On the second-order statistics of the EVD of sample covariance matrices : application to the detection of noncircular or/and nonGaussian components - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Signal Processing Année : 2011

On the second-order statistics of the EVD of sample covariance matrices : application to the detection of noncircular or/and nonGaussian components

Résumé

This correspondence presents an asymptotic analysis of the eigenvalue decomposition (EVD) of the sample covariance matrix associated with independent identically distributed (i.i.d.) non necessarily circular and Gaussian data that extends the well known analysis presented in the literature for circular and Gaussian data. Closed-form expressions of the asymptotic bias and variance of the sample eigenvalues and eigenvectors are given. As an application of these extended expressions, the statistical performance analysis of the widely used minimum description length (MDL) criterion applied to the detection of the number of noncircular or/and non-Gaussian sources impinging on an array of sensors is considered with a particular attention paid to uncorrelated rectilinear sources.
Fichier principal
Vignette du fichier
paper11462.pdf (224.69 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00819073 , version 1 (13-06-2013)

Identifiants

Citer

Jean-Pierre Delmas, Yann Meurisse. On the second-order statistics of the EVD of sample covariance matrices : application to the detection of noncircular or/and nonGaussian components. IEEE Transactions on Signal Processing, 2011, 59 (8), pp.4017-4023. ⟨10.1109/TSP.2011.2145375⟩. ⟨hal-00819073⟩
102 Consultations
241 Téléchargements

Altmetric

Partager

More