−1/2Φ− +

1
c
B′(Ψ−)[Φ−](Ψ+ + Ψ−)

]2

,

=
1
2
∂2

Ψ E(Ψ)[Φ−,Φ−] +O
(
c
∥∥∥Φ−

∥∥∥
2

c

)
.

But we also have
1
2
∂2

Ψ E(Ψ)[Φ−,Φ−] = −
〈
Φ−,

√
c4 − c2∆ΓΦ−

〉
+O

(∥∥∥Φ−
∥∥∥

2

E

)
,

≤
(
−γc2 +O(c)

)∥∥∥Φ−
∥∥∥

2

c
.

and so the result follows for c large.
�

Lemma 2 is now proved as a direct consequence of Lemmas 3, 4 and 5.

5.3. Asymptotic behavior of Ic,γ. In order to restrict to the domain E(a,Ψ+) ≤ Nc2,
we prove that solutions of our min-max principle have to be in this domain for c large:

Lemma 6.

Ic,γ ≤ Nc2 + IK + oc→∞(1).

In particular, for c large enough,

Ic,γ = inf
a∈Sγ ,Ψ+∈Σ+

sup
Ψ−∈(E−)K

E(a, g(Ψ+ + Ψ−)),

= inf
a∈Sγ ,Ψ+∈Σ+,
E(a,Ψ+)<Nc2

sup
Ψ−∈(E−)K

E(a, g(Ψ+ + Ψ−)). (32)

Proof. Let (a∗,Φ∗) ∈ Sγ × H1(R3,C2) be a minimizer of the nonrelativistic multiconfig-

uration Hartree-Fock functional, and Ψ∗ =

(
Φ∗
0

)
. Set

Ψ+
∗ = g(P+Ψ∗).

Ψ+
∗ belongs to Σ+, and converges in H1 to Ψ∗ as c → ∞. From the concavity inequality

√
1 +|ξ|2 ≤ 1 +

1
2

|ξ|2

in the Fourier domain, we get

E(a∗,Ψ+
∗ ) =

〈
Ψ+

∗ , (
√
c4 − c2∆Γ + V Γ +Wa,Ψ+

∗

)Ψ+
∗
〉
,

≤
〈

Ψ+
∗ ,

(
c2Γ − 1

2
∆Γ + V Γ +Wa,Ψ+

∗

)
Ψ+

∗

〉
,

= Nc2 + EHF(a∗,Ψ∗) + oc→∞(1),

= Nc2 + IK + oc→∞(1).
13



From Lemmas 2 and 5, we now have

Ic,γ ≤ Fa∗,Ψ
+
∗

(h(Ψ+
∗ )),

≤ E(a∗,Ψ+
∗ ) + F ′

a∗,Ψ
+
∗

(0)[h(Ψ+
∗ )] − γc2

2

∥∥∥h(Ψ+
∗ )
∥∥∥

2

c
,

≤ E(a∗,Ψ+
∗ ) + C

∥∥∥h(Ψ+
∗ )
∥∥∥
L2
,

≤ E(a∗,Ψ+
∗ ) +O

(
1
c

)
,

so that

Ic,γ ≤ Nc2 + IK + oc→∞(1).

Since IK < 0 and, for all a ∈ Sγ ,Ψ+ ∈ Σ,

sup
Ψ−∈(E−)K

E(a, g(Ψ+ + Ψ−)) ≥ E(a,Ψ+),

(32) holds and the lemma is proved. �

5.4. Borwein-Preiss sequences for the reduced functional. Let

S ′
γ = {a ∈ Sγ , inf

Ψ+∈Σ+
E(a,Ψ+) < Nc2}.

For a ∈ S ′
γ fixed, we minimize the functional

Fa(Ψ+) = E(a, g(Ψ+ + h(a,Ψ+)))

on the manifold

Σ+
a = {Ψ+ ∈ Σ+, E(a,Ψ+) < Nc2}.

For all Ψ+ ∈ Σ+
a ,Ψ ∈ Σ, define the tangent spaces

TΨ+Σ+
a = {Φ+ ∈ (E+)K ,

〈
φ+
i , ψ

+
j

〉
= 0 for all i, j ∈ {1, . . . , K}},

TΨΣ = {Φ ∈ EK ,
〈
φi, ψj

〉
= 0 for all i, j ∈ {1, . . . , K}}.

Lemma 7. There are constants K1 > 0, K2 > 0 such that, for all c large enough, a ∈ S ′
γ,

if Ψ+
n ∈ Σ+

a is a Borwein-Preiss sequence for Fa on Σ+
a , i.e. satisfies

(i) Fa(Ψ+
n ) → infΨ+∈Σ+

a
Fa(Ψ+),

(ii) F ′
a(Ψ

+
n )
∣∣∣
T

Ψ+
n

Σ+
a

→ 0 in H−1/2,

(iii) There is a sequence βn → 0 such that the quadratic form Φ+ → F ′′
a(Ψ

+
n )[Φ+,Φ+] +

βn
∥∥∥Φ+

∥∥∥
2

E
is non-negative on TΨ+

n
Σ+
a ,

then, denoting Ψn = g(Ψ+
n + h(a,Ψ+

n )),
(1) There is a sequence of Hermitian matrices Λn such that Ha,ΨnΨn−ΛnΨn = ∆n →

0 in H−1/2,
(2) lim sup Λn ≤ (c2 −K2)Γ,
(3) lim inf Λn ≥ (c2 −K1)Γ.

Proof. Define

k(Ψ+,Ψ−) = g(Ψ+ + Ψ−)

on Σ+
a × (E−)K . From hypothesis (ii) and the definition of h, (Ψ+

n , h(Ψ+
n )) is a Palais-

Smale sequence for E(a, k(·)). But k′(Ψ+
n , h(Ψ+

n )) is an isomorphism from TΨ+
n
Σ+
a ×(E−)K
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to TΨnΣ, so that Ψn = k(Ψ+
n , h(Ψ+

n )) is a Palais-Smale sequence for E on Σ, and (1) is
proved.

Upper bound on the Lagrange multipliers. Let us now prove the upper bound (2). First,
note that, since a ∈ S ′

γ and Ψ+
n ∈ Σ+

a , the a priori estimates of Lemmas 2 and 3 hold.
Let δn ∈ TΨ+

n
. Let Ψ−

n = h(Ψ+
n ), and Gn = Gram(Ψ+

n + Ψ−
n ) = 1 + Gram Ψ−

n . For ε
small enough, define the curve on Σ+

a

Ψ+
n (ε) = G1/2

n



(G−1/2
n Ψ+

n )1 + εδn√
1 + ε2

, (G−1/2
n Ψ+

n )2, . . . , (G−1/2
n Ψ+

n )K



 .

Define the associated

Ψ−
n (ε) = h(Ψ+

n (ε)),

Gn(ε) = Gram(Ψ+
n (ε) + Ψ−

n (ε)) = 1 + Gram Ψ−
n (ε),

Ψn(ε) = G−1/2
n (ε)(Ψ+

n (ε) + Ψ−
n (ε)),

and the infinitesimal increments

Φ+
n =

d
dε

Ψ+
n (ε)

∣∣∣∣∣
ε=0

,

= G1/2
n (δn, 0, . . . , 0),

Φ−
n = h′(Ψn)[Φ+

n ].

Step 1. Our first step is a control on Φ−
n .

Define

G(Ψ+,Ψ−) = Fa,Ψ+(Ψ−),

= E(a, g(Ψ+ + Ψ−)).

Now, for all Ψ+ ∈ Σ+
a , Φ− ∈ (E−)K ,

∂Ψ−G(Ψ+, h(Ψ+))[Φ−] = 0.

Differentiating with respect to Ψ+, we get, for all Φ+ ∈ TΨ+Σ,

∂2
Ψ−Ψ+G(Ψ+, h(Ψ+))[Φ−,Φ+] + ∂2

Ψ−Ψ−G(Ψ+, h(Ψ+))[Φ−, h′(Ψ+)[Φ+]] = 0,

and therefore, from the definition of G,

−F ′′
a,Ψ+(Ψ−)[Φ−, h′(Ψ+)[Φ+]] = ∂2

Ψ−Ψ+G(Ψ+, h(Ψ+))[Φ−,Φ+].

We now apply this to Ψ+ = Ψ+
n , Ψ− = Ψ−

n , Φ+ = Φ+
n and Φ− = Φ−

n , and get

−F ′′
a,Ψ+

n
(Ψ−

n )[Φ−
n ,Φ

−
n ] = ∂2

Ψ−Ψ−G(Ψ+
n ,Ψ

−
n )[Φ−

n ,Φ
−
n ]. (33)

Using estimates similar to but slightly more complicated than those in [ES99], we estimate

∂2
Ψ−Ψ−G(Ψ+

n ,Ψ
−
n )[Φ−

n ,Φ
−
n ] ≤ O

(∥∥∥∇Φ+
n

∥∥∥
L2

∥∥∥Φ−
n

∥∥∥
L2

)
,

where the notation O is for both c and n large.
But, by Lemma 5,

F ′′
a,Ψ+

n
(Ψ−

n )[Φ−
n ,Φ

−
n ] ≤ −γc2

2

∥∥∥Φ−
n

∥∥∥
2

c
,
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from which we conclude, from (33), that

γc2

2

∥∥∥Φ−
n

∥∥∥
2

c
≤ O

(∥∥∥∇Φ+
n

∥∥∥
L2

∥∥∥Φ−
n

∥∥∥
L2

)
,

and therefore that
∥∥∥Φ−

n

∥∥∥
c

≤ 1
c2
O
(∥∥∥∇Φ+

n

∥∥∥
L2

)
. (34)

Step 2. We now write the Hessian of E along the curve Ψ+
n (ε).

First, we compute

Φn =
d
dε

Ψn(ε)

∣∣∣∣∣
ε=0

,

=
d
dε
G−1/2
n (ε)

(
Ψ+
n (ε) + Ψ−

n (ε)
)∣∣∣∣∣
ε=0

,

= (δn, 0, . . . , 0) + R+
n +R−

n , (35)

where, using (34), we can estimate the remainder terms R±
n ∈ E± as

∥∥∥R+
n

∥∥∥
c

= O

(
1
c4

‖∇δn‖L2

)
,

∥∥∥R−
n

∥∥∥
c

= O

(
1
c2

‖∇δn‖L2

)
.

Using these estimates and the same arguments as in [Lew04], we can now compute

E ′′(Ψn)[Φn,Φn] ≤ Γ11



c2‖δn‖2
c +

〈
δn, (V + ρn ⋆

1
|x|)δn

〉



+O

(
1
c2

‖∇δn‖2
L2 +

1
c2

‖∇δn‖L2‖δn‖L2

)
,

with
∫
ρn = N − 1.

Now, let U be an arbitrary vector subspace of H1(R3,C4) consisting of functions of the
form




f(|x|)
0
0
0




with dimension at least K + 1. Let U+
λ be the positive projection of the dilation of U of

a factor λ, i.e.

Uλ = P+

{
ψ
(
x

λ

)
, ψ ∈ U

}
.

U+
λ is also of dimension K + 1 for c large enough, so we can find a function δn ∈ U+

λ

normalized in L2 which is orthogonal to Ψ+
n . For such a function,

E ′′(Ψn)[Φn,Φn] ≤

c2 − η

Z −N − 1
λ

+O

(
1
λ2

+
1
λc2

)
Γ11,
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with η > 0, where the O notation is understood for n, c and λ large. So, taking λ large
enough independently of n and c, we get

E ′′(Ψn)[Φn,Φn] ≤
(
c2 − κ

)
Γ11, (36)

with κ > 0 independent of n and c.
Step 3. Using (35) again, we estimate

〈Φn,ΛnΦn〉 = (Λn)11 +O

(
1
c4

Λn

)
.

But we can obtain a very crude control on Λn thanks to the estimates in Lemmas 3 and
4 :

(Λn)ij =
〈
Ψi
n, Ha,ΨnΨj

n

〉
+ on→∞(1),

= c2Γij +O(‖Ψn‖2
E) + on→∞(1),

and therefore

Λn = c2Γ +O(1). (37)

Step 4. We now use the second order condition to conclude.
We have

〈
Ψn(ε),ΛnΨn(ε)

〉
= tr Λn, so, defining the Lagrangian Ln(Ψ) = E(Ψ) −

〈Ψ,ΛnΨ〉, we get from the second order information (iii) that

βn
∥∥∥Ψ+

n

∥∥∥
2

E
≤ L′′

n(Ψn) [Φn,Φn] +O




∥∥∥∥∥

d2

d2ε
Ψn(ε)

∣∣∣
ε=0

∥∥∥∥∥
H1/2

∥∥∥F ′(Ψ+
n )
∥∥∥
H−1/2



 .

Therefore, from the Palais-Smale condition (ii)

E ′′(Ψn)[Φn,Φn] ≥ 〈Φn,ΛnΦn〉 + on→∞(1).

Finally, from (36) and (37), we obtain, for c and n large enough,

(Λn)11 ≤ (c2 −K2)Γ11,

with K2 > 0.
Using the group action (14), we could apply the same procedure to (ã, Ψ̃+

n ) = U ·(a,Ψ+
n )

for any U ∈ U(K), and obtain

(UΛnU
∗)11 ≤ (c2 −K2)(UΓU∗)11,

which proves our result

Λn ≤ (c2 −K2)Γ.

Lower bound on the Lagrange multipliers. Let An = (c2 −K2)Γ − Λn. We know that, for
n large enough, An ≥ 0, and, from (37),

trAn = Nc2 −NK2 − tr Λn,

= O(1).

So An = O(1), and therefore Λn ≥ (c2 − K2)Γ − O(1). Because Γ ≥ γ > 0, the result
follows for c large. �
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5.5. Proof of Theorem 1. For any a ∈ S ′
γ , we can apply the Borwein-Preiss variational

principle [BP87] to the functional Fa on Σ+
a , and obtain a sequence Ψ+

n that satisfies the
hypotheses of Lemma 7. The associated sequence Ψn satisfies the hypotheses of Lemma 1
so, the sequence (a,Ψ+

n ) converges up to extraction to a limit Ψ+
a , solution of the min-max

principle

Fa(Ψ+
a ) = min

Ψ+∈Σ+
max

Ψ−∈(E−)K
E(a, g(Ψ+ + Ψ−)).

We now take a minimizing sequence an for the continuous functional Fa(Ψ+
a ) on S ′

γ. The
sequence (an,Ψ+

an
) again verifies the hypotheses of Lemma 1, and therefore converges to

(a∗,Ψ+
∗ ). The triplet (a∗,Ψ+

∗ , h(Ψ+
∗ )) is now a solution of the variational principle (21),

and Theorem 1 is proved.

6. Proof of Theorem 2

6.1. Nonrelativistic limit. We begin with a lemma that is the multiconfiguration ana-
logue of Theorem 3 of [ES01].

Lemma 8. Let cn → ∞, (an,Ψn) ∈ Sγ × Σ solutions of

Han,ΨnΨn = ΛnΨn (38)

such that

(cn2 −K1)Γn ≤ Λn ≤ (cn2 −K2)Γn
for constants K1, K2 > 0.

Then, up to a subsequence, an → a ∈ Sγ, Ψn →
(

Φ
0

)
in H1, and E(an,Ψn) − Nc2 →

EHF(a,Φ)

Proof. First, we need a uniform bound on Ψn in H1.

‖DcΓnΨn‖2
L2 =

〈
ΓnΨn, (c4 − c2∆)ΓnΨn

〉
,

= cn
4‖ΓnΨn‖2

L2 + cn
2‖Γn∇Ψn‖2

L2 .

On the other hand,

‖DcΓnΨn‖2
L2 =

∥∥∥(V Γ + 2Wan,Ψn)Ψn − ΛnΨn

∥∥∥
2

L2
,

≤ cn
4‖ΓnΨn‖2

L2 + C‖∇Ψn‖2
L2 + Ccn

2‖Γn∇Ψn‖L2 .

by the classical Hardy inequality, with C > 0. Therefore, Ψn is bounded in H1.

We now write Ψn =

(
Φn

Xn

)
, where Φn,Xn ∈ H1(R3,C2). We rewrite the equations (38)

as

cnΓnLXn + (V Γn + 2Wan,Ψn)Φn = (Λn − cn
2Γn)Φn, (39)

cnΓnLΦn + (V Γn + 2Wan,Ψn)Xn = (Λn + cn
2Γn)Xn, (40)

with the operator

L = −i∇ · σ (41)

such that L2 = −∆.
Because Λn < (cn2 −K2)Γn, using the Hardy inequality and the boundedness of Φn in

H1, the first equation (39) yields

‖ΓnLXn‖L2 =‖Γn∇Xn‖L2 = O(1/cn). (42)
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The second equation (40) gives

Xn =
1
2c

(
1
2

(
Γn + Λn/cn

2
))−1

ΓnLΦn +
1
cn2

O(‖Xn‖H1)

= KB(Φn) +
1
cn2

O(‖Xn‖H1) +O

(
1
cn3

)
(43)

in L2 norm, where the “kinetic balance” operator KB is given by

KB(Φ) =
1
2c
LΦ. (44)

Equation (43) gives ‖Xn‖L2 = 1
2cn

‖LΦn‖L2 +O(1/cn2) = O(1/cn), and then

Xn = KB(Φn) +O

(
1
cn3

)
(45)

again in L2 norm. Φn satisfies
(

−1
2

∆Γn + V Γn + 2WΦn

)
Φn = (Λn − cn

2Γn)Φn + ∆n

Gram Φn = 1 + o(1)

with ∆n → 0 in L2 and therefore H−1 norm. (an, g(Φn)) is a Palais-Smale sequence for
the nonrelativistic functional, with control on the Lagrange multipliers (Λn − cn

2Γn) < 0
and non-degeneracy information Γn ≥ γ. By the arguments in the proof of Theorem 1 of
[Lew04], (an,Φn) converges, up to a subsequence, to (a,Φ) in H1 norm, and it is easy to
compute from (45) that

〈Ψn, DcnΓnΨn〉 = Ncn
2 +

1
2
〈
Φn, (−∆)ΓnΦn

〉
+ o(1),

and the result follows. �

We are now ready to prove Theorem 2.

6.2. Proof of Theorem 2.

Proof. The sequence (an,Ψn) satisfies the hypotheses of Lemma 8 : up to a subsequence,

it converges strongly in H1 to


a,

(
Φ
0

)
, with lim E(an,Ψn) − Ncn

2 = EHF(a,Φ). But

since by Lemma 6 we have

E(an,Ψn) = Icn,γ ≤ Nc2
n + IK + ocn→∞(1),

we obtain EHF(a,Φ) = IK , hence the result. �
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