Nonlinear spectral unmixing of hyperspectral images using Gaussian processes - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Signal Processing Année : 2013

Nonlinear spectral unmixing of hyperspectral images using Gaussian processes

Résumé

This paper presents an unsupervised algorithm for nonlinear unmixing of hyperspectral images. The proposed model assumes that the pixel reflectances result from a nonlinear function of the abundance vectors associated with the pure spectral components. We assume that the spectral signatures of the pure components and the nonlinear function are unknown. The first step of the proposed method estimates the abundance vectors for all the image pixels using a Bayesian approach an a Gaussian process latent variable model for the nonlinear function (relating the abundance vectors to the observations). The endmembers are subsequently estimated using Gaussian process regression. The performance of the unmixing strategy is first evaluated on synthetic data. The proposed method provides accurate abundance and endmember estimations when compared to other linear and nonlinear unmixing strategies. An interesting property is its robustness to the absence of pure pixels in the image. The analysis of a real hyperspectral image shows results that are in good agreement with state of the art unmixing strategies and with a recent classification method.
Fichier principal
Vignette du fichier
Dobigeon_8942.pdf (5.48 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00818786 , version 1 (29-04-2013)

Identifiants

Citer

Yoann Altmann, Nicolas Dobigeon, Steve Mclaughlin, Jean-Yves Tourneret. Nonlinear spectral unmixing of hyperspectral images using Gaussian processes. IEEE Transactions on Signal Processing, 2013, vol. 61, pp. 2442-2453. ⟨10.1109/TSP.2013.2245127⟩. ⟨hal-00818786⟩
111 Consultations
108 Téléchargements

Altmetric

Partager

More