Existence and Uniqueness for Integro-Differential Equations with Dominating Drift Terms - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Existence and Uniqueness for Integro-Differential Equations with Dominating Drift Terms

Résumé

In this paper we are interested on the well-posedness of Dirichlet problems associated to integro-differential elliptic operators of order $\alpha < 1$ in a bounded smooth domain $\Omega$ . The main difficulty arises because of losses of the boundary condition for sub and supersolutions due to the lower diffusive effect of the elliptic operator compared with the drift term. We consider the notion of viscosity solution with generalized boundary conditions, concluding strong comparison principles in $\bar{\Omega}$ under rather general assumptions over the drift term. As a consequence, existence and uniqueness of solutions in $C(\bar{\Omega})$ is obtained via Perron's method.
Fichier principal
Vignette du fichier
Existence-Uniqueness-alpha-small14.pdf (288.89 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00822724 , version 1 (15-05-2013)

Identifiants

Citer

Erwin Topp. Existence and Uniqueness for Integro-Differential Equations with Dominating Drift Terms. 2013. ⟨hal-00822724⟩
164 Consultations
208 Téléchargements

Altmetric

Partager

More