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Abstract

We provide a first PAC-Bayesian analysis for
domain adaptation (DA) which arises when
the learning and test distributions differ. It
relies on a novel distribution pseudodistance
based on a disagreement averaging. Us-
ing this measure, we derive a PAC-Bayesian
DA bound for the stochastic Gibbs classifier.
This bound has the advantage of being di-
rectly optimizable for any hypothesis space.
We specialize it to linear classifiers, and de-
sign a learning algorithm which shows inter-
esting results on a synthetic problem and on
a popular sentiment annotation task. This
opens the door to tackling DA tasks by mak-
ing use of all the PAC-Bayesian tools.

1. Introduction

In machine learning, many classifier learning ap-
proaches suppose that the learning and test data are
drawn from the same probability distribution. How-
ever, this strong hypothesis may be irrelevant for a lot
of real tasks. For instance, a spam filtering system
suitable for one user can be poorly adapted to another
who receives significantly different emails. In other
words, the learning data associated with one user could
be unrepresentative of the test data coming from an-
other one. This enhances the need to design methods
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for adapting a classifier from learning (source) data to
test (target) data. One solution to tackle this issue is
to consider the Domain Adaptation (DA) framework1,
which arises when the distribution generating the tar-
get data (the target domain) differs from the one gen-
erating the source data (the source domain). In such
a situation, it is well known that DA is a hard and
challenging task even under strong assumptions2 (Ben-
David & Urner, 2012; Ben-David et al., 2010b). A
major issue in DA is to define a measure allowing
one to quantify how much the domains are related.
Concretely, when they are close under this measure,
the generalization guarantees over the target domain
may be “easier” to provide. For example, in the con-
text of binary classification with the 0-1 loss function,
Ben-David et al. (2010a); Ben-David et al. (2006) have
considered the H∆H-divergence between the marginal
distributions. This quantity is based on the maximal
disagreement between two classifiers, allowing them to
deduce a DA generalization bound based on the VC-

dim theory. The discrepancy distance (Mansour et al.,
2009a) generalizes this divergence to real-valued func-
tions and more general losses, and is used to obtain a
generalization bound based on the Rademacher com-
plexity. In this context, Cortes & Mohri (2011) have
specialized the minimization of the discrepancy to re-
gression with kernels. In these situations, DA can be
viewed as a multiple trade-off between the complexity
of the hypothesis class H, the adaptation ability of H

1
Surveys: Jiang (2008); Quionero-Candela et al. (2009).

2
As the covariate-shift, where source and target do-

mains diverge only in their marginals (i.e., they have the

same labeling function).
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according to the divergence between the marginals,
and the empirical source risk. Moreover, other mea-
sures have been exploited under different assumptions,
such as the Rényi divergence suitable for importance
weighting (Mansour et al., 2009b), or the measure pro-
posed by C. Zhang (2012) which takes into account
the source and target true labeling, or the Bayesian
“divergence prior” (Li & Bilmes, 2007) which favors
classifiers closer to the best source model.
The novelty of our contribution is to explore the PAC-
Bayesian framework to tackle DA in a binary classifica-
tion situation without target labels (sometimes called
unsupervised domain adaptation). Given a prior dis-
tribution over a family of classifiers H, PAC-Bayesian
theory (introduced by McAllester (1999)) focuses on
algorithms that output a posterior distribution ρ over
H (i.e., a ρ-average over H) rather than just a single
classifier h ∈ H. Following this principle, we propose a
pseudometric which evaluates the domain divergence
according to the ρ-average disagreement of the clas-
sifiers over the domains. This disagreement measure
shows many advantages. First, it is ideal for the PAC-
Bayesian setting, since it is expressed as a ρ-average
over H. Second, we prove that it is always lower than
the popular H∆H-divergence. Last but not least, our
measure can be easily estimated from samples. From
this pseudometric, we derive a first PAC-Bayesian DA
generalization bound expressed as a ρ-averaging.
The practical optimization of this bound relies on mul-
tiple trade-offs between three quantities. The first
two quantities being, as usual in the PAC-Bayesian
approach, the complexity of the majority vote mea-
sured by a Kullback-Leibler divergence and the empir-
ical risk measured by the ρ-average errors on the source
sample. The third quantity corresponds to our domain
divergence and assesses the capacity of the posterior
distribution to distinguish some structural difference
between the source and target samples. An interest-
ing property of our analysis is that these quantities can
be jointly optimized. Finally, we design an algorithm
for optimizing our bound, tailored to linear classifiers.

The paper is structured as follow: Section 2 deals with
the notation and the two seminal works on DA. The
PAC-Bayesian framework is then recalled in Section 3.
Our main contribution, which consists in a DA-bound
suitable for PAC-Bayesian learning, is presented in
Section 4. Then, we derive our new algorithm for
PAC-Bayesian DA in Section 5. Before concluding in
Section 7, we experiment our approach in Section 6.

2. Notation and DA Related Works

We consider DA for binary classification tasks where
X⊆Rd is the input space of dimension d and Y={−1,1}

is the label set. The source domain PS and the target

domain PT are two different distributions over X×Y ,
DS andDT being the respective marginal distributions
over X. We tackle the challenging task where we have
no target labels. A learning algorithm is then provided
with a labeled source sample S = {(xs

i , y
s
i )}

m
i=1

drawn
i.i.d. from PS , and an unlabeled target sample T =
{xt

j}
m�

j=1
drawn i.i.d. from DT . Let h : X → Y be a

hypothesis function. The expected source error of h
over PS is the probability that h errs,

RPS (h)
def
= E

(xs,ys)∼PS

L0-1

�
h(xs), ys

�
,

where L0-1(a, b)
def
= I[a �=b] is the 0-1 loss function which

returns 1 if a �=b and 0 otherwise. The expected target

error RPT (·) over PT is defined in a similar way. RS(·)
is the empirical source error. The main objective in
DA is to learn – without target labels – a classifier
leading to the lowest expected target error RPT (h).
We also introduce the expected source disagreement of
h� and h, which measures the probability that two clas-
sifiers h and h� do not agree,

RDS (h, h
�)

def
= E

xs∼DS

L0-1

�
h(xs), h�(xs)

�
.

The expected target disagreement RDT (·,·) over DT is
similarly defined. RS(·,·) and RT (·,·) are the empirical

source and target disagreements on S and T. Depend-
ing on the context, S denotes either the source labeled
sample {(xs

i , y
s
i )}

m
i=1

or its unlabeled part {xs
i}

m
i=1

.

2.1. Necessity of a Domain Divergence

The DA objective is to find a low-error target hypoth-
esis, even if no target labels are available. Even un-
der strong assumptions, this task can be impossible
to solve (Ben-David & Urner, 2012; Ben-David et al.,
2010b). However, for deriving generalization ability
in a DA situation (with the help of a DA-bound), it
is critical to make use of a divergence between the
source and the target domains: the more similar the
domains, the easier the adaptation appears. Some pre-
vious works (C. Zhang, 2012; Ben-David et al., 2010a;
Mansour et al., 2009a;b; Ben-David et al., 2006; Li
& Bilmes, 2007) have proposed different quantities
to estimate how a domain is close to another one.
Concretely, two domains PS and PT differ if their
marginals DS and DT are different, or if the source
labeling function differs from the target one, or if both
happen. This suggests to take into account two diver-
gences: one between DS and DT and one between the
labeling. If we have some target labels, we can com-
bine the two distances as C. Zhang (2012). Otherwise,
we preferably consider two separate measures, since it



A PAC-Bayesian Approach for Domain Adaptation

is impossible to estimate the best target hypothesis in
such a situation. Usually, we suppose that the source
labeling function is somehow related to the target one,
then we look for a representation where the marginals
DS and DT appear closer without losing performances
on the source domain.

2.2. DA-Bounds for Binary Classification

We now review the first two seminal works which pro-
pose DA-bounds based on the marginal divergence.

First, under the assumption that there exists a hypoth-
esis inH that performs well on both the source and the
target domain, Ben-David et al. (2010a); Ben-David
et al. (2006) have provided the following DA-bound.

Theorem 1 (Ben-David et al. (2010a); Ben-David
et al. (2006)). Let H be a (symmetric) hypothesis class.

∀h ∈ H, RPT (h) ≤ RPS (h) +
1

2
dH∆H(DS , DT )

+RPS (h
∗) +RPT (h

∗) , (1)

with
1
2dH∆H(DS , DT )

def
= sup

(h,h�)∈H
2

��RDT (h,h
�
)−RDS (h,h

�
)
�� is

the H∆H-distance between the marginals DS and DT ,

h∗
def
=argmin

h∈H

�
RPS(h)+RPT(h)

�
is the best hypothesis overall.

This bound depends on four terms. RPS (h) is the clas-
sical source domain expected error. 1

2
dH∆H(DS , DT )

depends on H and corresponds to the maximum dis-
agreement between two hypothesis of H. In other
words, it quantifies how hypothesis from H can “de-
tect” differences between these marginals: the lower
this measure is for a given H, the better are the gen-
eralization guarantees. The last terms RPS (h

∗) and
RPT (h

∗) are related to the best hypothesis h∗ over the
domains and act as a quality measure of H in terms
of labeling information. If h∗ performs poorly, then
it is hard to find a low-error hypothesis on the target
domain. Hence, as pointed out by the authors, Equa-
tion (1), together with the usual VC-bound theory,
expresses a multiple trade-off between the accuracy of
some particular hypothesis h, the complexity ofH, and
the “incapacity” of hypothesis ofH to detect difference
between the source and the target domain.

Second, Mansour et al. (2009a) have extended the
H∆H-distance to the discrepancy divergence for regres-
sion and any symmetric loss L fulfilling the triangle
inequality. Given L : [−1, 1]2 �→R+ such a loss, the dis-

crepancy discL betweenDS andDT is: discL(DS , DT )
def
=

sup

(h,h�)∈H
2

��� E
xt∼DT

L(h(xt
), h�

(xt
)) − E

xs∼DS

L(h(xs
), h�

(xs
))

���.

Note that with the 0-1 loss in binary classification,
we have: 1

2
dH∆H(DS , DT )=discL0-1

(DS , DT ). Even if

these two divergences coincide, the DA-bound of Man-
sour et al. (2009a) differs from Theorem 1 and is,

∀h ∈ H, RPT (h)−RPT (h
∗

T ) ≤ RDS (h
∗

S , h)

+RDS (h
∗

S , h
∗

T ) + discL0-1
(DS , DT ) , (2)

where h∗
T

def
= argmin

h∈H

RPT (h) and h∗
S

def
= argmin

h∈H

RPS (h)

are respectively the ideal hypothesis on the target and
source domains. In this context, Equation (2) can be
tighter3 since it bounds the difference between the tar-
get error of a classifier and the one of the optimal h∗

T .
This bound expresses a trade-off between the disagree-
ment (between h and the best source hypothesis h∗

S),
the complexity of H (with the Rademacher complex-
ity), and – again – the “incapacity” of hypothesis to
detect differences between the domains.

To conclude, the DA-bounds (1) and (2) suggest that
if the divergence between the domains is low, a low-
error classifier over the source domain might perform
well on the target one. These divergences compute
the worst case of the disagreement between a pair of
hypothesis. We propose an average case approach by
making use of the essence of the PAC-Bayesian theory,
which is known to offer tight generalization bounds
(McAllester, 1999; Ambroladze et al., 2006).

3. PAC-Bayesian Theory

Let us now review the classical supervised binary clas-
sification framework called the PAC-Bayesian theory,
first introduced by McAllester (1999). Traditionally,
the PAC-Bayesian theory considers weighted major-
ity votes over a set H of binary hypothesis. Given
a prior distribution π over H and a training set S,
the learner aims at finding the posterior distribution ρ
over H leading to a ρ-weighted majority vote Bρ (also
called the Bayes classifier) with good generalization
guarantees and defined by,

Bρ(x)
def
= sign

�
E

h∼ρ
h(x)

�
.

Minimizing the risk of Bρ is known to be NP-hard. In
the PAC-Bayesian approach, it is replaced by the risk
of the stochastic Gibbs classifier Gρ associated with ρ.
In order to predict the label of an example x, the Gibbs
classifier first draws a hypothesis h from H according
to ρ, then returns h(x) as label. Note that the error
of the Gibbs classifier on a domain PS corresponds to
the expectation of the errors over ρ,

RPS (Gρ)
def
= E

h∼ρ
RPS (h). (3)

3
Equation (1) can lead to an error term 3 times higher

than Equation (2) in some cases (Mansour et al., 2009a).
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In this setting, if Bρ misclassifies x, then at least half
of the classifiers (under ρ) errs on x. Hence we have:
RPS (Bρ)≤2RPS (Gρ). Another result on RPS (Bρ) is
the C-bound (Lacasse et al., 2006) defined by,

RPS (Bρ) ≤ 1−

�
1− 2RPS (Gρ)

�2

1− 2RDS (Gρ, Gρ)
, (4)

where RDS (Gρ, Gρ) corresponds to the disagreement
of the classifiers over ρ and is defined by,

RDS (Gρ, Gρ)
def
= E

h,h�∼ρ2
RDS (h, h

�) . (5)

Equation (4) suggests that for a fixed numerator, the
best majority vote is the one with the lowest denomi-
nator, i.e., with the greatest disagreement between its
voters (see Laviolette et al. (2011) for further analysis).

The PAC-Bayesian theory allows one to bound the ex-
pected error RPS (Gρ) in terms of two major quantities:
the empirical error RS(Gρ)=Eh∼ρ RS(h) estimated on
a sample S i.i.d. from PS and the Kullback-Leibler di-

vergence KL(ρ�π)
def
=Eh∼ρ ln

ρ(h)
π(h) . In this paper we use

the following PAC-Bayesian bound of Catoni (2007) in
a simplified form suggested by Germain et al. (2009b).

Theorem 2 (Catoni (2007)). For any domain PS over

X×Y , for any set of hypothesis H, any prior distribu-

tion π over H, any δ ∈ (0, 1], and any real number

c > 0, with a probability at least 1−δ over the choice

of S∼(PS)m, for every ρ on H, we have,

RPS (Gρ) ≤
c

1−e−c

�
RS(Gρ)+

KL(ρ�π) + ln 1

δ

m× c

�
.

This bound has two interesting characteristics. First,
its minimization is closely related to the minimiza-
tion problem associated with the SVM when ρ is an
isotropic Gaussian over the space of linear classifiers
(Germain et al., 2009a). Second, the value c allows
to control the trade-off between the empirical risk
RS(Gρ) and the complexity term KL(ρ�π)

m . Moreover,
putting c = 1

√
m
, this bound becomes consistent: it

converges to 1×[RS(Gρ)+0] as m grows.

While the DA-bounds presented in Section 2 focus on
a single classifier, we now define a ρ-average disagree-
ment measure to compare the marginals. This leads
us to derive our DA-bound suitable for PAC-Bayes.

4. A DA-Bound for the Gibbs Classifier

The originality of our contribution is to theoretically
design a DA framework for PAC-Bayesian approach.
In Section 4.1, we propose a domain comparison pseu-
dometric suitable in this context. We then derive a
PAC-Bayesian DA-bound in Section 4.2.

4.1. A Domain Divergence for PAC-Bayes

As seen in Section 2.1, the derivation of generalization
ability in DA critically needs a divergence measure be-
tween the source and target marginals.

Designing the Divergence. We define a domain

disagreement pseudometric4 to measure the structural
difference between domain marginals in terms of pos-
terior distribution ρ over H. Since we are interested
in learning a ρ-weighted majority vote Bρ leading to
good generalization guarantees, we propose to follow
the idea behind Equation (4): Given PS , PT , and ρ,
if RPS (Gρ) and RPT (Gρ) are similar, then RPS (Bρ)
and RPT (Bρ) are similar when E

h,h�∼ρ2
RDS (h, h

�) and

E
h,h�∼ρ2

RDT (h, h
�) are also similar. Thus, the domains

PS and PT are close according to ρ if the divergence
between E

h,h�∼ρ2
RDS (h, h

�) and E
h,h�∼ρ2

RDT (h, h
�) tends

to be low. Our pseudometric is defined as follows.

Definition 1. Let H be a hypothesis class. For any

marginal distributions DS and DT over X, any distri-

bution ρ on H, the domain disagreement disρ(DS , DT )
between DS and DT is defined by,

disρ(DS , DT )
def
=

���� E
h,h�∼ρ2

[RDT (h, h
�)−RDS (h, h

�)]

���� .

Note that disρ(·,·) is symmetric and fulfills the tri-
angle inequality. The following theorem shows that
disρ(DS , DT ) can be bounded in terms of the classical
PAC-Bayesian quantities: the empirical disagreement
disρ(S, T ) estimated on the source and target samples,
and the KL-divergence between the prior and posterior
distribution on H. For the sake of simplicity, we sup-
pose that m=m�, i.e., the size of S and T are equal5.

Theorem 3. For any distributions DS and DT over

X, any set of hypothesis H, any prior distribution π
over H, any δ∈(0, 1], and any real number α>0, with
a probability at least 1−δ over the choice of S×T ∼

(DS×DT )m, for every ρ on H, we have,

disρ(DS , DT ) ≤
2α

�
disρ(S, T )+

2KL(ρ�π)+ln 2
δ

m×α +1
�
−1

1− e−2α
,

where disρ(S, T ) is the empirical domain disagreement.

Similarly to the empirical risk bound of Catoni (2007)
shown by Theorem 2, the above domain disagreement
bound is consistent if one puts α = 1

2
√
m
. Indeed, it

converges to 1×[disρ(S, T )+0+1]−1 as m grows.

4
A pseudometric d is a metric for which the property

d(x, y) = 0 ⇔ x = y is relaxed to d(x, y) = 0 ⇐ x = y.
5
The Supplementary Material gives other DA PAC-

Bayesian bounds, notably for the case where m �=m�
.
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Proof of Theorem 3. (details given in Supp. Material)

Firstly, we bound d(1)
def
= E
h,h�∼ρ2

[RDS (h, h
�)−RDT (h, h

�)].

Consider an “abstract” classifier ĥ
def
= (h, h�) ∈ H2

chosen from a distribution ρ̂, with ρ̂(ĥ)=ρ(h)ρ(h�).
Notice that with π̂(ĥ) = π(h)π(h�), we obtain that
KL(ρ̂�π̂) = 2KL(ρ�π). Let us define the “abstract”
loss of ĥ on a pair of examples (xs,xt) ∼ DS ×DT by,

Ld(1)(ĥ,x
s,xt

)
def
=

1+L0-1(h(x
s
),h�

(xs
))−L0-1(h(x

t
),h�

(xt
))

2
.

The error of the Gibbs classifier associated with this
loss is R(1)

DS×DT
(Gρ̂) = E

ĥ∼ρ̂
E

xs∼DS

E
xt∼DT

Ld(1)(ĥ,xs,xt).

As Ld(1) lies in [0, 1], following the principle of the
proof of Theorem 2 (with c=2α), one can bound the

true R(1)

DS×DT
(Gρ̂) (see Supp. Material). Thereafter,

we obtain a bound on d(1) from its empirical counter-

part (denoted by d(1)S×T ), because d
(1)=2R(1)

DS×DT
(Gρ̂)−1.

Hence, we obtain with probability at least 1− δ
2
over

the choice of S × T ∼ (DS ×DT )m,

d(1) + 1

2
≤

2α
1−e−2α

�
d(1)S×T + 1

2
+

2KL(ρ�π)+ln
2
δ

m× 2α

�
.

Then, we bound d(2)
def
= E
h,h�∼ρ2

[RDT (h, h
�)−RDS (h, h

�)]

from d(2)S×T using the same method. Note that |d(1)|=
|d(2)| = disρ(DS , DT ). Thus, the maximum of the
bound on d(1) and the bound on d(2) gives a bound on
disρ(DS , DT ). Using the union bound, we obtain with
probability 1−δ over the choice of S×T ∼ (DS×DT )m,

|d(1)|+ 1

2
≤

α
1−e−2α

�
|d(1)S×T |+ 1 +

2KL(ρ�π)+ln
2
δ

m× α

�
.

Before deriving a DA-bound for ρ-average of classifiers,
we compare our disρ with the H∆H-divergence.

Comparison of
1

2
dH∆H and disρ. While estimating

the H∆H-divergence of Theorem 1 is NP-hard (Ben-
David et al., 2010a; Ben-David et al., 2006), our empir-
ical disagreement measure is easier to assess, since we
simply have to compute the ρ-average of the classifiers
disagreement instead of finding the pair of classifiers
that maximizes the disagreement. Indeed, disρ de-
pends on the majority vote, which suggests that we can
directly minimize it via the empirical disρ(S, T ) and
the KL-divergence. This can be done without instance
reweighting, space representation changing or family of
classifiers modification. On the contrary, 1

2
dH∆H is a

supremum over all h∈H and hence, does not depend
on the h on which the risk is considered. Moreover,
disρ (the ρ-average) is lower than the 1

2
dH∆H (the worst

case). Indeed, for every H and ρ over H, we have,

1
2dH∆H(DS , DT ) = sup(h,h�)∈H

2 |RDT (h, h
�
)−RDS (h, h

�
)|

≥ E
(h,h�)∼ρ2

|RDT (h, h
�
)−RDS (h, h

�
)| ≥ disρ(DS , DT ).

4.2. The PAC-Bayesian DA-Bound

We now derive our main result in the following theo-
rem. Note that for the sake of readability, we prefer
to use the notations RP (Gρ) and RD(Gρ , ·), we re-
call that they correspond to the respective ρ-averages
E

h∼ρ
RP (h) and E

h∼ρ
RD(h, ·) (see Equations (3) and (5)).

Theorem 4. Let H be a hypothesis class. We have,

∀ρ on H, RPT (Gρ)−RPT (Gρ∗
T
) ≤ RPS (Gρ)

+ disρ(DS , DT ) +RDT (Gρ, Gρ∗
T
) +RDS (Gρ, Gρ∗

T
) ,

with ρ∗T =argminρ RPT(Gρ) is the best target posterior,

and RD(Gρ, Gρ∗T
) = Eh∼ρEh�∼ρ∗T

RD(h, h�
).

Proof. Let H be a hypothesis set. Let ρ over H. Let
ρ∗T =argminρ RPT (Gρ) be the distribution leading to
the best Gibbs classifier on PT . With the triangle
inequality, and since for every h and any marginal D,

RD(Gρ, h)
def
= E

x∼D
I[Gρ(x) �=h(x)] = E

x∼D
E

h�∼ρ
I[h�

(x) �=h(x)],

we can write,

RPT (Gρ)≤ E
h∼ρ

�
RPT (Gρ∗T

)+RDT (Gρ∗T
,Gρ)+RDT (Gρ,h)

�

≤ RPT (Gρ∗T
) +RDT (Gρ∗T

, Gρ)

+ E
h∼ρ

[RDT (Gρ, h)−RDS (Gρ, h)+RDS (Gρ, h)]

≤ RPT (Gρ∗T
)+RDT (Gρ, Gρ∗T

)+ E
h∼ρ

RDS (Gρ, h)

+
�� E
h,h�∼ρ2

�
RDT (h, h

�
)−RDS (h, h

�
)
� ��

≤ RPT (Gρ∗T
)+RDT (Gρ, Gρ∗T

)+RDS (Gρ, Gρ∗T
)

+
�� E
h,h�∼ρ2

�
RDT (h, h

�
)−RDS (h, h

�
)
� ��+ E

h∼ρ
RPS (h)

= RPT (Gρ∗T
) +RPS (Gρ) + disρ(DS , DT )

+RDT (Gρ, Gρ∗T
) +RDS (Gρ, Gρ∗T

).

Our bound is, in general, incomparable with Equa-
tions (1) and (2). However, similarly to the DA-bound
of Equation (2) (Mansour et al., 2009a), we directly
bound the difference between the ρ-average target er-
rors and the optimal one. Our bound can be seen as
a trade-off between different quantities. RPS (Gρ) and
disρ(DS , DT ) are similar to the first two terms of the
DA-bound of Ben-David et al. (2010a) (Equation (1)):
RPS (Gρ) is the ρ-average risk over H on the source do-
main, and disρ(DT , DS) measures the ρ-average dis-
agreement between the marginals but is specific to
the current ρ. The other terms RDT (Gρ, Gρ∗

T
) and

RDS (Gρ, Gρ∗
T
) measure how much the considered dis-

tribution ρ is close (in terms of disagreements) to the
optimal target Gibbs classifier both on PS and PT .
According to this theory, a good DA is possible if the
optimal distribution ρ∗T has a low-error on the target
domain (which is an usual assumption). Moreover, the
quantity RDT (Gρ, Gρ∗

T
)+RDS (Gρ, Gρ∗

T
), which can be



A PAC-Bayesian Approach for Domain Adaptation

seen as a measure of adaptation capability in terms of
labeling functions, has to be low: Gρ has to agree with
the optimal solution on both domains.

Finally, our Theorem 4 leads to a PAC-Bayesian bound
based on both the empirical source error of the Gibbs
classifier and the empirical domain disagreement pseu-
dometric estimated on a source and target samples.

Theorem 5. For any domains PS and PT (resp. with

marginals DS and DT ) over X×Y , any set of hypoth-

esis H, any prior distribution π over H, any δ∈(0, 1],
any real numbers α>0 and c>0, with a probability at

least 1−δ over the choice of S×T∼(PS×DT )m, we have,

∀ρ ∼ H, RPT (Gρ)−RPT (Gρ∗
T
) ≤ λρ + α�

− 1

+ c�RS(Gρ)+α�disρ(S, T )+
�
c�

c +
2α�

α

�
KL(ρ�π)+ln

3
δ

m ,

where λρ
def
= RDT (Gρ, Gρ∗

T
) +RDS (Gρ, Gρ∗

T
),

c�
def
= c

1−e−c , and α� def
= 2α

1−e−2α .

Proof. In Theorem 4, replace RS(Gρ) and disρ(S, T )
by their upper bound, obtained from Theorem 2 and
Theorem 3, with δ chosen respectively as δ

3
and 2δ

3
(in

the latter case, we use ln 2

2δ/3 = ln 3

δ < 2 ln 3

δ ).

Under the assumption that the domains are some-
how related in terms of labeling agreement on PS

and PT (for every distribution ρ over H), i.e., a low
disρ(DS , DT ) implies a negligible λρ, a natural solu-
tion for a PAC-Bayesian DA algorithm without target
labels is to minimize the bound of Theorem 5 by dis-
regarding6 λρ. Notice that a major advantage of our
DA-bound is that we can jointly optimize the risk and
the divergence with a theoretical justification.

5. PAC-Bayesian Domain Adaptation
Learning of Linear Classifiers

Now, let H be a set of linear classifiers hv(x)
def
=

sgn (v · x) such that v ∈ Rd is a weight vector. By
restricting the prior and the posterior to be Gaus-
sian distributions, Langford & Shawe-Taylor (2002);
Ambroladze et al. (2006) have specialized the PAC-
Bayesian theory in order to bound the expected risk
of any linear classifier hw ∈ H identified by a weight
vector w. More precisely, given a prior π0 and a pos-
terior ρw defined as spherical Gaussians with identity
covariance matrix respectively centered on vectors 0

and w, for any hv ∈ H, we have,

π0(hv)
def
=
�

1
√
2π

�d
e−

1
2�v�

2

, and ρw(hv)
def
=
�

1
√
2π

�d
e−

1
2�v−w�

2

.

6
With few target labels we can imagine to estimate λρ.

The expected risk of the Gibbs classifier Gρw on a
domain PS is then given by,

RPS (Gρw) = E
(x,y)∼PS

E
hv∼ρw

I(hv �=y) = E
(x,y)∼PS

Φ
�
yw·x
�x�

�
,

where Φ(a)
def
= 1

2

�
1−Erf

�
a
√
2

��
, and Erf is the Gauss error

function. In this situation, the KL-divergence between
ρw and π0 becomes simply KL(ρw�π0)=

1

2
�w�2.

5.1. Supervised PAC-Bayesian Learning

Based on the specialization of the PAC-Bayesian the-
ory to linear classifiers, Germain et al. (2009a) sug-
gested to minimize the bound on RPS (Gρw) of Theo-
rem 2. Given a sample S = {(xs

i , y
s
i )}

m
i=1

and an hy-
perparameter C > 0, the resulting learning algorithm
performs a gradient descent in order to find an optimal
weight vector w that minimizes,

CmRS(Gρw)+ KL(ρw�π0) = C
m�

i=1

Φ
�
yi

w·xi
�xi�

�
+
�w�2

2
.

This algorithm, called PBGD3, realizes a trade-off be-
tween the empirical risk (expressed by the loss Φ)
and the complexity of the learned linear classifier (ex-
pressed by the regularizer �w�2). A practical draw-
back of PBGD3 is that the objective function is non-
convex and the gradient descent implementation needs
many random restarts. In fact, we made extensive
empirical experiments and saw that PBGD3 performs
equivalently (and at a fraction of the running time) by
replacing the loss function Φ by its convex relaxation

Φcvx(a)
def
= 1

2
−

a
√
2π

if a ≤ 0, Φ(a) otherwise.

In the following, we will see that using this approach in
a DA way is a relevant strategy. To do so, we specialize
the bound of Theorem 5 to linear classifiers.

5.2. Minimizing the PAC-Bayesian DA-Bound

Under the assumption that the non-estimable quanti-
ties λρ and RPT (Gρ∗

T
) of Theorem 5 are negligible, we

propose to design a PAC-Bayesian algorithm7 for DA
inspired by PBGD3. Therefore, given a source sample
S = {(xs

i , y
s
i )}

m
i=1

and a target sample T = {(xt
i)}

m
i=1

we focus on the minimization, according to ρw, of

CmRS(Gρw)+Am disρw(S, T )+KL(ρw�π0) , (6)

where disρw(S, T )=
��� E
h,h�∼ρ2

w

RS(h, h�)− E
h,h�∼ρ2

w

RT (h, h�)
���

is the empirical domain disagreement between S and
T specialized to a distribution ρw over linear classi-
fiers. The values A > 0, C > 0 are hyperparameters

7
Code available at http://graal.ift.ulaval.ca/pbda

http://graal.ift.ulaval.ca/pbda
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of the algorithm. Note that the constants α and c of
Theorem 5 can be recovered from any A and C. Given

Φdis(a)
def
= 2Φ(a)Φ(−a), we have for any marginal D,

E
h,h�∼ρ2

w

RD(h, h�) = E
x∼D

E
h,h�∼ρ2

w

I[h(x) �= h�(x)]

= 2 E
x∼D

E
h,h�∼ρ2

w

I[h(x) = 1] I[h�(x) = −1]

= 2 E
x∼D

E
h∼ρw

I[h(x) = 1] E
h�∼ρw

I[h�(x) = −1]

= 2 E
x∼D

Φ
�
w·x
�x�

�
Φ
�
−

w·x
�x�

�
= E

x∼D
Φdis

�
w·x
�x�

�
.

Thus, finding the optimal ρw in Equation (6) is equiv-
alent to find the vector w that minimizes,

C
m�

i=1

Φ
�
ysi

w·xs
i

�xs
i�

�
+A

�����

m�

i=1

Φdis

�
w·xs

i
�xs

i�

�
−Φdis

�
w·xt

i

�xt
i�

������+
�w�2

2
.

The latter equation is highly non-convex. To make the
optimization problem more tractable, we replace the
loss function Φ by its convex relaxation Φcvx (as in
Section 5.1) and minimize the resulting cost function
by gradient descent. Even if this optimization task is
still not convex (Φdis is quasiconcave), our empirical
study shows no need to perform many restarts to find a
suitable solution. We name this DA algorithm PBDA.
Note that the kernel trick allows us to work with dual
weight vector ααα ∈ R2m that is a linear classifier in an
augmented space. Given a kernel k : Rd×Rd → R, we
have hw(x) =

�m
i=1

αik(xs
i ,x) +

�m
i=1

αi+mk(xt
i,x).

See Supplementary Material for algorithm details.

6. Experiments

PBDA has been evaluated on a toy problem and a sen-
timent dataset. We compare it with two non-DA al-
gorithms, SVM and PBGD3 (presented in Section 5.1),
but also with the DA algorithm DASVM

8 (Bruzzone
& Marconcini, 2010) and the DA co-training method
CODA

9. In Chen et al. (2011), CODA has showed best
results on the dataset considered in our Section 6.2.
Each parameters are selected with a grid search via
a classical 5-folds cross-validation (CV ) on the source
sample for PBGD3 and SVM, and via a 5-folds reverse
validation (RCV ) on the source and the (unlabeled)
target samples (see Bruzzone & Marconcini (2010);
Zhong et al. (2010)) for CODA, DASVM, and PBDA.

6.1. Toy Problem: Two Inter-Twinning Moons

The source domain considered here is the classical bi-
nary problem with two inter-twinning moons, each

8
DASVM try to maximize iteratively a notion of margin

on self-labeled target examples.
9
CODA looks iteratively for target features related to

the training set.

Table 1. Average error rate results for 7 rotation angles.

10
◦

20
◦

30
◦

40
◦

50
◦

70
◦

90
◦

PBGD3
CV 0 0.088 0.210 0.273 0.399 0.776 0.824

SVM
CV 0 0.104 0.24 0.312 0.4 0.764 0.828

DASVM
RCV 0 0 0.259 0.284 0 .334 0.747 0.82

PBDA
RCV 0 0.094 0 .103 0 .225 0.412 0 .626 0 .687

class corresponding to one moon (Figure 1). We then
consider 7 different target domains by rotating an-
ticlockwise the source domain according to 7 angles
(from 10◦ to 90◦). The higher the angle, the more
difficult the problem becomes. For each domain, we
generate 300 instances (150 of each class). Moreover,
to assess the generalization ability of our approach, we
evaluate each algorithm on an independent test set of
1,000 target points (not provided to the algorithms).
We make use of a Gaussian kernel for all the methods.
Each DA problem is repeated 10 times, and we report
the average error rates on Table 1. Note that since
CODA decomposes features for applying co-training,
it is not appropriate here (we have only 2 features).
We remark that our PBDA provides the best perfor-
mances except for 50◦ and 20◦, indicating that PBDA

accurately tackles DA tasks. It shows a nice adapta-
tion ability, especially for the hardest problem, proba-
bly due to the fact that disρ is tighter and seems to be
a good regularizer in a DA situation. The adaptation
versus risk minimization trade-off suggested by Theo-
rem 5 appears in Figure 1. Indeed, the plot illustrates
that PBDA accepts to have a lower source accuracy
to maintain its performance on the target domain, at
least when the source and the target domains are not
so different. Note however that for large angles, PBDA

prefers to “focus” on the source accuracy. We claim
that this is a reasonable behavior for a DA algorithm.

6.2. Sentiment Analysis Dataset

We consider the popular Amazon reviews dataset
(Blitzer et al., 2006) composed of reviews of four types
of Amazon.com products (books, DVDs, electronics,
kitchen appliances). Originally, the reviews corre-
sponded to a rate between 1 and 5 stars and the fea-
ture space (of unigrams and bigrams) has on average
a dimension of 100,000. We follow the simplified bi-
nary setting proposed by Chen et al. (2011). More
precisely, we regroup ratings in two classes (products
rated higher that 3 stars and products rated lower than
4 stars). Also, the dimensionality is reduced in the fol-
lowing way: we only keep the features that appear at
least 10 times in a particular DA task, reducing the
number of features to about 40,000). Finally, the data
are pre-processed with a standard tf-idf re-weighting.
One type of product is a domain, then we perform 12



A PAC-Bayesian Approach for Domain Adaptation

Figure 1. Illustration of the decision boundary of PBDA on 3 rotations angles for fixed parameters A=C =1. The two

classes of the source sample are green and pink, and target (unlabeled) sample is grey. The right plot shows corresponding

source and target errors. We intentionally avoid to tune PBDA parameters to highlight its inherent adaptation behavior.

Table 2. Error rates for sentiment analysis dataset. B, D, E, K respectively denotes books, DVDs, electronics, kitchen.

B→D B→E B→K D→B D→E D→K E→B E→D E→K K→B K→D K→E Avg.

PBGD3
CV 0 .174 0.275 0.236 0 .192 0.256 0.211 0.268 0.245 0 .127 0.255 0.244 0.235 0.226

SVM
CV

0.179 0.290 0.251 0.203 0.269 0.232 0.287 0.267 0.129 0.267 0.253 0.149 0.231
DASVM

RCV
0.193 0 .226 0 .179 0.202 0 .186 0.183 0.305 0 .214 0.149 0.259 0 .198 0.157 0 .204

CODA
RCV

0.181 0.232 0.215 0.217 0.214 0 .181 0.275 0.239 0.134 0 .247 0.238 0.153 0.210

PBDA
RCV

0.183 0.263 0.229 0.197 0.241 0.186 0 .232 0.221 0.141 0 .247 0.233 0 .129 0.208

DA tasks. For example, “books→DVDs” corresponds
to the task for which books is the source domain and
DVDs the target one. The algorithms use a linear ker-
nel and consider 2,000 labeled source examples and
2,000 unlabeled target examples. We evaluate them
on separate target test sets proposed by Chen et al.
(2011) (between 3,000 and 6,000 examples), and we
report the results on Table 2. We make the following
observations. First, as expected, the DA approaches
provide the best average results. Then, PBDA is on
average better than CODA, but less accurate than
DASVM. However, PBDA is competitive: the results
are not significantly different from CODA and DASVM.
Moreover, we have observed that PBDA is significantly
faster than CODA and DASVM: these two algorithms
are based on costly iterative procedures increasing the
running time by at least a factor of 5 in comparison of
PBDA. In fact, the clear advantage of PBDA is that we
jointly optimize the terms of our bound in one step.
PAC-Bayes appears thus relevant in the context of DA
and we could imagine to improve PBDA by making use
of the tools offered by the PAC-Bayesian theory.

7. Conclusion and Future Work

In this paper, we define a domain divergence pseudo-
metric that is based on an average disagreement over
a set of classifiers, along with consistency bounds for
justifying its estimation from samples. This measure
helps us to derive a first PAC-Bayesian bound for do-
main adaptation. Moreover, from this bound we de-
sign a well-founded and competitive algorithm (PBDA)
that can directly optimize the bound for linear classi-
fiers. We think that this PAC-Bayesian analysis opens

the door to develop new domain adaptation methods
by making use of the possibilities offered by the PAC-
Bayesian theory, and gives rise to new interesting di-
rections of research, among which the following ones.
PAC-Bayes allows one to deal with an a priori belief
on what are the best classifiers; in this paper we opted
for a non-informative prior that consists on a Gaussian
centered at the origin of the linear classifier space. The
question of finding a relevant prior in a DA situation
is an exciting direction which could also be exploited
when some few target labels are available.
Another promising issue is to address the problem of
the hyperparameter selection. Indeed, the adaptation
capability of our algorithm PBDA could be even put
further with a specific PAC-Bayesian validation proce-
dure. An idea would be to propose a kind of (reverse)
validation technique that takes into account some par-
ticular prior distributions. This is also linked with
model selection for domain adaptation tasks.
Besides, deriving a result similar to Equation (4) (the
C-bound) for domain adaptation could be of high in-
terest. Indeed, such an approach considers the first
two moments of the margin of the weighted major-
ity vote. This could help us to take into account
both a kind of margin information over unlabeled data
and the distribution disagreement (these two elements
seem of crucial importance in domain adaptation).
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In this document, Section 1 contains some lemmas

used in subsequent proofs, Section 2 presents an ex-

tended proof of the bound on the domain disagree-

ment disρ(DS , DT ) (Theorem 3 of the main paper),

Section 3 introduces other PAC-Bayesian bounds for

disρ(DS , DT ) and RPT (Gρ), Section 4 shows equations

and implementation details about PBDA (our pro-

posed learning algorithm for PAC-Bayesian DA tasks).

1. Some tools

Lemma 1 (Markov’s inequality). Let Z be a random
variable and t ≥ 0, then,

P (|Z| ≥ t) ≤ E (|Z|) / t .

Lemma 2 (Jensen’s inequality). Let Z be an integra-
ble real-valued random variable and g(·) any function.

If g(·) is convex, then,

g(E [Z]) ≤ E [g(Z)] .

If g(·) is concave, then,

g(E [Z]) ≥ E [g(Z)] .

Lemma 3 (Maurer (2004)). Let X = (X1, . . . , Xm)

be a vector of i.i.d. random variables, 0 ≤ Xi ≤ 1,
with E Xi = µ. Denote X �

= (X �
1, . . . , X

�
m), where X �

i

is the unique Bernoulli ({0, 1}-valued) random vari-
able with E X �

i = µ. If f : [0, 1]n → R is convex, then,

E [f(X)] ≤ E [f(X �
)] .

Lemma 4 (from Inequalities (1) and (2) of Maurer

(2004)). Let m ≥ 8, and X = (X1, . . . , Xm) be a vec-
tor of i.i.d. random variables, 0 ≤ Xi ≤ 1. Then,

√
m ≤ E exp

�
mkl

�
1

m

n�

i=1

Xi

��E [Xi]

��
≤ 2

√
m,

where, kl(a � b)
def
= a ln a

b + (1− a) ln 1−a
1−b . (7)

2. Detailed Proof of Theorem 3

We recall the Theorem 3 of the main paper.

Theorem 3. For any distributions DS and DT over
X, any set of hypothesis H, any prior distribution π
over H, any δ∈(0, 1], and any real number α>0, with
a probability at least 1−δ over the choice of S×T ∼

(DS×DT )
m, for every ρ on H, we have,

disρ(DS , DT ) ≤

2α
�
disρ(S, T )+

2KL(ρ�π)+ln 2
δ

m×α +1

�
−1

1− e−2α
,

where disρ(S, T ) is the empirical domain disagreement.

Proof. Firstly, we propose to upper-bound,

d(1)
def
= E

(h,h�)∼ρ2
[RDS(h, h

�
)−RDT(h, h

�
)] ,

by its empirical counterpart,

d(1)S×T
def
= E

(h,h�)∼ρ2
[RS(h, h

�
)−RT (h, h

�
)] .

and some extra terms related to the Kullback-Leibler

divergence between the posterior and the prior.
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To do that, we consider an “abstract” classifier ĥ
def
=

(h, h�
) ∈ H2

chosen according a distribution ρ̂, with
ρ̂(ĥ)=ρ(h)ρ(h�

). Notice that with π̂(ĥ) = π(h)π(h�
),

we obtain that KL(ρ̂�π̂)=2KL(ρ�π),

KL(ρ̂�π̂) = E
(h,h�)∼ρ2

ln
ρ(h)ρ(h�

)

π(h)π(h�)

= E
h∼ρ

ln
ρ(h)

π(h)
+ E

h�∼ρ
ln

ρ(h�
)

π(h�)

= 2 E
h∼ρ

ln
ρ(h)

π(h)
= 2KL(ρ�π) . (8)

Let us define the “abstract” loss of ĥ on a pair of ex-

amples (xs,xt
) ∼ DS×T = DS ×DT by,

Ld(1)(ĥ,xs,xt
)
def
=

1+L0-1(h(x
s
),h�

(xs
))−L0-1(h(x

t
),h�

(xt
))

2
.

Therefore, the “abstract” risk of ĥ on the joint distri-

bution is defined as,

R(1)
DS×T

(ĥ) = E
xs∼DS

E
xt∼DT

Ld(1)(ĥ,xs,xt
) ,

and the error of the related Gibbs classifier associated

with this loss is,

R(1)
DS×T

(Gρ̂) = E
ĥ∼ρ̂

R(1)
DS×T

(ĥ) .

The empirical counterparts of these two quantities are,

R(1)
S×T (ĥ) = E

(xs,xt)∼S×T
Ld(1)(ĥ,xs,xt

)

and,

R(1)
S×T (Gρ̂) = E

ĥ∼ρ̂
R(1)

S×T (ĥ) .

It is easy to show that,

d(1) = 2R(1)
DS×T

(Gρ̂)− 1, (9)

d(1)S×T = 2R(1)
S×T (Gρ̂)− 1. (10)

As Ld(1) lies in [0, 1], we can bound the true R(1)
DS×T

(Gρ̂)

following the proof process of Th. 2 of the main paper

(with c=2α). To do so, we define the convex function,

F(p)
def
= − ln[1− (1− e−2α

)p] , (11)

and consider the non-negative random variable,

E
ĥ∼π̂

e
m

�
F(R(1)

DS×T
(ĥ))−2αR(1)

S×T (ĥ)
�

.

We apply Markov’s inequality (Lemma 1 of this Supp.

Material). For every δ ∈ (0, 1], with a probability at

least 1−δ over the choice of S×T ∼ (DS×T )
m
, we have,

E
ĥ∼π̂

e
m

�
F(R(1)

DS×T
(ĥ))−2αR(1)

S×T (ĥ)
�

≤
1

δ
E

S×T∼(DS×T )m
E

ĥ∼π̂
e
m

�
F(R(1)

DS×T
(ĥ))−2αR(1)

S×T (ĥ)
�

.

By taking the logarithm on each side of the previous

inequality, and transforming the expectation over π̂
into an expectation over ρ̂, we obtain that,

ln

�
E

ĥ∼ρ̂

π̂(ĥ)

ρ̂(ĥ)
e
m

�
F(R(1)

DS×T
(ĥ))−2αR(1)

S×T (ĥ)
��

≤ ln

�
1

δ
E

S×T∼(DS×T )m
E

ĥ∼π̂
e
m

�
F(R(1)

DS×T
(ĥ))−2αR(1)

S×T (ĥ)
��

= ln

�
1

δ
E

ĥ∼π̂
e
mF(R(1)

DS×T
(ĥ))

E
S×T∼(DS×T )m

e−2mαR(1)
S×T (ĥ)

�
.

(12)

For a classifier ĥ, let us define a random variable

Xĥ that follows a binomial distribution of m trials

with a probability of success R(1)
DS×T

(ĥ) denoted by

B
�
m,R(1)

DS×T
(ĥ)

�
. Lemma 3 gives,

E
S×T∼(DS×T )m

e−2mαR(1)
S×T (ĥ)

≤ E
Xĥ∼B(m,R(1)

DS×T
(ĥ))

e−2αXĥ

=

m�

k=0

Pr

Xĥ∼B(m,R(1)
DS×T

(ĥ))

�
Xĥ = k

�
e−2αk

=

m�

k=0

�m
k

��
R(1)

S×T (ĥ)
�k�

1−R(1)
S×T (ĥ)

�m−k
e−2αk

=

m�

k=0

�m
k

��
R(1)

S×T (ĥ)e
−2α

�k �
1−R(1)

S×T (ĥ)
�m−k

=

�
R(1)

S×T (ĥ)e
−2α

+

�
1−R(1)

S×T (ĥ)
��m

.

The last line result, together with the choice of F

(Eq. (11)), leads to,

E
ĥ∼π̂

e
mF(R(1)

DS×T
(ĥ))

E
S×T∼(DS×T )m

e−2mαR(1)
S×T (ĥ)

≤ E
ĥ∼π̂

e
mF(R(1)

DS×T
(ĥ))

�
R(1)

S×T (ĥ)e
−2α

+

�
1−R(1)

S×T (ĥ)
��m

= E
ĥ∼π̂

1 = 1 .

We can now upper bound Eq. (12) simply by,

ln

�
E

ĥ∼ρ̂

π̂(ĥ)

ρ̂(ĥ)
e
m

�
F(R(1)

DS×T
(ĥ))−2αR(1)

S×T (ĥ)
��

≤ ln
1

δ
.
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Let us insert the term KL(ρ�π) in the left-hand side

of the last inequality and find a lower bound by us-

ing Jensen’s inequality (Lemma 2) twice, first on the

concave logarithm function and then on the convex

function F ,

ln

�
E

ĥ∼ρ̂

π̂(ĥ)

ρ̂(ĥ)
e
m

�
F(R(1)

DS×T
(ĥ))−2αR(1)

S×T (ĥ)
��

= ln

�
E

ĥ∼ρ̂
e
m

�
F(R(1)

DS×T
(ĥ))−2αR(1)

S×T (ĥ)
��

− 2KL(ρ�π)

≥ E
ĥ∼ρ̂

m
�
F(R(1)

DS×T
(ĥ))− 2αR(1)

S×T (ĥ)
�
− 2KL(ρ�π)

≥ mF( E
ĥ∼ρ̂

R(1)
DS×T

(ĥ))− 2mα E
ĥ∼ρ̂

R(1)
S×T (ĥ)−2KL(ρ�π)

= mF(R(1)
DS×T

(Gρ̂))− 2mαR(1)
S×T (Gρ̂)− 2KL(ρ�π) .

We then have,

mF( E
ĥ∼ρ̂

R(1)
DS×T

(ĥ))− 2mα E
ĥ∼ρ̂

R(1)
S×T (ĥ)−2KL(ρ�π) ≤ ln

1
δ
.

This, in turn, implies that,

F(R(1)
DS×T

(Gρ̂)) ≤ 2αR(1)
S×T (Gρ̂) +

2KL(ρ�π) + ln
1
δ

m
.

Now, by isolating R(1)
DS×T

(Gρ̂), we obtain,

R(1)
DS×T

(Gρ̂)≤
1

1−e−2α

�
1−e

−
�
2αR(1)

S×T (Gρ̂)+
2KL(ρ�π)+ln 1

δ
m

��
,

and from the inequality 1− e−x ≤ x,

R(1)
DS×T

(Gρ̂)≤
1

1−e−2α

�
2αR(1)

S×T (Gρ̂)+
2KL(ρ�π) + ln

1
δ

m

�
.

It then follows from Equations (9) and (10) that, with

probability at least 1−
δ
2 over the choice of S × T ∼

(DS ×DT )
m
, we have,

d(1) + 1

2
≤

2α

1−e−2α

�
d(1)S×T + 1

2
+

2KL(ρ�π)+ln
1
δ

m× 2α

�
,

We now bound d(2)
def
= E
(h,h�)∼ρ2

[RDT (h, h
�
)−RDS (h, h

�
)]

using exactly the same argument as for d(1) except that
we instead consider the following “abstract” loss of ĥ
on a pair of examples (xs,xt

) ∼ DS×T = DS ×DT :

Ld(1)(ĥ,xs,xt
)
def
=

1+L0-1(h(x
t
),h�

(xt
)−L0-1(h(x

s
),h�

(xs
)))

2
.

We then obtain that, with probability at least 1−
δ
2

over the choice of S × T ∼ (DS ×DT )
m
,

d(2) + 1

2
≤

2α

1−e−2α

�
d(2)S×T + 1

2
+

2KL(ρ�π)+ln
1
δ

m× 2α

�
.

To finish the proof, note that by definition, we have

that d(1) = −d(2), hence

|d(1)| = |d(2)| = disρ(DS , DT ),

and,

|d(1)S×T | = |d(2)S×T | = disρ(S, T ).

Then, the maximum of the bound on d(1) and the

bound on d(2) gives a bound on disρ(DS , DT ).

Finally, by the union bound, we have that, with prob-

ability 1−δ over the choice of S × T ∼ (DS ×DT )
m
,

we have,

|d(1)|+ 1

2
≤

α

1−e−2α

�
|d(1)S×T |+ 1 +

2KL(ρ�π)+ln
2
δ

m× α

�
,

or, which is equivalent,

disρ(DS , DT ) ≤

2α
�
disρ(S, T )+

2KL(ρ�π)+ln 2
δ

m×α +1

�
−1

1− e−2α
,

and we are done.

3. Other PAC-Bayesian Bounds

3.1. PAC-Bayesian Bounds with the kl term

Let us recall the PAC-Bayesian bound proposed by

Seeger (2002), in which the trade-off between the com-

plexity and the risk is handled by the kl function de-

fined by Equation (7) in this supplementary materials.

Theorem 6 (Seeger (2002)). For any domain PS over
X × Y , any set of hypothesis H, and any prior distri-
bution π over H, any δ ∈ (0, 1], with a probability at
least 1 − δ over the choice of S ∼ (PS)

m, for every ρ
over H, we have,

kl

�
RS(Gρ)

���RPS (Gρ)

�
≤

1

m

�
KL(ρ �π) + ln

2
√
m

δ

�
.

Here is a “Seeger’s type” PAC-Bayesian bound for our

domain disagreement disρ.

Theorem 7. For any distributions DS and DT over
X, any set of hypothesis H, and any prior distribution
π over H, any δ∈(0, 1], with a probability at least 1−δ
over the choice of S×T ∼(DS×DT )

m, for every ρ on
H, we have,

kl

�
disρ(S,T )+1

2

���disρ(DS ,DT )+1
2

�
≤

1
m

�
2KL(ρ�π)+ln

2
√
m

δ

�
.
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Proof. Similarly as in the proof of Theorem 3, we will

first bound,

d(1)
def
= E

(h,h�)∼ρ2
[RDS(h, h

�
)−RDT(h, h

�
)] ,

by its empirical counterpart,

d(1)S×T
def
= E

(h,h�)∼ρ2
[RS(h, h

�
)−RT (h, h

�
)] ,

and some extra terms related to the Kullback-Leibler

divergence between the posterior and the prior. How-

ever, a notable difference with the proof of Theorem 3

is that the obtained bound will be simultaneously valid

as an upper and a lower bound. Because of this, there

will no need here to redo the all the proof to bound

d(2)
def
= E

(h,h�)∼ρ2
[RDT(h, h

�
)−RDS(h, h

�
)] ,

and also, the present proof will not require the use of

the union bound argument.

Again, we consider “abstract” classifiers ĥ ∈ H2
whose

loss on a pair of examples (xs,xt
) ∼ DS×T is defined

by,

Ld(1)(ĥ,xs,xt
)
def
=
1+L0-1(h(x

s
),h�

(xs
))−L0-1(h(x

t
),h�

(xt
))

2
.

Note that, again, Ld(1) lies in [0, 1], and that R(1)
S×T (ĥ)

and R(1)
DS×T

(ĥ) are as defined in the proof of Theorem 3.

Now, let us consider the non-negative random variable,

E
ĥ∼π̂

e
mkl

�
R(1)

S×T (ĥ)
��R(1)

DS×T
(ĥ)

�

.

We apply Markov’s inequality (Lemma 1). For every

δ ∈ (0, 1], with a probability at least 1 − δ over the

choice of S×T ∼ (DS×T )
m
, we have,

E
ĥ∼π̂

e
mkl

�
R(1)

S×T (ĥ)
��R(1)

DS×T
(ĥ)

�

≤
1

δ
E

S×T∼(DS×T )m
E

ĥ∼π̂
e
mkl

�
R(1)

S×T (ĥ)
��R(1)

DS×T
(ĥ)

�

.

By taking the logarithm on each side of the previous

inequality, and transforming the expectation over π̂
into an expectation over ρ̂, we then obtain that,

ln

�
E

ĥ∼ρ̂

π̂(ĥ)

ρ̂(ĥ)
e
mkl

�
R(1)

S×T (ĥ)
��R(1)

DS×T
(ĥ)

��
(13)

≤ ln

�
1

δ
E

S×T∼(DS×T )m
E

ĥ∼π̂
e
mkl

�
R(1)

S×T (ĥ)
��R(1)

DS×T
(ĥ)

��

≤ ln
2
√
m

δ
.

The last inequality comes from the Maurer’s lemma

(Lemma 4).

Let us now re-write a part of the equation as KL(ρ�π)
and let us then find a lower bound by using twice

the Jensen’s inequality (Lemma 2), first on the con-

cave logarithm function, and then on the convex func-

tion kl,

ln

�
E

ĥ∼ρ̂

π̂(ĥ)

ρ̂(ĥ)
e
mkl

�
R(1)

S×T (ĥ)
��R(1)

DS×T
(ĥ)

��

= ln

�
E

ĥ∼ρ̂
e
mkl

�
R(1)

S×T (ĥ)
��R(1)

DS×T
(ĥ)

��
− 2KL(ρ�π)

≥ E
ĥ∼ρ̂

m kl

�
R(1)

S×T (ĥ)
��R(1)

DS×T
(ĥ)

�
− 2KL(ρ�π)

≥ m kl

�
E

ĥ∼ρ̂
R(1)

S×T (ĥ)
�� E

ĥ∼ρ̂
R(1)

DS×T
(ĥ)

�
− 2KL(ρ�π)

≥ m kl

�
R(1)

S×T (Gρ̂)
��R(1)

DS×T
(Gρ̂)

�
− 2KL(ρ�π) .

This implies that,

kl

�
R(1)

S×T(Gρ̂)
��R(1)

DS×T
(Gρ̂)

�
≤

1

m

�
2KL(ρ �π)+ln

2
√
m

δ

�
.

Since, as in the proof of Theorem 3 for d(1), we have:

d(1) = 2R(1)
DS×T

(Gρ̂)−1 and d(1)S×T = 2R(1)
S×T (Gρ̂)−1, the

previous line directly implies a bound on d(1) from its

empirical counterpart d(1)S×T . Hence, with probability

at least 1−δ over the choice of S × T ∼ (DS ×DT )
m
,

we have,

kl

�
d(1)

S×T+1

2

���d(1)+1
2

�
≤

1

m

�
2KL(ρ �π)+ln

2
√
m

δ

�
. (14)

We claim that we also have,

kl

�
|d(1)

S×T|+1

2

��� |d(1)|+1
2

�
≤

1

m

�
2KL(ρ �π)+ln

2
√
m

δ

�
,

(15)

which, since

|d(1)| = disρ(DS , DT ) and |d(1)S×T | = disρ(S, T ) ,

implies the result. Hence to finish the proof, let us

prove the claim of Equation (15). There are four cases

to consider.

Case 1: d(1)S×T ≥ 0 and d(1) ≥ 0. There is nothing

to prove since in that case, Equations (14) and (15)

coincide.

Case 2: d(1)S×T ≤ 0 and d(1) ≤ 0. This case reduces

to Case 1 because of the following property of kl(·�·):

kl

�
a+1
2

��� b+1
2

�
= kl

�
−a+1

2

���−b+1
2

�
. (16)
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Case 3: d(1)S×T ≤ 0 and d(1) ≥ 0. From straightfor-

ward calculations, one can show that,

kl

�
|d(1)

S×T
|+1

2

��� |d(1)|+1
2

�
− kl

�
d
(1)
S×T

+1

2

��� d(1)+1
2

�

= kl

�
−d

(1)
S×T

+1

2

��� d(1)+1
2

�
− kl

�
d
(1)
S×T

+1

2

��� d(1)+1
2

�

=

�
−d

(1)
S×T

+1

2 −
d
(1)
S×T

+1

2

�
ln

�
1

d(1)+1
2

�

+

��
1−

−d
(1)
S×T

+1

2

�
−

�
1−

d
(1)
S×T

+1

2

��
ln

�
1

1− d(1)+1
2

�

=
�
−d(1)S×T

�
ln

�
1

d(1)+1
2

�
+

�
d(1)S×T

�
ln

�
1

1− d(1)+1
2

�

=
�
−d(1)S×T

�
ln

�
1

d(1)+1
2

�
+

�
d(1)S×T

�
ln

�
1

−d(1)+1
2

�

= d(1)S×T ln
�

d(1)+1
−d(1)+1

�

≤ 0 . (17)

The last inequality follows from the fact that we have

d(1)S×T ≤ 0 and d(1) ≥ 0.

Hence, from Equations (17) and (14), we have,

kl

�
|d(1)

S×T |+1

2

��� |d(1)|+1
2

�
≤ kl

�
d(1)

S×T+1

2

���d(1)+1
2

�

≤
1

m

�
2KL(ρ �π)+ln

2
√
m

δ

�
,

as wanted.

Case 4: d(1)S×T ≥ 0 and d(1) ≤ 0. Again because of

Equation (16), this case reduces to Case 3, and we are

done.

From the preceding “Seeger’s type” results, one can

then obtain the following PAC-Bayesian DA-bound.

Theorem 8. For any domains PS and PT (respec-
tively with marginals DS and DT ) over X×Y , any set
of hypothesis H, and any prior distribution π over H,
any δ∈(0, 1], with a probability at least 1− δ over the
choice of S×T∼(PS×DT )

m, we have,

RPT (Gρ)−RPT (Gρ∗
T
) ≤ supRρ + supDρ + λρ ,

where λρ
def
= RDT (Gρ, Gρ∗

T
) +RDS (Gρ, Gρ∗

T
) and,

Rρ
def
=

�
r :kl

�
RS(Gρ)

��r
�
≤

1
m

�
KL(ρ�π) + ln

4
√
m

δ

��
,

Dρ
def
=

�
d :kl

�disρ(S,T )+1
2

��d+1
2

�
≤

1
m

�
2KL(ρ�π)+ln

4
√
m

δ

��
.

Proof. The result is obtained by inserting Ths. 6 and 7

(with δ :=
δ
2 ) in Th. 4 of the main paper.

3.2. PAC-Bayesian Bounds when m �=m�

In the main paper, for the sake of simplicity, we restrict

to the case where m (the size of the source set S)
and m�

(the size of the target set T ) are equal. All

the results generalize to the m �= m�
case. In this

subsection, we will show how it can be done from a

“McAllester’s type” of bound (Similar results can be

achieved for “Catoni’s type” or “Seeger’s type”).

First we recall the PAC-Bayesian bound proposed by

McAllester (2003), which is stated without a term al-

lowing to control the trade-off between the complexity

and the risk.

Theorem 9 (McAllester (2003)). For any domain PS

over X × Y , any set of hypothesis H, and any prior
distribution π over H, any δ ∈ (0, 1], with a probability
at least 1− δ over the choice of S ∼ (PS)

m, for every
ρ over H, we have,

���RPS (Gρ)−RS(Gρ)

��� ≤

�
1

2m

�
KL(ρ �π) + ln

2
√
m

δ

�
.

Now we can prove the following consistency bound for

disρ(DS ,DT ), when m �= m�
.

Theorem 10. For any marginal distributions DS and
DT over X, any set of hypothesis H, any prior dis-
tribution π over H, any δ ∈ (0, 1], with a probabil-
ity at least 1 − δ over the choice of S ∼ (DS)

m and
T ∼ (DT )

m�
, for every ρ over H, we have,

��� disρ(DS ,DT )−disρ(S, T )
���≤

�
1

2m

�
2KL(ρ�π)+ln

4
√
m

δ

�

+

���� 1

2m�

�
2KL(ρ�π)+ln

4
√
m�

δ

�
.

Proof. Let us consider the non-negative random vari-

able,

E
(h,h�)∼π2

e2m(RDS
(h,h�)−RS(h,h�))2 .

We apply Markov’s inequality (Lemma 1). For every

δ ∈ (0, 1], with a probability at least 1 − δ over the

choice of S ∼ (DS)
m
, we have,

E
(h,h�)∼π2

e2m(RDS
(h,h�)−RS(h,h�))2

≤
1

δ
E

S∼(DS)m
E

(h,h�)∼π2
e2m(RDS

(h,h�)−RS(h,h�))2 .
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By taking the logarithm on each side of the previous

inequality and transforming the expectation over π2

into an expectation over ρ2, we obtain that for every

δ ∈ (0, 1], with a probability at least 1 − δ over the

choice of S ∼ (DS)
m
, and for every posterior distribu-

tion ρ, we have,

ln

�
E

(h,h�)∼ρ2

π(h)π(h�
)

ρ(h)ρ(h�)
e2m(RDS

(h,h�)−RS(h,h�))2
�

≤ ln

�
1

δ
E

S∼(DS)m
E

(h,h�)∼π2
e2m(RDS

(h,h�)−RS(h,h�))2
�
.

Since ln(·) is a concave function, we can apply the

Jensen’s inequality (Lemma 2). Then, for every δ ∈

(0, 1], with a probability at least 1− δ over the choice

of S ∼ (DS)
m
, and for every posterior distribution ρ,

we have,

E
(h,h�)∼ρ2

ln

�
π(h)π(h�

)

ρ(h)ρ(h�)
e2m(RDS

(h,h�)−RS(h,h�))2
�

≤ ln

�
1

δ
E

S∼(DS)m
E

(h,h�)∼π2
e(2m(RDS

(h,h�)−RS(h,h�))2
�
.

By the Equation (8),

E
(h,h�)∼ρ2

ln

�
π(h)π(h�

)

ρ(h)ρ(h�)

�
= −2KL(ρ�π).

For every δ ∈ (0, 1], with a probability at least 1 − δ
over the choice of S ∼ (DS)

m
, and for every posterior

distribution ρ, we have,

− 2KL(ρ�π) + E
(h,h�)∼ρ2

m 2(RDS (h, h
�
)−RS(h, h

�
))

2

≤ ln

�
1

δ
E

S∼(DS)m
E

(h,h�)∼π2
e2m(RDS

(h,h�)−RS(h,h�))2
�
.

Since 2(a − b)2 is a convex function, we again apply

Jensen inequality,

�
E

(h,h�)∼ρ2
(RDS (h, h

�
)−RS(h, h

�
))

�2

≤ E
(h,h�)∼ρ2

(RDS (h, h
�
)−RS(h, h

�
))

2.

Thus, for every δ ∈ (0, 1], with a probability at least

1 − δ over the choice of S ∼ (DS)
m
, and for every

posterior distribution ρ, we have,

2m

�
E

(h,h�)∼ρ2
RDS (h, h

�
)− E

h,h�∼ρ2
RS(h, h

�
)

�2

≤ 2KL(ρ�π)

+ ln

�
1

δ
E

S∼(DS)m
E

(h,h�)∼π2
e2m(RDS

(h,h�)−RS(h,h�))2
�
.

Let us now bound,

ln

�
1

δ
E

S∼(DS)m
E

(h,h�)∼π2
e2m(RDS

(h,h�)−RS(h,h�))2
�
.

To do so, we have,

E
S∼(DS)m

E
(h,h�)∼π2

e2m(RDS
(h,h�)−RS(h,h�))2

= E
(h,h�)∼π2

E
S∼(DS)m

e2m(RDS
(h,h�)−RS(h,h�))2

(18)

≤ E
(h,h�)∼π2

E
S∼(DS)m

ekl(RS(h,h�)�RDS
(h,h�))

(19)

≤ 2
√
m. (20)

Line (18) comes from the independence between DS

and π2
. The Pinsker’s inequality,

2(q − p)2 ≤ kl(q�p) for any p, q ∈ [0, 1],

gives Line (19). The last Line (20) comes from the

Maurer’s lemma (Lemma 4).

Thus for every δ ∈ (0, 1], with a probability at least

1 − δ over the choice of S ∼ (DS)
m
, and for every

posterior distribution ρ, we obtain,

2m

�
E

(h,h�)∼ρ2
RDS (h, h

�
)− E

(h,h�)∼ρ2
RS(h, h

�
)

�2

≤ 2KL(ρ�π) + ln
2
√
m

δ

⇔

�
E

(h,h�)∼ρ2
RDS (h, h

�
)− E

(h,h�)∼ρ2
RS(h, h

�
)

�2

≤
1

2m

�
2KL(ρ�π) + ln

2
√
m

δ

�

⇔

���� E
(h,h�)∼ρ2

RDS (h, h
�
)− E

(h,h�)∼ρ2
RS(h, h

�
)

����

≤

�
1

2m

�
2KL(ρ�π) + ln

2
√
m

δ

�
. (21)

Following the same proof process for bounding���� E
(h,h�)∼ρ2

RDT (h, h
�
)− E

(h,h�)∼ρ2
RT (h, h�

)

����, we obtain

the following result.

For every δ ∈ (0, 1], with a probability at least 1 − δ
over the choice of T ∼ (DT )

m�
, and for every posterior

distribution ρ,

���� E
(h,h�)∼ρ2

RDT (h, h
�
)− E

(h,h�)∼ρ2
RT (h, h

�
)

����

≤

���� 1

2m�

�
KL(ρ�π) + ln

2
√
m�

δ

�
. (22)

Finally, let us substitute δ by
δ
2 in Inequalities (21)

and (22). This, together with the union bound that

assure that both results hold simultaneously, gives the
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result because,

���� E
(h,h�)∼ρ2

[RDT (h, h
�
)−RDS (h, h

�
)]

���� = disρ(DS , DT ),

���� E
(h,h�)∼ρ2

[RT (h, h
�
)−RS(h, h

�
)]

���� = disρ(S, T ),

and because if |a1 − b1| ≤ c1 and |a2 − b2| ≤ c2, then
|(a1 − a2)− (b1 − b2)| ≤ c�1 + c�2.

Then we can obtain the following PAC-Bayesian DA-

bound.

Theorem 11. For any domains PS and PT (respec-
tively with marginals DS and DT ) over X × Y , and
for any set H of hypothesis, for any prior distribution
π over H, any δ ∈ (0, 1], with a probability at least
1 − δ over the choice of S1 ∼ (DS)

m, S2 ∼ (DS)
m�

,
and T ∼ (DT )

m�
, for every ρ over H, we have,

RPT (Gρ)−RPT (Gρ∗
T
) ≤ RS(Gρ)+disρ(S, T ) + λρ

+

�
1

2m

�
KL(ρ�π)+ln

4
√
m

δ

�

+

�
1

2m

�
2KL(ρ�π)+ln

8
√
m

δ

�

+

���� 1

2m�

�
2KL(ρ�π)+ln

8
√
m�

δ

�
.

where λρ
def
= RDT (Gρ, Gρ∗

T
) +RDS (Gρ, Gρ∗

T
) .

Proof. The result is obtained by inserting Ths. 9 and

10 (with δ :=
δ
2 ) in Th. 4 of the main paper.

4. PBDA Algorithm Details

4.1. Objective function and gradient

Given a source sample S={(xs
i , y

s
i )}

m
i=1, a target sam-

ple T = {(xt
i)}

m
i=1, and fixed parameters A > 0 and

C > 0, the learning algorithm PBDA consists in find-

ing the weight vector w minimizing,

�w�2

2
+C

m�

i=1

Φcvx

�
ysi

w · xs
i

�xs
i�

�

+A

�����

m�

i=1

Φdis

�
w · xs

i

�xs
i�

�
−Φdis

�
w · xt

i

�xt
i�

������ , (23)

where, Erf being the Gauss error function,

Φ(a)
def
=

1
2

�
1−Erf

�
a√
2

��
,

Φcvx(a)
def
= max

�
Φ(a), 1

2−
a√
2π

�
,

Φdis(a)
def
= 2× Φ(a)× Φ(−a) .

Figure 1. Behaviour of functions Φ(·), Φcvx(·) and Φdis(·).

Figure 1 illustrates these three functions.

The gradient of the Equation (23) is given by,

w+C
m�

i=1

Φ
�
cvx

�
ys
iw·xs

i
�xs

i�

�
ys
i x

s
i

�xs
i�

+ s×A

�
m�

i=1

Φ
�
dis

�
w·xt

i

�xt
i�

�
xt
i

�xt
i�

− Φ
�
dis

�
w·xs

i
�xs

i�

�
xs
i

�xs
i�

�
,

where Φ
�
cvx(a) and Φ

�
dis(a) are respectively the deriva-

tives of functions Φcvx and Φdis evaluated at point a,

and s = sgn

�
m�

i=1

Φdis

�
w·xs

i
�xs

i�

�
−Φdis

�
w·xt

i

�xt
i�

��
.

4.2. Using a kernel function

The kernel trick allows us to work with dual weight

vector ααα ∈ R2m
that is a linear classifier in an aug-

mented space. Given a kernel k : Rd×Rd → R, we
have,

hw(x) =

m�

i=1

αik(x
s
i ,x) +

m�

i=1

αi+mk(xt
i,x) .

Let us denote K the kernel matrix of size 2m × 2m
such as,

Ki,j = k(xi,xj)

where,

x# =

�
xs
# if # ≤ m

xt
#−m otherwise.

In that case, the objective function of Equation (23)

is rewritten in term of the vector ααα = (α1,α2, . . .α2m)

as,

1

2

2m�

i=1

2m�

j=1

αiαjKi,j + C
m�

i=1

Φcvx

�
ysi

�2m
j=1 αjKi,j�

Ki,i

�

+A

�����

m�

i=1

Φdis

��2m
j=1 αjKi,j�

Ki,i

�
−Φdis

��2m
j=1 αjKi+m,j�
Ki+m,i+m

������ .
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The gradient of the latter equation is given by the

vector ααα�
= (α�

1,α
�
2, . . .α

�
2m), with α�

# equals to,

2m�

j=1

αiKi,# + C
m�

i=1

Φcvx

�
ysi

�2m
j=1 αjKi,j�

Ki,i

�
ysi Ki,#�

Ki,i

+ s×A

�
m�

i=1

Φdis

��2m
j=1 αjKi,j�

Ki,i

�
Ki,#�
Ki,i

−Φdis

��2m
j=1 αjKi+m,j�
Ki+m,i+m

�
Ki+m,#�
Ki+m,i+m

�
,

where,

s = sgn

�
m�

i=1

Φdis

��2m
j=1 αjKi,j
√

Ki,i

�
−Φdis

��2m
j=1 αjKi+m,j
√

Ki+m,i+m

��
.

4.3. Implementation details

For our experiments, we minimize the objective

function using a Broyden-Fletcher-Goldfarb-Shanno
method (BFGS) implemented in the scipy python li-

brary
1
. We made our code available at the following

URL:

http://graal.ift.ulaval.ca/pbda/

When selecting hyperparameters by reverse cross-

validation, we search on a 20 × 20 parameter grid for

a A between 0.01 and 10
6
and a parameter C between

1.0 and 10
8
, both on a logarithm scale.
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