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VOLUME ENTROPY OF HILBERT GEOMETRIES

G. BERCK, A. BERNIG & C. VERNICOS

Abstract. It is shown that among all plane Hilbert geometries,
the hyperbolic plane has the maximal volume entropy. More pre-
cisely, it is shown that the volume entropy is bounded above by
2

3−d ≤ 1, where d is the Minkowski dimension of the extremal set
of K. An explicit example of a plane Hilbert geometry with non-
integer volume entropy is constructed. In arbitrary dimension, the
hyperbolic space has maximal entropy among all Hilbert geome-
tries satisfying some additional technical hypothesis. To achieve
this result, a new projective invariant of convex bodies, similar to
the centro-affine area, is constructed.

1. Introduction

In his famous 4-th problem, Hilbert asked to characterize metric
geometries whose geodesics are straight lines. He constructed a special
class of examples, nowadays called Hilbert geometries [20, 21]. These
geometries have attracted a lot of interest, see for example the works
of Y. Nasu [38], P. de la Harpe [16], A. Karlsson & G. Noskov [26],
E. Socie-Methou [41], T. Foertsch & A. Karlsson [18], Y. Benoist [8],
B. Colbois & C. Vernicos [13] and the two complementary surveys by
Y. Benoist [6] and the last named author [44].

A Hilbert geometry is a particularly simple metric space on the in-
terior of a compact convex set K (see definition below). This metric
happens to be a complete Finsler metric whose set of geodesics con-
tains the straight lines. Since the definition of the Hilbert geometry
only uses cross-ratios, the Hilbert metric is a projective invariant. In
the particular case where K is an ellipsoid, the Hilbert geometry is
isometric to the usual hyperbolic space.

An important part of the above mentioned works, and of older ones,
is to study how different or close to the hyperbolic geometry these
geometries can be. For instance, if K is not an ellipsoid, then the
metric is never Riemannian, see D.C. Kay [27, Corollary 1]. This last
result is actually related to the fact that among all finite dimensional
normed vector spaces, many notions of curvatures are only satisfied
by the Euclidean spaces (see also P. Kelly & L. Paige [28], P. Kelly
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& E. Strauss [29, 30]). However, if ∂K is sufficiently smooth then
the flag curvature, an analog of the sectional curvature, of the Hilbert
metric is constant and equals −1 , see for example Z. Shen [40, Example
9.2.2]. Hence a question one can ask is whether or not these geometries
behave like negatively curved Riemanniann manifold. The example of
the triangle geometry which is isometric to a two dimensional normed
vector space (see P. De la Harpe [16]) shows that things are a little more
involved (see also theorems cited below). The present work is partially
inspired by the feeling that Hilbert geometries might be thought as
geometries with Ricci curvature bounded from below, and focuses on
the volume growth of balls.

Unlike the Riemannian case, where there is only one natural choice of
volume, there are several good choices of volume on a Finsler manifold.
We postpone this issue to section 2 and fix just one volume (like the
n-dimensional Hausdorff measure) for the moment.

Let B(o, r) be the metric ball of radius r centered at o. The volume
entropy of K is defined by the following limit (provided it exists)

(1) EntK := lim
r→∞

log VolB(o, r)

r
.

The entropy does not depend on the particular choice of the base
point o ∈ intK nor on the particular choice of the volume. If h =
EntK, then VolB(o, r) behaves roughly as ehr.

It is well-known and easy to prove (see, e.g., S. Gallot, D. Hulin &
J. Lafontaine [19, Section III.H]) that the volume of a ball of radius r
in the n-dimensional hyperbolic space is given, with ωn the volume of
the Euclidean unit ball of dimension n, by

nωn

∫ r

0

(sinh s)n−1ds = O(e(n−1)r).

It follows that the entropy of an ellipsoid equals n− 1.

In general, it is not known whether the above limit exists. If the
convex set K is divisible, which means that a discrete subgroup of
the group of isometries of the Hilbert geometry acts cocompactly, then
the entropy is known to exist, see Y. Benoist [7]. If the convex set
is sufficiently smooth, e.g., C2 with positive curvature suffices, then
the entropy exists and equals n − 1 (see the theorem of B. Colbois &
P. Verovic below). In general, one may define lower and upper entropies
Ent, Ent by replacing the limit in the definition (1) by lim inf or lim sup.

There is a well-known conjecture (whose origin seems difficult to
locate) saying that the hyperbolic space has maximal entropy among
all Hilbert geometries of the same dimension.

Conjecture. For any n-dimensional Hilbert geometry,

EntK ≤ n− 1.



VOLUME ENTROPY OF HILBERT GEOMETRIES 3

Notice that such a result is a consequence of Bishop’s volume com-
parison theorem for a complete Riemannian manifold of Ricci curvature
bounded by −(n− 1) (see [19, theorem 3.101, i)]).

Several particular cases of the conjecture were treated in the lit-
erature. The following one shows that the volume entropy does not
characterize the hyperbolic geometry among all Hilbert geometries.

Theorem. (B. Colbois & P. Verovic [15])
If K is C2-smooth with strictly positive curvature, then the Hilbert met-
ric of K is bi-Lipschitz to the hyperbolic metric and therefore

EntK = n− 1.

The case of convex polytopes is rather well understood.

Theorem. (A. Bernig [9], C. Vernicos [43])
The Hilbert metric associated to a convex body K is bi-Lipschitz to a
normed space if and only if K is a polytope. In particular, the entropy
of a polytope is 0.

The two-dimensional case of this theorem was earlier obtained by
B. Colbois, C. Vernicos & P. Verovic in [14].

Instead of taking the volume of balls, another natural choice is to
study the volume growth of the metric spheres S(o, r). One may define
a (spherical) entropy by

(2) EntsK := lim
r→∞

log VolS(o, r)

r
,

provided the limit exists. In general, one may define upper and lower
spherical entropies Ent

s
K and EntsK by replacing the limits in the

definition (2) by a lim sup or lim inf.

The following theorem is a spherical version of the theorem of B. Col-
bois & P. Verovic.

Theorem. (A.A. Borisenko & E.A. Olin [11])
If K is an n-dimensional convex body of class C3 with positive Gauss
curvature, then Ents = n− 1.

Our first main theorem treats the two-dimensional case. Recall that
an extremal point of a convex body K is a point which is not a convex
combination of two other points of K.

Theorem (First Main Theorem). Let K be a two-dimensional con-
vex body. Let d be the upper Minkowski dimension of the set of extremal
points of K. Then the entropy of K is bounded by

(3) EntK ≤ 2

3− d
≤ 1.
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The inequality is sharp if K is smooth or contains some positively
curved smooth part in the boundary. In this case the upper Minkowski
dimension of exK and the entropy both are 1. On the other hand,
for polygones the upper Minkowski dimension of the set of extremal
points and the entropy both vanish (see the theorem of B. Colbois,
C. Vernicos & P. Verovic above), and the inequality is not sharp in this
case.

It should be noted that the entropy behaves in a rather subtle way
(see also C. Vernicos [42] for a technical and complementary study, to
this paper, of the entropy). As we have seen above, the entropy of a
polygon vanishes. In contrast to this, we will construct a convex body
with piecewise affine boundary whose entropy is between 1

4
and 3

4
.

Our second main theorem applies in all dimensions. It weakens in
a substantial way the assumptions in the theorem of B. Colbois &
P. Verovic and strengthens its conclusions for not only does it give the
precise value of the entropy but also the entropy coefficient. In order to
state it, we introduce a projective invariant of convex bodies interesting
in itself.

Let V be an n-dimensional vector space with origin o. Given a convex
body K containing o in the interior, we define a positive function a on
the boundary by the condition that for p ∈ ∂K we have −a(p)p ∈ ∂K.
The letter a stands for antipodal. If V is endowed with a Euclidean
scalar product, we let k(p) be the Gauss curvature and n(p) be the outer
normal vector at a boundary point p (whenever they are well-defined,
which is almost everywhere the case following A.D. Alexandroff [1]).

Definition. The centro-projective area of K is

(4) Ap(K) :=

∫
∂K

√
k

〈n, p〉n−1
2

(
2a

1 + a

)n−1
2

dA.

It is not quite obvious (but true, as we shall see) that this definition
does not depend on the choice of the scalar product. In fact, the centro-
projective area is invariant under projective transformations fixing the
origin. The reader familiar with the theory of valuations may notice
the similarity with the centro-affine surface area, whose definition is the
same except that the second factor (containing the function a) does not
appear. We refer to the books by Laugwitz [32] and Leichtweiss [34]
for more information on affine and centro-affine differential geometry.

Theorem (Second Main Theorem). If ∂K is C1,1, then

(5) lim
r→∞

VolB(o, r)

sinhn−1 r
=

1

n− 1
Ap(K) 6= 0

and EntK = n − 1. Moreover, without any assumption on K, if
Ap(K) 6= 0 then EntK ≥ n− 1.
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Our next theorem, together with the previous ones, shows in par-
ticular that it suffices to assume K to be merely of class C1,1 in the
theorem of A.A. Borisenko & E.A. Olin.

Theorem. For each convex body K,

EntsK = EntK,

Ent
s
K = EntK.

Plan of the paper. In the next section, we collect some well-known
facts about convex bodies, Hilbert geometries and volumes on Finsler
manifolds. A number of easy lemmas is proved which will be needed
in the proof of our main theorem. Using some inequalities for volumes
in normed spaces, we show that entropy and spherical entropy coincide
for general convex bodies.

In section 3, we give the proofs of our main theorems. In the final
section 4, we give an intrinsic definition of the centro-projective surface
area and study some of its properties. In particular, we show that it is
upper semi-continuous with respect to Hausdorff topology.

Acknowledgements. We wish to thank Bruno Colbois and Daniel
Hug for interesting discussions and Franz Schuster for useful remarks
on an earlier version of this paper.

2. Preliminaries on Convex bodies
and Hilbert Geometries

2.1. Convex bodies. Let V be a finite-dimensional real vector space.
By convex body, we mean a compact convex set K ⊂ V with non-empty
interior (note that this last condition is sometimes not required in the
literature). Most of the time, the convex bodies will be assumed to
contain the origin in their interiors. In such a case, we will call as
usual Minkowski functional the positive, homogeneous of degree one
function whose level set at height 1 is the boundary ∂K. It is a convex
function and by Alexandroff’s theorem, it admits a quadratic approxi-
mation almost everywhere (see e.g. A.D. Alexandroff [1] or L.C. Evans
& R.F. Gariepy [17, p. 242]). In the following, boundary-points where
Alexandroff’s theorem applies will be called smooth. Assuming the
vector space to be equipped with an inner product, the principal cur-
vatures of the boundary and its Gauss curvature k are well defined at
every smooth point.

We will be concerned with generalizations and variations of Blaschke’s
rolling theorem, a proof of which may be found in K. Leichtweiß [33].

Theorem 2.1 (W. Blaschke, [10]). Let K be a convex body in Rn

whose boundary is C2 with everywhere positive Gaussian curvature.
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Then there exist two positive radii R1 and R2 such that for every bound-
ary point p, there exists a ball of radius R1 (resp. R2) containing p on
its boundary and contained in K (resp. containing K).

We first remark that for the “inner part” of Blaschke’s result, the
regularity of the boundary may be lowered. Recall that the bound-
ary of a convex body is C1,1 provided it is C1 and the Gauss map
is Lipschitz-continuous. Roughly speaking, the second condition says
that the curvature of the boundary remains bounded, even if it is only
almost everywhere defined. The following proposition then gives a geo-
metrical characterization of such bodies, see L. Hörmander [22, propo-
sition 2.4.3] or V. Bangert [4] and D. Hug [25].

Proposition 2.2. The boundary of a convex body K is C1,1 if and only
if there exists some R > 0 such that K is the union of balls with radius
R.

Without assumption on the boundary, there is still an integral ver-
sion of Blaschke’s rolling theorem.

Theorem 2.3 (C. Schütt & E. Werner, [39]). For a convex body K
containing the unit ball of a Euclidean space and p ∈ ∂K, let R(p) ∈
[0,∞) be the radius of the biggest ball contained in K and containing
p. Then for all 0 < α < 1

(6)

∫
∂K

R−αdHn−1 <∞.

We will need the following refinement of this theorem.

Proposition 2.4. In the same situation as in Theorem 2.3, for each
Borel subset B ⊂ ∂K we have

(7)

∫
B

R−αdHn−1 ≤

2(n− 1)α
(

2α

1− 2α−1

)α (
Hn−1(B)

)1−α (Hn−1(∂K)
)α
.

In particular for some constant C depending on K we have

(8)

∫
B

R−
1
2dHn−1 ≤ C

(
Hn−1(B)

) 1
2 .

Proof. By ([39], Lemma 4), we have for 0 ≤ t ≤ 1

(9) Hn−1
(
{p ∈ ∂K|R(p) ≤ t}

)
≤ (n− 1)t Hn−1(∂K),
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from which we deduce that, for each 0 < ε < 1

(10)

∫
∂K∩{R<ε}

R−αdHn−1 =
∞∑
i=0

∫
∂K∩{ε2−i−1≤R<2−iε}

R−αdHn−1

≤
∞∑
i=0

(ε2−i−1)−α Hn−1
(
∂K ∩ {ε2−i−1 ≤ R < 2−iε}

)
≤

∞∑
i=0

(ε2−i−1)−α(n− 1)2−iε Hn−1(∂K)

= ε1−α(n− 1)
2α

1− 2α−1
Hn−1(∂K).

It follows that∫
B

R−αdHn−1 =

∫
B∩{R<ε}

R−αdHn−1 +

∫
B∩{R≥ε}

R−αdHn−1

≤ ε1−α(n− 1)
2α

1− 2α−1
Hn−1(∂K) + ε−α Hn−1(B).

Choosing

ε :=
1− 2α−1

2α(n− 1)

Hn−1(B)

Hn−1(∂K)

yields the inequality of the lemma. �

2.2. Hilbert geometries. Given two distinct points x, y ∈ intK, the
Hilbert distance between x and y is defined by

d(x, y) :=
1

2

∣∣log[a, b, x, y]
∣∣,

where a and b are the intersections of the line passing through x and
y with the boundary ∂K, and [a, b, x, y] denotes the cross-ratio (with
the convention of [12]).

This distance is invariant under projective transformations. If K is
an ellipsoid, the Hilbert geometry on intK is isometric to hyperbolic
n-space.

Unbounded closed convex sets with non-empty interiors and not con-
taining a straight line are projectively equivalent to convex bodies.
Therefore, the definition of the distance naturally extends to the in-
teriors of such convex sets. In particular the convex sets bounded by
parabolas are also isometric to the hyperbolic space.

Let us assume the origin o lies inside the interior of K. We will write
B(r) for the metric ball of radius r and centered at o. Its boundary, the
metric sphere, will be denoted by S(r). Let a : ∂K −→ R+ be defined
by the equation

−a(p)p ∈ ∂K,
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so the letter a refers to the antipodal point. It is an easy exercise to
check that metric spheres are parameterized by the boundary ∂K as

S(r) =
{
φ(p, r) : p ∈ ∂K

}
,

where

φ : ∂K × R+ → intK(11)

(p, r) 7→ a
e2r − 1

ae2r + 1
p.

The Hilbert distance comes from a Finsler metric on the interior of
K. Given x ∈ intK and v ∈ TxV , the Finsler norm of v is given by

(12) ‖v‖x =
1

2

(
1

t1
+

1

t2

)
,

where t1, t2 > 0 are such that x± tiv ∈ ∂K. Again, we do not exclude
that one of the ti’s is infinite. Equivalently, if Fx is the Minkowski
functional of K − x, then

‖v‖x =
1

2

(
Fx(v) + Fx(−v)

)
.

The Finsler metric makes it possible to measure the length of a
differentiable curve c : I → intK by

l(c) :=

∫
I

∥∥c′(t)∥∥
c(t)
dt.

It is less trivial to measure the area (or volume) of higher dimensional
subsets of intK. In fact, different notions of volume are being used.
The most important ones are the Busemann definition (which equals
the Hausdorff n-dimensional measure) and the Holmes-Thompson def-
inition. In the following, only the axioms of a volume as defined in [3]
will be used. We will make use of the following properties:

• Vol is a Borel measure on intK which is absolutely continuous
with respect to Lebesgue measure.
• If A ⊂ K ⊂ L, where K,L are compact convex sets, then the

measure of A with respect to K is larger than the measure of
A with respect to L.
• If K is an ellipsoid, then Vol(A) is the hyperbolic volume of A.

The following projective invariants of convex bodies will be our main
subjects of investigation.

Definition 2.5. The upper (resp. lower) volume entropy of K is

Ent(K) := lim sup
r→∞

log
(
VolB(r)

)
r

,

Ent(K) := lim inf
r→∞

log
(
VolB(r)

)
r

.
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If the upper and lower volume entropies of K coincide, their common
value is called volume entropy of K and denoted by EntK.

Note that these invariants are independent of the choice of the center
and of the choice of the volume definition.

2.3. Busemann’s density. For simplicity, we restrict ourselves to
Busemann’s volume, although all results remain true for every other
choice of volume. The reason is that the proofs of the crucial propo-
sitions 2.7 and 2.8 below do not use any particular property of Buse-
mann’s volume, but only the axioms satisfied by every definition of
volume.

The density of Busemann’s volume (with respect to some Lebesgue
measure L) is given by

σ(x) =
ωn
L(Bx)

,

where Bx is the tangent unit ball of the Finsler metric at x and ωn is
the (Euclidean) volume of the unit ball in Rn. The volume of a Borel
subset A ⊂ intK is thus given by

Vol(A) =

∫
A

σ dL.

We now state and prove some propositions concerning upper bounds
and asymptotic behaviors of Busemann’s densities for points which are
close to the boundary of particular convex sets. We will make use of an
auxiliary inner product, calling L and µ the corresponding Lebesgue
measure and volume n-form. Busemann densities are defined with this
particular choice of measure.

Proposition 2.6. Let K,K ′ be closed convex sets not containing any
straight line and σ : intK → R, σ′ : intK ′ → R their corresponding
Busemann densities. Let p ∈ ∂K, E0 a support hyperplane of K at
p and E1 a hyperplane parallel to E0 intersecting K. Suppose that K
and K ′ have the same intersection with the strip between E0 and E1

(in particular p ∈ ∂K ′). Then

lim
y→p

σ(y)

σ′(y)
= 1.

Proof. Let d be the distance between E0 and E1 and (yi) a sequence of
points of intK converging to p. We may suppose that the distance di
between yi and E0 is strictly less than d. For every fixed point yi and
non-zero tangent vector v ∈ TyiK, let t1, t2 ∈ R+ ∪ {∞} be such that
yi ± t1,2v ∈ ∂K; let t′1, t

′
2 be the corresponding numbers for K ′. Since

at least one of yi + t1v and yi − t2v is inside the strip, say yi + t1v, we
must have t1 = t′1.
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Either t2 = t′2 and ‖v‖i = ‖v‖′i, or t2 6= t′2, in which case

t1
t2
,
t′1
t′2
≤ di
d− di

.

Therefore,

d− di
d
≤ ‖v‖i
‖v‖′i

=
1 + t1

t2

1 +
t′1
t′2

≤ d

d− di

which shows that, as functions on RP n−1, ‖·‖i/‖·‖′i uniformly converge
to 1. Hence, for every ε and every i large enough,

(1− ε)Byi ⊂ B′yi ⊂ (1 + ε)Byi ,

which implies the convergence of σ/σ′ to 1. �

Proposition 2.7. Let V = Rn with its usual scalar product. Let P be
the convex set bounded by the parabola y =

∑n−1
i=1

ci
2
x2
i , c1, . . . , cn−1 > 0.

Then

(13) σ(0, . . . , 0, 1− λ) =

√
c(

2(1− λ)
)n+1

2

,

where c =
∏n−1

i=1 ci.

Proof. By the invariance of the Hilbert metric under projective trans-
formations, the tangent unit sphere at any point of intP is an ellipse.
At the point (0, . . . , 0, 1− λ), the symmetry implies that the principal
axes of this ellipse are parallel to the coordinate axes. Hence

σ =
1∏n
i=1 li

,

where the li’s, i = 1, . . . , n, are the Euclidean lengths of the principal
half-axes.

Now li =
√

2(1−λ)
ci

, i = 1, . . . , n− 1 and ln = 2(1− λ). �

Proposition 2.8. Assume the origin o is inside intK. For a smooth
point p of ∂K, let n(p) be the outward normal vector and let k(p) be
the Gauss curvature of ∂K at p. Then

(14) lim
λ→1

σ(λp)(1− λ)
n+1
2 =

√
k(p)(

2
〈
p, n(p)

〉)n+1
2

.

Proof. Let us choose a frame (p; v1, . . . , vn−1, vn) where v1, . . . , vn−1 ∈
Tp∂K are unit vectors tangent to the principal curvature directions of
∂K at p and vn = −p. In these coordinates, the boundary of K is
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locally the graph of a function: y =
∑n−1

i=1
ci
2
x2
i + R(|x|) with R(|x|) =

o(|x|2) and c1, . . . , cn−1 ≥ 0. We set

c :=
n−1∏
i=1

ci.

A small computation shows that

dx1 ∧ . . . ∧ dxn−1 ∧ dy =
1

m
µ,

where µ is the Euclidean n-form and m := µ(v1, . . . , vn) =
〈
p, n(p)

〉
.

Also, the Gauss curvature at p is given by

k(p) = cmn−1.

Let us fix ε > 0. Locally, the parabola defined by

y =
n−1∑
i=1

ci + ε

2
x2
i

lies inside K. Cutting it with some horizontal hyperplane, we obtain
a convex body K ′ inside K. In particular, the metric of K ′ is greater
than or equal to the metric of K, hence σ′(λp) ≥ σ(λp) for λ near 1.

Then by propositions 2.6 and 2.7,

lim sup
λ→1

σ(λp)(1− λ)
n+1
2 ≤ lim

λ→1
σ′(λp)(1− λ)

n+1
2

=

√∏n−1
i=1 (ci + ε)

2
n+1
2 m

.(15)

Note that σ > 0, hence this already settles the case k = c = 0 since ε
was arbitrary small.

If c > 0 and 0 < ε < min{c1, . . . , cn−1}, the parabola P defined by

y =
n−1∑
i=1

ci − ε
2

x2
i

locally contains K. Cutting it with some horizontal hyperplane, we
obtain a convex body K ′ inside P . By propositions 2.6 and 2.7 again,

lim inf
λ→1

σ(λp)(1− λ)
n+1
2 ≥ lim inf

λ→1
σ′(λp)(1− λ)

n+1
2

=

√∏n−1
i=1 (ci − ε)

2
n+1
2 m

.(16)

From (15) and (16) (with ε→ 0) we get

lim
λ→1

σ(λp)(1− λ)
n+1
2 =

√
c

2
n+1
2 m

.

�
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To state precisely our main theorem in section 3 we need to introduce
the pseudo-Gauss curvature of the boundary of a convex set K in Rn.

For a smooth point p ∈ ∂K, let n(p) be the outward normal of ∂K
at p. For each unit vector e ∈ Tp∂K, let He(p) be the affine plane
containing p and directed by the vectors e and n(p). We define Re as
the radius of the biggest disc containing p inside Ke := K ∩He(p).

Definition 2.9. The pseudo Gauss-curvature k̄(p) of ∂K at p is the
minimum of the numbers

n−1∏
i=1

Rei(p)
−1,

where e1, . . . , en−1 ranges over all orthonormal bases of Tp∂K.

Proposition 2.10. Let V be a Euclidean vector space of dimension n.
Let K be a convex body containing the unit ball B. Then for 1

2
≤ λ < 1

and p ∈ ∂K

(17) σ(λp) ≤ ωnn!

2n(1− λ)
n+1
2

k̄(p)1/2.

Proof. We use the same notation as in the definition of k̄. We may
suppose that for all i, Ri := Rei(p) > 0, otherwise the statement is
trivial. By definition of Ri, there is a 2-disc Bi(p) of radius Ri inside
Kei containing p. Let us denote by B(ei) the intersection of B with
the affine plane p+Hei . Since B(ei), Bi(p) ⊂ K, one has

Ĉi := conv (B(ei)× {0} ∪Bi(p)× {1}) ⊂ Kei × [0, 1].

Note that Ĉi is a truncated cone. Let Ei be the plane containing
the line that is parallel to Tp∂Kei and that passes through the points
o×{0} and p×{1}. With π : V × [0, 1]→ V the projection on the first

component, Ci := π(Ei ∩ Ĉi) ⊂ K is bounded by a truncated conic.

In the non-orthogonal frame (o; p, ei), Ci is given by

(2Ri − 1)x2 + 2(1−Ri)x+ y2
1 ≤ 1, 0 ≤ x ≤ 1.

Now let C be the convex hull of the union of the Ci. Then the
polytope P with vertices(

λ, 0, . . . ,±
√

(1− λ)(2λRi − λ+ 1), 0, . . . , 0
)
, (1,~0), (2λ− 1,~0)

lies inside C, with all but the last vertex being on the boundaries of
the respective Ci’s.
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Its volume is given by

L(P ) =
2n
〈
p, n(p)

〉
n!

(1− λ)
n+1
2

n−1∏
i=1

(2λRi − λ+ 1)
1
2

≥ 2n

n!
(1− λ)

n+1
2 (R1 ·R2 · · ·Rn−1)

1
2

=
2n

n!
(1− λ)

n+1
2 k̄−

1
2 (p).(18)

The factor
〈
p, n(p)

〉
in the first line is due to the fact that our coordi-

nate system is not orthonormal. Since the unit ball is contained in K,
this factor is at least 1.

From P ⊂ C ⊂ K and the fact that P is centered at λp, we deduce
that

σ(λp) ≤ ωn
L(P )

≤ ωnn!

2n
(1− λ)−

n+1
2 k̄

1
2 (p).

�

The next proposition will be needed in the construction of a convex
body with entropy between 0 and 1.

Proposition 2.11. Let K = oab be a triangle with 1 ≤ oa, ob ≤ 2 and
such that the distance from o to the line passing through a and b is at
least 1. Let p be a point in the interior of the side ab and suppose that
min{ap, bp} ≥ ε > 0. Then for λ ≥ 1

2
Busemann’s density of K at λp

is bounded above by

σ(λp) ≤ 32πmax

{
1

ε(1− λ)
,

1

ε2

}
.

Proof. The hypothesis on the triangle implies that sin(abo), sin(bao) ≥
1
2
.

Let a′ be the intersection of the line passing through a and z := λp
with ob and define b′ similarly.

The unit tangent ball at z is a hexagon centered at z. The length of
one of its half-diagonals is the harmonic mean of za and za′; the length
of the second half-diagonal is the harmonic mean of zb and zb′ and the
third half-diagonal has length 2op

1
λ

+ 1
1−λ
≥ 1− λ.

An easy geometric argument shows that za′, zb ≥ 1
2
pb sin(abo) ≥ 1

4
ε

and za, zb′ ≥ 1
2
pa sin(bao) ≥ 1

4
ε.

The area A of the hexagon is at least half of the minimal product of
two of its half-diagonals, hence

A ≥ min

{
1

8
ε(1− λ),

1

32
ε2
}
.

�
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2.4. Volume entropy of spheres. By definition, the entropy controls
the volume growth of metric balls in Hilbert geometries. We show in
this section that it coincides with the growth of areas of metric spheres.
Again, there are several definitions of area of hypersurfaces in Finsler
geometry. For simplicity, we consider Busemann’s definition which
gives the Hausdorff (n− 1)-measure of these hypersurfaces.

We will need the following two lemmas:

Lemma 2.12 (Rough monotonicity of area). There exist a monotone
function f and a constant C1 > 1 such that for all r > 0

(19) C−1
1 f(r) ≤ Area(S(r)) ≤ C1f(r).

Proof. Let f(r) be the Holmes-Thompson area of S(r). Since all area
definitions agree up to some universal constant, inequality (19) is triv-
ial. It remains to show that f is monotone.

If ∂K is C2 with everywhere positive Gaussian curvature then the
tangent unit spheres of the Finsler metric are quadratically convex.
According to [2, theorem 1.1 and remark 2] there exists a Crofton
formula for the Holmes-Thompson area, from which the monotonicity
of f easily follows.

Such smooth convex bodies are dense in the set of all convex bodies
for the Hausdorff topology (see e.g. [22, lemma 2.3.2]). By approxima-
tion, it follows that f is monotone for arbitrary K. �

Lemma 2.13 (Co-area inequalities). There exists a constant C2 > 1
such that for all r > 0

C−1
2 Area(S(r)) ≤ ∂

∂r
Vol(B(r)) ≤ C2Area(S(r)).

Proof. Let µ := σdx1 ∧ · · · ∧ dxn be the volume form, and let α be the
n− 1-form on S(r) whose integral equals the area.

Since

Vol(B(r)) =

∫ r

0

∫
S(s)

i∂rµ ds,

where ∂r at λp ∈ S(s) is the tangent vector multiple of ~op with unit
Finsler norm, we have to compare i∂rµ and α.

We will assume that S(r) is differentiable at λp. The section of the
unit tangent ball by the tangent space TλpS(r) will be called γ. By
definition of Busemann area, the area of γ measured with the form α
is the constant

α(γ) = ωn−1.

In the same way, calling Γ the half unit ball containing ∂r and
bounded by γ, one has

µ(Γ) =
1

2
ωn.
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Since Γ is convex it contains the cone with base γ and vertex ∂r.
Therefore,

(20)
1

n
i∂rµ(γ) ≤ 1

2
ωn.

By Brunn’s theorem (see e.g. [31, theorem 2.3]), the sections of the
tangent unit ball with hyperplanes parallel to γ have an area lesser than
or equal to the area of γ. Also the tangent unit ball has a supporting
hyperplane at ∂r which is parallel to γ. Therefore, by Fubini’s theorem,
the cylinder γ × ([0, 1] · ∂r) has a volume greater than or equal to the
volume of Γ (even if it generally does not contain Γ). Hence,

(21)
1

2
ωn ≤ i∂rµ(γ).

Inequalities (20) and (21) give

1

2

ωn
ωn−1

α(γ) ≤ i∂rµ(γ) ≤ n

2

ωn
ωn−1

α(γ),

from which the result easily follows. �

Theorem 2.14. The spherical entropy coincides with the entropy. More
precisely,

lim sup
r→∞

log Area(S(r))

r
= EntK,

lim inf
r→∞

log Area(S(r))

r
= EntK.

Proof. For convenience, let

V (r) := VolB(r),

A(r) := AreaS(r).

Using the previous two lemmas, one has for all r > 0

V (r) =

∫ r

0

V ′(s)ds ≤ C2

∫ r

0

A(s)ds ≤ C1C2

∫ r

0

f(s)ds

≤ C1C2f(r)r ≤ C2
1C2A(r)r.

It follows that

EntK = lim sup
r→∞

log V (r)

r
≤ lim sup

r→∞

logC2
1C2A(r)r

r

= lim sup
r→∞

log Area(S(r))

r
.
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Similarly, for each ε > 0

V (r(1 + ε)) =

∫ r(1+ε)

0

V ′(s)ds ≥ C−1
1 C−1

2

∫ r(1+ε)

0

f(s)ds

≥ C−1
1 C−1

2

∫ r(1+ε)

r

f(s)ds ≥ C−1
1 C−1

2 f(r)rε ≥ C−2
1 C−1

2 A(r)rε

and hence

(1+ε)EntK = (1+ε) lim sup
r→∞

log V (r(1 + ε))

r(1 + ε)
≥ lim sup

r→∞

logC−1
2 C−2

1 A(r)rε

r

= lim sup
r→∞

log Area(S(r))

r
.

Letting ε → 0 gives the first equality. The second one follows in a
similar way. �

3. Entropy bounds

3.1. Upper entropy bound in arbitrary dimension. We may now
state and prove the second main theorem.

Theorem 3.1. Let K be an n-dimensional convex body and o ∈ intK.
For any point p ∈ ∂K we denote by k̄(p) its pseudo-Gauss curvature
as in definition 2.9. If

(22)

∫
∂K

k̄
1
2 (p)dp <∞,

then

(23) lim
r→∞

VolB(o, r)

sinhn−1 r
=

1

n− 1
Ap(K).

In particular,

EntK ≤ n− 1,

and if Ap(K) 6= 0, then EntK = n− 1.

Proof. Using the parameterization (11), the volume of metric balls is
given by

Vol(B(r)) =

∫ r

0

∫
∂K

F (p, r) dHn−1,

where

F (p, r) := σ
(
φ(p, r)

)
Jacφ(p, r).

The Jacobian may be explicitly computed:

Jacφ(p, r) =
(e2r − 1)n−1e2r

(ae2r + 1)n+1
2an(1 + a)

〈
p, n(p)

〉
.
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In particular,

(24) lim
r→∞

e2r Jacφ(p, r) =
2(1 + a)

〈
p, n(p)

〉
a

.

On the other hand, for each smooth boundary point p we have, by
proposition 2.8,

(25) lim
r→∞

σ
(
φ(p, r)

)
e(n+1)r

=

√
k(p)(

2
〈
p, n(p)

〉)n+1
2

a
n+1
2

(1 + a)
n+1
2

.

Then, by proposition 2.10 and the hypothesis (22),

lim
r→∞

1

e(n−1)r

∫
∂K

F (p, r)dHn−1 =

∫
∂K

lim
r→∞

F (p, r)

e(n−1)r
dHn−1

(26)

=

∫
∂K

lim
r→∞

σ
(
φ(p, r)

)
e(n+1)r

lim
r→∞

e2r Jacφ(p, r)dHn−1(27)

=

∫
∂K

√
k(p)(

2
〈
p, n(p)

〉)n−1
2

(
a

1 + a

)n−1
2

dHn−1

=
1

2n−1
Ap(K).

By L’Hospital’s rule we get

lim
r→∞

Vol
(
B(r)

)
e(n−1)r

= lim
r→∞

∫ r
0

∫
∂K
F (p, s)dHn−1ds

(n− 1)
∫ r

0
e(n−1)sds

=
1

2n−1(n− 1)
Ap(K).

�

Remark: The metric balls B(r) are projective invariants of K.
There is an affine version of the previous theorem using the affine balls
Ba(r) := tanh(r)K (where multiplication is with respect to the center
o). Under the same assumptions as in theorem 3.1, we obtain that

lim
r→∞

VolBa(r)

e(n−1)r
=

1

2n−1(n− 1)
Aa(K)

where Aa(K) is the centro-affine area (see section 4). The proof goes
as the previous one by replacing the function a by 1.

Corollary 3.2. Suppose K is an n-dimensional convex body of class
C1,1. Then

EntK = n− 1.

Proof. For any p ∈ ∂K, R(p) is the biggest radius of a ball in K
containing p. By proposition 2.2, there exists a constant R > 0 such
that R(p) ≥ R for all p ∈ ∂K. It follows that the hypothesis (22) is
satisfied and therefore EntK ≤ n− 1.
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The Gauss map G : ∂K → Sn−1 is well-defined and continuous. As a
consequence of theorem 2.3 in Hug [24] and equation 2.7 in Hug [23], the
standard measure on the unit sphere is the push-forward of k · dHn−1,
i.e.

G∗(k · dHn−1
|∂K) = dHn−1|Sn−1 ,

hence the curvature has a positive integral. Therefore, Ap(K) > 0, and
equation (23) implies that EntK = n− 1. �

Corollary 3.3. If K is an arbitrary n-dimensional convex body with
Ap(K) 6= 0, then EntK ≥ n− 1.

Proof. Arguing as in the proof of theorem 3.1 and using Fatou’s lemma
instead of the dominated convergence theorem gives the result. �

3.2. The plane case. Let us now assume that n = 2. By theorem
2.3, the hypothesis (22) is satisfied for each convex body K. Therefore

(28) EntK ≤ 1

and

lim
r→∞

VolB(o, r)

sinh r
= Ap(K).

Next, we are going to prove a better bound for EntK. In order to
state our main result, we need to recall some basic notions of measure
theory in a Euclidean space and refer to P. Mattila [37] for details.
For a non-empty bounded set A, let N(A, ε) be the minimal number
of ε-balls needed to cover A. Then the upper Minkowski dimension of
A is defined as

dimA := inf

{
s : lim sup

ε→0
N(A, ε)εs = 0

}
.

One should note that this dimension is invariant under bi-Lipschitz
maps. In particular, it does not depend on a particular choice of inner
product and moreover it is invariant under projective maps provided
the considered subsets are bounded.

Recall that a point p ∈ K is called extremal if it is not a convex
combination of other points of K. The set of extremal points is a
subset of ∂K, which we denote by exK.

Theorem 3.4. Let K be a plane convex body and d be the upper
Minkowski dimension of exK. Then the entropy of K is bounded by

EntK ≤ 2

3− d
≤ 1.

Proof. Since the entropy is independent of the choice of the center, we
may suppose that the Euclidean unit ball around o is the maximum
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volume ellipsoid inside K. Then K is contained in the ball of radius 2
(see [5]).

Set ε := e−αr, where α ≤ 1 will be fixed later. Divide the boundary
of K into two parts:

∂K = B ∪ G,
where B (the bad part) is the closed ε-neighborhood around the set of
extremal points of K and G (the good part) is its complement.

Using proposition 2.4 and equalities (24), (25), we get the following
upper bound for large values of r,

(29)

∫ r

r
2

∫
B
σ
(
φ(p, s)

)
Jacφ(p, s)dH1ds ≤ O

(
er
√
H1(B)

)
.

Next, let p ∈ G. The endpoints of the maximal segment in ∂K
containing p are extremal points of K and hence of distance at least ε
from p. Therefore K contains a triangle as in proposition 2.11 and if
s ≥ r/2 and r is sufficiently large

σ(φ(p, s)) = σ(λ · p) ≤ 32 max

{
1

ε(1− λ)
,

1

ε2

}
=

32

ε(1− λ)
.

Integrating this from r/2 to r yields

(30)

∫ r

r
2

∫
G
σ
(
φ(p, s)

)
Jacφ(p, s)dH1ds = O (eαr) .

Let d be the upper Minkowski dimension of the set of extremal points
of K. Then, for each η > 0, N(exK, ε) = o(ε−d−η) as ε → 0. By
definition of N , there is a covering of exK by N(exK, ε) balls of radius
ε. Hence there is a covering of B by N(exK, ε) balls of radius 2ε. The
intersection of a 2ε-ball with ∂K has length less than 4πε. It follows
that

H1(B) = o(ε−d−η+1).

Since the volume of B(r/2) is bounded by O(er/2) (see (28)), the
volume of B(r) is bounded by

VolB(r) = VolB(r/2) +

∫ r

r
2

∫
B
σ
(
φ(p, s)

)
Jacφ(p, s)dH1ds

+

∫ r

r
2

∫
G
σ
(
φ(p, s)

)
Jacφ(p, s)dH1ds

= O(e
r
2 ) +O

(
er(1−

α(1−d−η)
2

)
)

+O (eαr) .

We fix α such that 1− α 1−d−η
2

= α, i.e. α := 2
3−d−η >

2
3
. Then

VolB(r) = O(eαr),

which implies that the (upper) entropy of K is bounded by α. Since
η > 0 was arbitrary, the result follows. �
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3.3. An example of non-integer entropy. We will construct an
example of a plane convex body with piecewise affine boundary whose
entropy is strictly between 0 and 1.

Let us choose a real number s > 2 and set αi := Cs
is

where Cs > 0 is
sufficiently small such that

3
∞∑
i=1

αi < π.

Consider a centrally symmetric sequence E of points on S1 such that
the angles between consecutive points are α1, α1, α1, α2, α2, α2, . . . (each
angle appearing three times).

Theorem 3.5. The entropy of K = conv(E) is bounded by

0 <
1

s
≤ EntK ≤ EntK ≤ 2s− 2

3s− 4
< 1.

Proof. Lower bound
The unit sphere of radius r in the Hilbert geometry K is tanh rK and
consists of an infinite number of segments.

An easy geometric computation shows that the middle segment Si(r)
corresponding to α := αi has for each r ≥ 0 length bounded from below
by

l
(
Si(r)

)
≥ log

(
2 tanh r

1− tanh r
tan(α/2) sin(α) + 1

)
.

Set
i0(r) :=

⌊
(2Cs)

1
s e

r
s

⌋
.

Then, for sufficiently large r,

2 tanh r

1− tanh r
tan(αi/2) sin(αi) ≤ 1 ∀i ≥ i0(r).

By concavity of the log-function, we have log(1 + x) ≥ x log 2 ≥ x
2

for 0 ≤ x ≤ 1. Therefore

l
(
S(r)

)
≥

∞∑
i=i0

tanh r

1− tanh r
tan(αi/2) sin(αi).

For sufficiently large r, the first factor is bounded from below by e2r

4
,

while the second is bounded from below by α2
i . We thus get

l
(
S(r)

)
≥ e2r

4

∞∑
i=i0

α2
i = C2

s

e2r

4

∞∑
i=i0

1

i2s
≥ C2

s

e2r

4

∫ ∞
i0

1

x2s
dx = C2

s

e2r

4(2s− 1)i2s−1
0

.

Replacing our explicit value for i0 gives

l(S(r)) ≥ Ce
r
s

for sufficiently large r and some constant C (again depending on s).
Hence EntK ≥ 1

s
.
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Upper bound
For the upper bound in the statement, we apply our main theorem.
For this, we have to find an upper bound on the Minkowski dimension
of exK = E.

Since the Minkowski dimension is invariant under bi-Lipschitz maps,
we may replace distances on the unit circle by angular distances.

E has two accumulation points ±x0. For ε > 0, let N(ε) be the
number of ε-balls needed to cover E. We take one such ball around
±x0 and one further ball for each point in E not covered by these two
balls.

The three points corresponding to the angle αi are certainly in the
ε-neighborhood of ±x0 provided

3
∞∑
j=i

αj ≤ ε.

Now we compute that
∞∑
j=i

αj = Cs

∞∑
j=i

1

js
≤ Cs

∫ ∞
i−1

1

xs
dx =

Cs
s− 1

1

(i− 1)s−1
.

It follows that all i ≥ i0 :=
(

3Cs
s−1

) 1
s−1 ε

1
1−s + 1 satisfy the inequality

above and hence

N(exK, ε) ≤ 6i0 + 2 ≤ Cε−
1
s−1 .

It follows that the upper Minkowski dimension is not larger than
1
s−1

. The upper bound of theorem 3.4 gives

EntK ≤ 2s− 2

3s− 4
.

�

4. Centro-projective and centro-affine areas

In this section, we will take a closer look at the centro-projective
area which was introduced (in a non-intrinsic way) in definition 1.

4.1. Basic definitions and properties. Geometrically speaking, both
centro-affine and centro-projective areas are Riemannian volumes of the
boundary ∂K.

We first give intrinsic definitions of the centro-affine metric and area.
Let K be a convex body with a distinguished interior point which we
may suppose to be the origin o of V . The Minkowski functional of K
is the unique positive function F that is homogeneous of degree one
and whose level set at height 1 is the boundary ∂K. This function is
convex and, according to Alexandroff’s theorem, has almost everywhere
a quadratic approximation.
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Definition 4.1. Let v be a tangent vector to ∂K at a smooth point p.
Then the centro-affine semi-norm of v is

‖v‖a :=
√
HesspF (v, v).

The square of the centro-affine semi-norm is a quadratic function
on the tangent, hence we may define as usual a volume form, say ωa
(which vanishes if ‖ · ‖a is not definite).

Definition 4.2. The centro-affine area of K is

Aa(K) :=

∫
∂K

|ωa|.

It easily follows from the definitions that the centro-affine area is in-
deed an affine invariant of pointed convex bodies. Moreover, it is finite
and vanishes on polytopes. The next proposition relates our definitions
with the classical ones, its proof is a straightforward computation.

Proposition 4.3. If the space is equipped with a Euclidean inner pro-
duct, then the centro-affine area is given by

Aa(K) =

∫
∂K

√
k

〈n, p〉n−1
2

dA,

where k is the Gaussian curvature of ∂K at p, n the unit vector normal
to Tp∂K and dA the Euclidean area.

In order to introduce the centro-projective area, we will consider a
compact convex subset of the (real) n-dimensional projective space.
Here the word “convex” means that each intersection with a projective
line is connected.

The definitions of the centro-projective semi-norm and area are merely
the same as the centro-affine ones, but one has to replace the Minkowski
functional by a projectively invariant function.

Definition 4.4. Let K ⊂ Pn be a convex body and o ∈ intK. The
projective gauge function is

GK : Pn \ {o} → R ∪ {∞},
x 7→ 2[q1, o, x, q2]

where q1 and q2 are the two intersections of ∂K with the line going
through o and x.

Since the order of q1 and q2 is not fixed, this function is multi-valued
(in fact 2-valued). Identifying R ∪ {∞} with P1, this function is con-
tinuous.

If p belongs to the boundary of K, then the two values of GK(p)
are different, one of them being 2, the other being ∞. Hence there
is some neighborhood U of p such that the restriction of GK to U is
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the union of two continuous (in fact smooth) functions G+
K , G

−
K on U ,

where G+
K(p) = 2 and G−K(p) =∞.

Let v be a tangent vector to ∂K at a smooth point p. Since the
restriction of G+

K to ∂K ∩ U is constant, the derivative of G+
K in the

direction of v vanishes. Therefore, the Hessian of the restriction of G+
K

to the tangent line is well-defined.

Definition 4.5. The centro-projective semi-norm of v is

‖v‖p :=
√
HesspG

+
K(v, v).

Calling ωp the induced volume form on ∂K, the centro-projective
area of K is

Ap(K) :=

∫
∂K

|ωp|.

As a consequence of the definition, one has

Proposition 4.6. In a Euclidean space,

Ap(K) =

∫
∂K

√
k

〈n, p〉n−1
2

(
2a

1 + a

)n−1
2

dA.

In particular, the intrinsic definition of Ap agrees with the definition
given in the introduction.

Proof. An easy computation shows that

[q1, o, x, q2] =
1 + a(q2)

F (x) + a(q2)
F (x).

Then, if p is a smooth point of ∂K and v ∈ Tp∂K,

HesspGK(v, v) =
2a(p)

1 + a(p)
HesspF (v, v).

�

4.2. Properties of the centro-projective area. Both centro-affine
and centro-projective areas vanish on polytopes, hence they are not
continuous with respect to the Hausdorff topology on (pointed) bounded
convex bodies. Nevertheless, the centro-affine area is upper-semi con-
tinuous (see [36]). The same holds true for the centro-projective area
as shown in the next theorem.

Theorem 4.7. The centro-projective area is finite, invariant under
projective transformations and upper-semicontinuous.

Proof. From the above intrinsic definition, it follows thatAp is invariant
under projective transformations. Also, since the function a on the
boundary is bounded and positive and since the centro-affine area is
finite, it follows from proposition 4.6 that the centro-projective area is
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also finite. It remains to show that it is upper-semicontinuous. Our
proof is based on the fact that the centro-affine surface area Aa is
semicontinuous, see E. Lutwak [36].

Let K be a bounded convex body containing the origin in its inte-
rior and (Ki) a sequence of convex bodies with the same properties
converging to K. Set

τ(p) :=

(
2a(p)

1 + a(p)

)n−1
2

, p ∈ ∂K

which is a continuous function on ∂K.

For each i, if ai is the function corresponding to Ki and pi is the
radial projection of p on ∂Ki, define τi ∈ C(∂K) by

τi(p) :=

(
2ai(pi)

1 + ai(pi)

)n−1
2

.

Since Ki → K, τi converges uniformly to τ . Therefore, for fixed
ε > 0 and all sufficiently large i,

‖τi − τ‖∞ < ε

Take a triangulation of the sphere and let ∂K = ∪mj=1∆j (resp.
∂Ki = ∪mj=1∆ij) be its radial projection.

Choosing this triangulation sufficiently thin, there exist t1, . . . , tm ∈
R+ with

|τ(p)− tj| < ε

on ∆j. By the triangle inequality, |τi(p)− tj| < 2ε on ∆ij.

We define

Ap(Ki,∆ij) :=

∫
∆ij

√
k(x)〈

n(x), x
〉n−1

2

τidHn−1(x).

Clearly, Ap(Ki) =
∑m

j=1Ap(Ki,∆ij). In a similar way, we define

Ap(K,∆j), Aa(Ki,∆ij) and Aa(K,∆j).

Fix pj in the interior of ∆j and consider the convex hull ∆̂i (resp.

∆̂ij) of ∆j (resp. ∆ij) and −pj. The boundary of ∆̂ij is a union of ∆ij

and line segments, hence Aa(Ki,∆ij) = Aa(∆̂ij). By the semicontinu-
ity of Aa, we obtain

lim sup
i→∞

Aa(Ki,∆ij) = lim sup
i→∞

Aa(∆̂ij) ≤ Aa(∆̂j) = Aa(K,∆j).
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It follows that

lim sup
i→∞

Ap(Ki) = lim sup
i→∞

m∑
j=1

Ap(Ki,∆ij)

≤ lim sup
i→∞

m∑
j=1

Aa(Ki,∆ij)(tj + 2ε)

≤
m∑
j=1

Aa(K,∆j)(tj + 2ε)

On the other hand,

Ap(K) =
m∑
j=1

Ap(K,∆j) ≥
m∑
j=1

Aa(K,∆j)(tj − ε)

from which we deduce that

lim sup
i→∞

Ap(Ki) ≤ Ap(K) + 3εAa(K).

�

The centro-affine surface area has the following important properties:

(1) Aa is a valuation on the space of compact convex subsets of
V containing o in the interior. This means that whenever
K,L,K ∪ L are such bodies, then

Aa(K ∪ L) = Aa(K) +Aa(L)−Aa(K ∩ L).

(2) Aa is upper semi-continuous with respect to the Hausdorff topol-
ogy.

(3) Aa is invariant under GL(V ).

A recent theorem by M. Ludwig & M. Reitzner [35] states that the
vector space of functionals with these three properties is generated
by the constant valuation and Aa. The centro-projective surface area
satisfies the last two conditions, but is not a valuation.
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