A PAC-Bayesian Approach for Domain Adaptation with Specialization to Linear Classifiers - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

A PAC-Bayesian Approach for Domain Adaptation with Specialization to Linear Classifiers

Résumé

We provide a first PAC-Bayesian analysis for domain adaptation (DA) which arises when the learning and test distributions differ. It relies on a novel distribution pseudodistance based on a disagreement averaging. Using this measure, we derive a PAC-Bayesian DA bound for the stochastic Gibbs classifier. This bound has the advantage of being directly optimizable for any hypothesis space. We specialize it to linear classifiers, and design a learning algorithm which shows interesting results on a synthetic problem and on a popular sentiment annotation task. This opens the door to tackling DA tasks by making use of all the PAC-Bayesian tools.
Fichier principal
Vignette du fichier
pbda.pdf (2.97 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00822685 , version 1 (16-05-2013)

Identifiants

  • HAL Id : hal-00822685 , version 1

Citer

Pascal Germain, Amaury Habrard, François Laviolette, Emilie Morvant. A PAC-Bayesian Approach for Domain Adaptation with Specialization to Linear Classifiers. International Conference on Machine Learning 2013, Jun 2013, Atlanta, United States. pp.738-746. ⟨hal-00822685⟩
433 Consultations
800 Téléchargements

Partager

More