Volume entropy of Hilbert Geometries - Archive ouverte HAL
Article Dans Une Revue Pacific Journal of Mathematics Année : 2010

Volume entropy of Hilbert Geometries

Résumé

It is shown that the volume entropy of a Hilbert geometry associated to an $n$-dimensional convex body of class $C^{1,1}$ equals $n-1$. To achieve this result, a new projective invariant of convex bodies, similar to the centro-affine area, is constructed. In the case $n=2$, and without any assumption on the boundary, it is shown that the entropy is bounded above by $\frac{2}{3-d} \leq 1$, where $d$ is the Minkowski dimension of the extremal set of $K$. An example of a plane Hilbert geometry with entropy strictly between 0 and 1 is constructed.
Fichier principal
Vignette du fichier
berck_bernig_vernicos3.pdf (371.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00819143 , version 1 (05-06-2015)

Identifiants

Citer

Gautier Berck, Andreas Bernig, Constantin Vernicos. Volume entropy of Hilbert Geometries. Pacific Journal of Mathematics, 2010, 245, pp.201-225. ⟨10.2140/pjm.2010.245.201⟩. ⟨hal-00819143⟩
69 Consultations
159 Téléchargements

Altmetric

Partager

More