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On the second-order statistics of the EVD of

sample covariance matrices - Application to the

detection of noncircular or/and nonGaussian

components

Jean Pierre Delmas and Yann Meurisse

Abstract

This paper presents an asymptotic analysis of the eigen value decomposition (EVD) of the sample covariance

matrix associated with independent identically distributed (IID) non necessarily circular and Gaussian data

that extends the well known analysis presented in the literature for circular and Gaussian data. Closed-form

expressions of the asymptotic bias and variance of the sample eigenvalues and eigenvectors are given. As an

application of these extended expressions, the statistical performance analysis of the widely-used minimum

description length (MDL) criterion applied to the detection of the number of noncircular or/and nonGaussian

sources impinging on an array of sensors is considered with a particular attention paid to uncorrelated rectilinear

sources.

Index Terms

Eigen value decomposition (EVD), sample covariance matrix, eigenvalue, eigenvector, minimum description

length (MDL), source detection, asymptotic performance analysis, noncircular, nonGaussian, rectilinear sources.

Revised correspondance accepted to IEEE Transactions on Signal Processing

I. INTRODUCTION

Eigenvalues and eigenvectors of sample covariance matrices are used in the solution of a wide range of

statistical signal processing problems, in particular in spectral analysis and array processing among many others.

The first and second-order statistics of this EVD are needed to assess the performance in terms of bias/variance
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of estimators or probability of events derived from these eigenvalues and eigenvectors. The statistics of the

sample eigenvalues and eigenvectors have been widely studied in the statistical literature (e.g., [1],[2]) and are

quoted in standard texts such as [3] and [4]. The tricky issue of the uniqueness of the eigenvectors for complex-

valued data has been considered in [5] and then in [6]. But to the best of our knowledge, all the published results

has been derived only under the assumption of real-valued or circular complex-valued Gaussian distributions

of the data.

The main aim of this paper is to extend these results to arbitrary real or complex fourth-order distributions

of the data, where closed-form expressions of asymptotic bias and variance of the sample eigenvalues and

eigenvectors are derived. As an application of these extended expressions, the statistical performance analysis of

the widely-used MDL criterion introduced by Rissanen [7] and popularized by Wax and Kailath [8], is considered

to the detection of the number of noncircular or/and nonGaussian sources impinging on an array of sensors.

Note that optimal detection (in the sense of maximum likelihood under the Gaussian assumption) of the number

of circular and noncircular sources has been recently studied in [9]. But naturally, these extended expressions

may find other applications in multivariate analysis. We focus here on the probability of underestimating

the number of sources in the case of a single or two sources under asymptotic conditions (with respect to

the number of snapshots) and around the threshold regions, following the approach proposed in [10],[11],

and then recently improved in [12]. We show in particular that the numerical values of this probability of

underestimating the number of sources given by the MDL detector derived from the standard sample covariance

matrix are not robust to the noncircularity and/or the nonGaussianity of the data. We prove that this probability

decreases for uncorrelated1 rectilinear2 sources when the MDL detector is derived from the augmented sample

covariance matrix of the data with respect to the standard one. Furthermore, when the sources of fixed DOAs

are equipowered, this probability is minimized for in quadrature complex envelopes of these sources. This

extends to the detection, the well known performance in terms of variance [14] and resolving power [15] of

the estimated directions of arrival (DOA) of uncorrelated rectilinear sources.

The paper is organized as follows. In Section II, the asymptotic statistics of the EVD of sample covariance

matrices is addressed with a particular attention paid to the determination of the selected eigenvectors for

complex-valued data. Section III applies the closed-form expressions of the asymptotic bias and variance of the

sample eigenvalues to the performance analysis of the MDL detection of the number of components of a linear

model. Section IV specializes these results to the number of noncircular or/and nonGaussian sources impinging

on an array of sensors and gives some numerical illustrations compared to Monte Carlo experiments.

1For general complex-valued random variables (RVs), RVs are called uncorrelated if the real and imaginary parts of these RVs are

uncorrelated [13]. A necessary and suffisant condition to be uncorrelated is that both the associated covariance and the complementary

covariance matrices are diagonal.

2A scalar complex-valued RV is called rectilinear or maximally improper (term used by other researchers), if the support of its

distribution collapses to a line in the complex plane.
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The following notations are used throughout the paper. Matrices and vectors are represented by bold upper

case and bold lower case characters, respectively. Vectors are by default in column orientation, while T , H

and ∗ stand for transpose, conjugate transpose, conjugate respectively. ι =
√
−1 is the imaginary unit. vec(·)

is the “vectorization” operator that turns a matrix into a vector by stacking the columns of the matrix one

below another. The Kronecker product A⊗B is the block matrix whose (i, j) block element is ai,jB and the

vec-permutation matrix K transforms vec(C) to vec(CT ) for any matrix C.

II. ASYMPTOTIC STATISTICS OF EVD OF SAMPLE COVARIANCE MATRICES

Consider a sequence xt=1,..,T ∈ Cn of IID zero-mean complex multidimensional random variables (RV)

with finite fourth-order moments. The standard covariance matrix, the complementary covariance matrix

[16] and the quadrivariance matrix of xt are respectively given by R
def
= E(xtx

H
t ), R′ def

= E(xtx
T
t ) and

(Q)i+(j−1)n,l+(k−1)n
def
= Cum(xt,i, x

∗
t,j , xt,k, x

∗
t,l) where xt = (xt,1, xt,2, ..., xt,n)

T . The sample covariance

estimate of R is usually defined as R̂
def
= 1

T

∑T
t=1 xtx

H
t = R+ δR which can be considered as a perturbation

of R. To derive the asymptotic distribution of the EVD of R̂, we need the following extension of an identity

derived under the circular Gaussian distribution of the data in [4, p.114].

Lemma 1: For arbitrary vectors (ai)i=1,...,4 ∈ Cn and distributions with finite fourth-order moment of xt not

necessarily circular and Gaussian, the following identity is proved in the Appendix.

E[(aH1 δRa2)(a
H
3 δRa4)] =

1

T

{
(aH1 Ra4)(a

H
3 Ra2) + (aH1 R′a∗3)(a

T
2 R

′∗a4) + (aT2 ⊗ aH1 )Q(a∗3 ⊗ a4)
}
. (1)

We assume that the eigenvalues (λi)i=1,..,n of R, ordered in decreasing order satisfy the condition λ1 > ... >

λr > λr+1 = ... = λn = σ2. Let (vi)i=1,..,n be an arbitrary set of associated orthonormal eigenvectors. We

note that (vi)i=r+1,..,n are defined up to an arbitrary unitary transformation, in contrast to (vi)i=1,..,r that are

defined up to multiplicative unit modulus complex number, but which are arbitrarily fixed3.

Consider now for a "small enough" perturbation term δR of R, the EVD of R̂ = R+ δR

R̂v̄i = λ̂iv̄i, i = 1, ..., n, (2)

where (λ̂i)i=1,...,n denotes the perturbation of λi that satisfies λ̂1 > λ̂2 > ... > λ̂n, and where (v̄i)i=1,...,r are

the associated eigenvectors uniquely determined from (vi)i=1,...,r by

v̄H
i vi = 1, i = 1, ..., r. (3)

We consider in the following the eigenvectors (v̂i)i=1,...,r defined by v̂i = v̄i/||v̄i||. We note that in contrast

to the determination of vi which is arbitrary fixed, the determination of v̂i must be related to the choice of

3For example, the MATLAB’s svd function produces a set of singular vectors (which can be used in lieu of eigenvectors for the

Hermitian covariance matrix R) that are orthonormal and have a real first entry.
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vi to consider bias, variance and covariance of (v̂i)i=1,...,r in Result 1. Note that an alternative solution would

be to choose for both vi and v̂i, the MATLAB’s normalization. The second-order statistics associated with

this determination has been partially studied in [6], where very complicated expressions of Cov(v̂i, v̂j) and

Cov(v̂i, v̂
∗
j ) are given [6, rels (37-38)] for zero-mean circular Gaussian distributions. We have not opted for

this determination because of its complexity.

We are now interested by the asymptotic distribution of (λ̂1, ..., λ̂r, v̂1, ..., v̂r) with respect to the number

T of data. We adopt a functional analysis that consists of recognizing that the whole process of constructing

the estimate (λ̂1, ..., λ̂r, v̂1, ..., v̂r) from R̂ is equivalent to defining an infinitely differentiable mapping [17]

on a neighborhood of (λ1, ..., λr,v1, ...,vr) linking (λ̂1, ..., λ̂r, v̂1, ..., v̂r) to the statistics R̂ from which it

is inferred: R̂ 7−→ (λ̂1, ..., λ̂r, v̂1, ..., v̂r) = g(R̂). Using the central limit theorem applied to the IID RVs

vec(xtx
H
t ) = x∗

t ⊗ xt, we have4
√
T
(
vec(R̂)− vec(R)

)
L→ NC (0;CR,C

′
R), where [18]

CR = (R∗ ⊗R) +K(R
′ ⊗R

′∗) +Q and C′
R = CRK (4)

and the standard theorem of continuity5 (see e.g., [19, p.122]), allows us to deduce that the estimates

(λ̂1, ..., λ̂r, v̂1, ..., v̂r) are likewise asymptotically Gaussian distributed with the same convergence speed
√
T .

The first and second-order statistics of this asymptotic distribution are deduced from a second-order Taylor

expansion of g(.) at point R, where the remainder issue can be dealt with rigourously and conveniently [20].

This approach called delta method is used in practice from a second-order perturbation analysis that is developed

in the Appendix. This allows us to prove the following result

Result 1: The asymptotic first and second-order statistics of the estimates (λ̂1, ..., λ̂r, v̂1, ..., v̂r) for arbitrary

distributions with finite fourth-order moment of xt not necessarily circular and Gaussian are given by

E(λ̂i) = λi +
1

T

∑

1≤k 6=i≤n

λiλk + |λi,k|2 + λi,k,i,k

λi − λk
+ o(

1

T
) (5)

Cov(λ̂i, λ̂j) =
1

T

(
λ2
i δi,j + |λi,j |2 + λi,i,j,j

)
+ o(

1

T
) (6)

E(v̂i) =


1− 1

2T

∑

1≤k 6=i≤n

λiλk + |λi,k|2 + λi,k,i,k

(λi − λk)2


vi

+
1

T

∑

1≤k 6=i≤n


−

λi,kλ
∗
i,i + λi,i,k,i

(λi − λk)2
+

∑

1≤l 6=i≤n

λk,lλ
∗
i,l + λl,k,l,i

(λi − λk)(λi − λl)


vk + o(

1

T
) (7)

4 L→ means the convergence in distribution when T → ∞, while NC(m,C,C′) denotes the complex Gaussian distribution whose

mean, covariance and complementary covariance are m, C and C′, respectively.

5We state this theorem for the convenience of the readers. Suppose that a vector complex-valued sequence xT satisfies
√
T (xT−m)

L→
NC(0;Cx,C

′
x). Let yT = g(xT ) be a differentiable function with a nonzero differential D =

[
∂gi
∂xj

]

x=m

. Then
√
T (g(xT )−g(m))

L→
NC(0;Cy,C

′
y) with Cy = DCxD

H and C′
y = DC′

xD
T .
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Cov(v̂i, v̂j) =
δi,j
T

∑

1≤k 6=i≤n

λiλk

(λi − λk)2
vkv

H
k +

1

T

∑

1≤k 6=i≤n

∑

1≤l 6=j≤n

λj,kλ
∗
i,l + λi,k,j,kl

(λi − λk)(λj − λl)
vkv

H
l + o(

1

T
) (8)

Cov(v̂i, v̂
∗
j ) = −(1− δi,j)

T

λiλj

(λi − λj)2
vjv

T
i +

1

T

∑

1≤k 6=i≤n

∑

1≤l 6=j≤n

λk,lλ
∗
i,j + λi,k,l,j

(λi − λk)(λj − λl)
vkv

T
l + o(

1

T
) (9)

Cov(λ̂i, v̂j) =
1

T

∑

1≤k 6=j≤n

(
λi,kλ

∗
i,j + λi,i,k,j

λj − λk

)
vk + o(

1

T
), (10)

for i, j = 1, ...r and where Cov(z1, z2)
def
= E

(
(z1 − E(z1))(z2 − E(z2))

H
)
, δi,j is the Kronecker delta, λi,j

def
=

vH
i R′v∗

j and λi,j,k,l
def
= (vT

i ⊗ vH
j )Q(v∗

k ⊗ vl).

Remark 1: Naturally all the expressions of this result reduce to the first and second-order statistics given in

[4, Th.9.2.4] (where the determination of v̂i is not specified) and in [5] (where determination (3) is used) for

the circular Gaussian distribution of xt for which λi,j = 0 and λi,j,k,l = 0.

Remark 2: In contrast to the circular Gaussian distribution, the estimated eigenvalues are no longer

asymptotically independent between each others (6) and the estimated eigenvalues and eigenvectors are no

longer asymptotically independent for arbitrary distributions of xt (10).

Remark 3: We note that the asymptotic distribution of the estimated eigenvectors is sensitive to the

noncircularity and nonGaussiannity of xt, in contrast to the asymptotic distribution of the estimated principal

projector, Π̂
def
=
∑r

i=1 v̂iv̂
H
i that does not depend on the distribution of xt [21].

Remark 4: λi,j,k,l is generally complex-valued, but it is straightforward to prove from (4) that Q is Hermitian

and that (aT ⊗ aH)Q(b∗ ⊗ b) is real-valued for arbitrary vectors a and b in Cn, so λi,j,i,j and λi,i,j,j that

appear in (5) and (6) are real-valued.

Remark 5: Note that Lemma 1 is still valid for real-valued data xt and vectors (ai)i=1,...,4 replacing R′ by

R, in contrast to Result 1, for which the different expressions of the first and second-order statistics that can

be derived using the same approach, are slightly different.

Remark 6: Note that in contrast to theoretical Result 1, which is valid for arbitrary eigenvalues that satisfy

λ1 > ...λr > λr+1 = ... = σ2, the approximations deduced from Result 1 must take into account the separation

between two successive eigenvalues which cannot be "too small", as an example would be given in Section IV.

III. APPLICATION TO THE DETECTION OF NONCIRCULAR AND/OR NONGAUSSIAN COMPONENTS

The MDL criterion is one of the most successful information theoretic criteria for estimating the number r

of components of

xt = Ast + nt (11)

where st = (st,1, ..., st,r), E(sts
H
t ) is not singular, A is an n × r full column rank matrix with r < n and

st and nt are uncorrelated with E(ntn
H
t ) = σ2In. Under the assumption that xt are independent identically

zero-mean complex circular Gaussian distributed RVs, and if no prior information about A is used, the MDL

June 13, 2013 DRAFT
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estimator is based on the eigenvalues of R̂ and is given by the following minimizer [8].

r̂ = Arg

{
min
k

Λk

}
with Λk = T (n− k) ln

(
âk
ĝk

)
+

1

2
k(2n− k) lnT, (12)

with âk
def
= 1

n−k

∑n
i=k+1 λ̂i and ĝk

def
=
∏n

i=k+1 λ̂
1/(n−k)
i . The events r̂ < r and r̂ > r are called underestimation

and overestimation, respectively. Since (Λk)k=0,..,n−1 are functions of the eigenvalues (λ̂i)i=1,..,n of R̂, the

derivation of the probabilities P (r̂ > r) and P (r̂ < r) needs the joint exact or asymptotic distribution of

(λi)i=1,..,n. Unfortunately, these two distributions are only available for circular complex Gaussian distribution

[1], and are furthermore too complicated to be useful for the statistical analysis of the estimator r̂. Therefore,

for simplifying the derivation of these probabilities, it has been argued [10], [11] and [22] by extended Monte

Carlo experiments (essentially for r = 1 and r = 2) that

P (r̂ > r) ≈ P (r̂ = r + 1) ≈ P (Λr+1 < Λr) and P (r̂ < r) ≈ P (r̂ = r − 1) ≈ P (Λr−1 < Λr).

As the probability of overestimation is concerned, exact and approximate asymptotic upper bound of this

probability has been derived in [22] showing that generally P (r̂ > r) ≪ 1. Therefore, we concentrate on the

probability of underestimation for which (12) gives straightforwardly (see [12] for r = 1 and 2)

P (Λr−1 < Λr) = P

(
Hr

(
λ̂r

âr

)
< Tr

)
(13)

where Hr(x)
def
= ln

(
1
x

(
1 + x−1

n−r+1

)n−r+1
)

and Tr
def
= 1

2T (2n− 2r+1) lnT . Because Hr(x) is an increasing

function for x > 1 with Hr(1) = 0 and Tr > 0, (13) is given by

P (Λr−1 < Λr) = P

(
λ̂r

âr
< T ′

r

)
, (14)

where T ′
r = H−1

r (Tr) is the unique solution of the equation Hr(x) = Tr for x > 1.

To proceed, we must know the distribution of the ratio λ̂r/âr, which, derived from the exact or

asymptotic distribution of (λ̂i)i=1,..,n, is also too complicated to give some insight. So we must resort to

the approximation, used by all authors that have tackled this point, that the standard deviation of âr can

be considered as negligible with respect to E(âr). Consequently âr ≈ E(âr), where [12] has refined the

approximation E(âr) ≈ σ2 used in [10],[11] by taking into account the bias of the estimates (λ̂i)i=1,..,r. Using

E(âr) = σ2 + 1
n−r

∑r
i=1

(
λi − E(λ̂i)

)
and (5), we have âr ≈ mr with

mr
def
= σ2 − 1

T (n− r)

r∑

i=1

∑

1≤j 6=i≤n

λiλj + |λi,j |2 + λi,j,i,j

λi − λj
. (15)

Consequently λ̂r/âr is approximately asymptotically Gaussian distributed with mean µr = E(λ̂r)/mr and
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variance σ2
r = Var(λ̂r)/m

2
r where from (5) and (6)

µr =
1

mr


λr +

1

T

∑

1≤j 6=r≤n

λrλj + |λr,j |2 + λr,j,r,j

λr − λj


 and σ2

r =
1

m2
rT

(
λ2
r + |λr,r|2 + λr,r,r,r

)
(16)

and the probability of underestimation is approximately asymptotically given by

P (r̂ < r) ≈ 1−Q

(
T ′
r − µr

σr

)
, (17)

with Q(x)
def
=
∫ +∞
x

1√
2π

e−
t2

2 dt.

IV. DOA ILLUSTRATIONS

To illustrate these general results, the detection of the number r = 1 or r = 2 of noncircular or/and

nonGaussian sources impinging on an array of n sensors is now considered. The common model for the

received signal xt is given by

xt = A(Θ)st + nt

where A(Θ) = (a1, ...,ar) is the full column rank steering matrix where each vector ak denotes the steering

vector of the k-th source of DOA θk. nt is assumed circular complex Gaussian distributed, but (st,k)k=1,...,r

that have finite fourth-order moments, are not necessarily circular complex Gaussian distributed. E|s2t,k| = σ2
sk ,

E(s2t,k) = σ2
skρske

2ιφsk and Cum(st,k, s
∗
t,k, st,k, s

∗
t,k) = σ4

skκsk where ρsk ∈ [0, 1], φsk ∈ [0, π) and κsk ∈
[−2,+∞) denote the noncircularity rate and phase, and the kurtosis of st,k, respectively.

In all the numerical illustrations and Monte Carlo experiments, a uniform linear array of omni-directional

n = 5 sensors, and half-wavelength spacing is used. Its centroid at the origin of the phase is used6 (i.e.,

ak = (e−ι2π sin θk , e−ιπ sin θk , 1, eιπ sin θk , eι2π sin θk)T where θk is the angle of DOA away from the broadside

of the array). For each point on the figures, T = 200 snapshots (except in Fig.1) are taken and 10000 Monte

Carlo runs are carried out to estimate the probabilities of underestimating.

We first consider the robustness of the MDL criterion to the distribution of the sources. For a single source

(r = 1), it is straightforward to derive from Rx = σ2
s1a1a

H
1 +σ2In, R′

x = σ2
s1ρs1e

2ιφs1a1a
T
1 , Qx = σ4

s1κs1(a
∗
1⊗

a1)(a
T
1 ⊗ aH1 ), the values λ1 = ‖a1‖2σ2

s1 + σ2, λ1,j = δ1,j‖a1‖2σ2
s1ρs1e

2iφs1 and λ1,j,1,j = δ1,j‖a1‖4σ4
s1κs1

that give from (15),(16), the expressions

m1 = σ2

(
1− 1

T

(
1 +

σ2

‖a1‖2σ2
s1

))
(18)

µ1 =
σ2
s1

m1

(
‖a1‖2 +

σ2

σ2
s1

)(
1 +

n− 1

T

σ2

‖a1‖2σ2
s1

)
(19)

6For rectilinear sources, the DOA θk and phase φk of noncircularity parameters are coupled [15] and as the performance depends on

∆φ = φ2 − φ1, the centroid of the array must be specified for fixing the performance.
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σ2
1 =

‖a1‖4σ4
s1

Tm2
1

[(
1 +

σ2

‖a1‖2σ2
s1

)2

+ ρ2s1 + κs1

]
, (20)

that specify the probability of underestimation P (r̂ = 0/r = 1) (17). Consequently this probability of

underestimation has the following behavior: P (r̂ = 0/r = 1) = 1/2 for the value SNR1/2 of the signal-

to-noise-ratio σ2
s1/σ

2 solution of T ′
1 = µ1 that does not depend on the distribution of the source. With respect

to the circular Gaussian distribution, the probability of underestimation is larger ([resp. smaller]) for SNR >

SNR1/2 ([resp. for SNR < SNR1/2]) for noncircular or/and nonGaussian distributions such that ρ2s1 + κs1 > 0.

The opposite behavior happens for distributions such that ρ2s1 + κs1 < 0.

This behavior is illustrated in Fig.1 for the following three distributions: circular Gaussian (ρs1 = κs1 = 0),

binary phase shift keying (BPSK) (ρs1 = 1 and κs1 = −2) and impulsive that takes the values {−1, 0,+1} with

P (st,1 = −1) = P (st,1 = +1) = 1/2p and P (st,1 = 0) = 1− 1/p for which ρs1 = 1 and κs1 = p− 3. We see

from this figure that the probability of underestimation is sensitive to the distribution of the source, particularly

for sources of large kurtosis κs1 and for weak values of the number T of snapshots as it is explained by (20).
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Fig.1 P (r̂ = 0/r = 1) as a function of the SNR for four distributions of the source and two values of the number T of snapshots.

For two sources, the expressions of m2, µ2 and σ2
2 can be derived as well, showing their dependence

on physical parameters such as number of observed snapshots, number of sensors, signal and noise powers,

correlations, noncircularity rates, kurtosis and angular separation of the sources (see e.g., the expressions of

the eigenvalues of Rx for the circular Gaussian distributions in [23, Section 5.4]). Such expressions are too

complicated to analyse, but their numerical computations show that the probability of underestimation P (r̂ <

2/r = 2) is sensitive to the distribution of the sources particularly for large kurtosis.

Remark 7: We note that this property of sensitivity of the probability of underestimation given by the MDL

criterion contrasts with the performance in terms of variance [14] and resolving power [15] derived from

subspace algorithms issued from Rx that are robust to noncircular or/and nonGaussian distributions of the

sources.

For possibly noncircular signals xt, it is well known that the DOA estimation may be improved in terms of

accuracy [14] and resolving power [15] if the standard covariance matrix Rx = E(xtx
H
t ) is replaced by the
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augmented covariance matrix Rx̃ = E(x̃tx̃
H
t ) with x̃t

def
= (xT

t ,x
H
t )T . More precisely, it is proved in [14],[15]

that these performance are drastically improved only for rectilinear uncorrelated sources for which7

Rx =

r∑

k=1

σ2
skaka

H
k + σ2In and Rx̃ =

r∑

k=1

σ2
sk ãkã

H
k + σ2I2n (21)

with ãk
def
= (aTk , e

−2ιφkaHk )T . Noting that both Result 1 and the approximate probability of underestimation

(17) are also valid for Rx̃ which is the covariance of x̃t, we can compare the probability of underestimation

given by the MDL criterion associated with Rx and Rx̃ whose eigenvalues are denoted (λ̃i)i=1,...,2n. For a

single rectilinear source the gap between λ̃1 and σ2 increases because now λ̃1 = 2‖a1‖2σ2
s1 + σ2 against to

λ1 = ‖a1‖2σ2
s1 + σ2 and thus the detection performance ought to improve. This is proved by the comparison

of the new expressions of m1, µ1 and σ2
1 deduced from

R′
x̃

def
= E(x̃tx̃

T
t ) = σ2

s1 ã1ã
T
1 + σ2


 O In

In O


 and Qx̃ = σ4

s1κs1(ã
∗
1 ⊗ ã1)(ã

T
1 ⊗ ãH1 )

where (Qx̃)i+(j−1)2n,l+(k−1)2n
def
= Cum((x̃t)i, (x̃t)

∗
j , (x̃t)k, (x̃t)

∗
l ), that are given by (18), (19) and (20)

where ‖a1‖2 is replaced by 2‖a1‖2. We obtain similar behaviors of the probability of underestimation that

for the MDL criterion associated with Rx, but the performance is improved as it is shown in Fig.2 for

which the MDL criterion associated with Rx̃ outperforms this criterion associated with Rx by about 1.5dB.
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!"
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��D$���%�

��D$��!"��

�#&��"������%�

�#&��"�����!"��

"�� ��������'#! �!���

Fig.2 P (r̂ = 0/r = 1) given by the MDL criterion associated with Rx and Rx̃ as a function of the SNR for BPSK and impulsive

(p = 20) distributions of the source.

For two sources, the rank of Rx̃ − σ2I2n of x̃t is r = 4 except for singularity cases. In particular for

uncorrelated rectilinear sources this rank is 2. Intensive numerical computations and Monte Carlo experiments

of P (r̂ < 4/r = 4) given by the MDL criterion associated with Rx̃ for two correlated or/and nonrectilinear

sources show that this MDL criterion is largely outperformed by the MDL criterion associated with Rx. This is

7We note that if the sources are nonrectilinear or/and correlated, the number of components (i.e., the rank of Rx̃ − σ2I2n) of x̃t is

generally 2r.
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explained by the smaller eigenvalue spread of the free noise augmented covariance matrix w.r.t. the covariance

matrix. This implies that the gap between λ̃4 and σ2 is smaller than the one between λ2 and σ2. Consequently

we concentrate now on two uncorrelated rectilinear sources.

Fig.3 and Fig.4 show the probability of underestimation given by the MDL criterion for two equipowered

BPSK uncorrelated rectilinear sources where the SNR is defined by the ratio σ2
s1/σ

2. The probabilities of

underestimation given by the MDL criterion associated with Rx and Rx̃ are compared in Fig.3 as a function

of the SNR for two DOA separations. We see that the MDL criterion associated with Rx̃ largely outperforms

those based on Rx by about 1.5dB.
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Fig.3 P (r̂ < 2/r = 2) given by the MDL criterion associated with Rx and Rx̃ as a function of the SNR for two DOA separations

∆θ (with θ1 = −θ2 = ∆θ/2) for two uncorrelated BPSK sources.

Fig.4 shows the probability of underestimation of the MDL criterion associated with Rx̃ for two sources as

a function of ∆φ
def
= φ2−φ1 for three SNR. We see that ∆φ = π/2 optimizes the capability of detection. This

property is similar with the performance in terms of variance [14] and resolving power [15] that are likewise

optimized for ∆φ = π/2.
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Fig.4 P (r̂ < 2/r = 2) given by the MDL criterion associated with Rx̃ as a function of ∆φ
def
= φ1 − φ2 for two uncorrelated BPSK

sources with ∆θ = 1deg for three SNR.

Fig.5 illustrates that the MDL criterion associated with Rx̃ can also detect two uncorrelated rectilinear
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sources of common DOA but with different phases of noncircularity. We see that naturally the probability of

underestimating decreases when ∆φ increases.
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Fig.5 P (r̂ < 2/r = 2) given by the MDL criterion associated with Rx̃ as a function of ∆φ
def
= φ1 − φ2 for two uncorrelated BPSK

sources of same DOA for three SNR.

Finally we note that our asymptotic theoretical analysis allows us to perfectly predict the threshold region in

all the scenarios we have considered. Furthermore, the different probabilities of underestimating estimated by

Monte Carlo experiments, fit the asymptotic theoretical ones for relatively small number of snapshots T = 200,

except for the particular scenarios for which some of the eigenvalues (λ̃i)i=1,..r are very closed or λ̃r is very

closed to σ2. For example, in the case of two equipowered uncorrelated rectilinear sources impinging on a

uniform linear array, the eigenvalues (λ̃i)i=1,2 are given by

λ̃i = 2‖a1‖2σ2
s1

(
1 + (−1)i cos((M − 1)

∆θ

2
−∆φ)

sin(M ∆θ
2 )

M sin(∆θ
2 )

)
+ σ2 i = 1, 2.

This happens in particular for ∆θ ≈ 0 in two cases : ∆φ approaches π/2 for which λ̃1 ≈ λ̃2 and very weak

∆φ for which ã1 and ã2 get very closed and λ̃2 ≈ σ2. In these two cases the asymptotic theoretical value

of E(̂̃λ2) derived from (5) is no longer valid because T = 200 or equivalently the SNR is not large enough.

The following table gives the minimum and maximun value of ∆φ for which our asymptotic approximation is

valid for ∆θ = 0. We clearly see from this table that the domain of validity of our asymptotic approximation

enlarges when T or the SNR increases.

T 200 104 105

∆φ min max min max min max

SNR= −5dB 0.30rd 1.50rd 0.07rd 1.56rd 0.04rd 1.56rd

SNR= 0dB 0.15rd 1.54rd 0.05rd 1.56rd 0.02rd 1.56rd

SNR= +5dB 0.07rd 1.54rd 0.02rd 1.56rd 0.01rd 1.56rd

Table 1 ∆φ
min

and ∆φ
max

for two uncorrelated BPSK sources with ∆θ = 0deg.

APPENDIX

Proof of Lemma 1
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From the independence of the samples (xt)t=1,..,T , we straightforwardly have

E[(aH1 δRa2)(a
H
3 δRa4)] =

1

T

{
E[(aH1 xt)(x

H
t a2)(a

H
3 xt)(x

H
t a4)]− (aH1 Ra2)(a

H
3 Ra4)

}
. (22)

Applying the following identity for arbitrary zero-mean RVs (zk)k=1,..,4

E(z1z2z3z4) = E(z1z2)E(z3z4) + E(z1z3)E(z2z4) + E(z1z4)E(z2z3) + Cum(z1, z2, z3, z4)

to the expectation of the right hand side of (22), then using the multilinearity of the cumulant

Cum(aH1 xt,x
H
t a2,a

H
3 xt,x

H
t a4) =

n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

a∗1,ia2,ja
∗
3,ka4,lCum(xt,i, x

∗
t,j , xt,k, x

∗
t,l)

=

n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

(aT2 ⊗ aH1 )i+(j−1)n(Q)i+(j−1)n,l+(k−1)n(a
∗
3 ⊗ a4)l+(k−1)n,

Lemma 1 is proved.

Proof of Result 1

We follow here the Wilkinson’s approach [3, p.68], carried on by Kaveh et al [5], that we restate for the

benefit of the reader. Define R̂ = R+ δR in terms of a random perturbation ∆ to R with a perturbation factor

ǫ. Thus δR = ǫ∆, where ∆ characterizes the direction of the zero-mean random perturbation term δR.

Let v̄i denote the unnormalized eigenvector of R̂ specified by (2), (3). It is given by a perturbation expansion

[3, p.68]

v̄i = vi +
∑

1≤j 6=i≤n

( ∞∑

k=1

t
(i)
k,jǫ

k

)
vj , (23)

which gives to the second order

v̂i =
v̄i

||v̄i||
=


1− 1

2

∑

1≤j 6=i≤n

|t(i)1,j |2ǫ2

vi +

∑

1≤j 6=i≤n

(
t
(i)
1,jǫ+ t

(i)
2,jǫ

2
)
vj + o(ǫ2). (24)

Using R̂v̄i = λ̂iv̄i, v
H
i Rvj = δi,jλi and (23), we obtain

λ̂i = λi + ǫ(vH
i ∆vi) + ǫ2

∑

1≤j 6=i≤n

t
(i)
1,j(v

H
i ∆vj) + o(ǫ2) (25)

and for k 6= i,

t
(i)
1,k =

vH
k ∆vi

λi − λk
and t

(i)
2,k = −(vH

i ∆vi)(v
H
k ∆vi)

(λi − λk)2
+

∑

1≤j 6=i≤n

(vH
k ∆vj)(v

H
j ∆vi)

(λi − λj)(λi − λk)
.

Because E(R̂) = R, ǫE(t
(i)
1,k) = 0 and using Lemma 1, we obtain (where we note that ǫ2E(t

(i)
2,k) = 0 in [5])
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for k 6= i and l 6= j

ǫ2E(t
(i)
1,kt

(j)∗

1,l ) =
1

T

(λiλkδi,jδk,l + λj,kλ
∗
i,l + λi,k,j,l)

(λi − λk)(λj − λl)

ǫ2E(t
(i)
1,kt

(j)
1,l ) =

1

T

(λiλjδj,kδi,l + λk,lλ
∗
i,j + λi,k,l,j)

(λi − λk)(λj − λl)

ǫ2E(t
(i)
2,k) = − 1

T

(λi,kλ
∗
i,i + λi,i,k,i)

(λi − λk)2
+

1

T

∑

1≤j 6=i≤n

(λi,jλ
∗
j,k + λj,k,j,i)

(λi − λj)(λi − λk)
.

Plugging these four expectations in the expectations and covariances of v̂i and λ̂i given in (24) and (25)

respectively, straightforwardly proves Result 1.
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