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Nonlinear Spectral Unmixing of Hyperspectral
Images Using Gaussian Processes

Yoann Altmann, Student Member, IEEE, Nicolas Dobigeon, Member, IEEE, Steve McLaughlin, Fellow, IEEE, and
Jean-Yves Tourneret, Senior Member, IEEE

Abstract—This paper presents an unsupervised algorithm for

nonlinear unmixing of hyperspectral images. The proposed model

assumes that the pixel reßectances result from a nonlinear function

of the abundance vectors associated with the pure spectral compo-

nents. We assume that the spectral signatures of the pure compo-

nents and the nonlinear function are unknown. The Þrst step of the

proposedmethod estimates the abundance vectors for all the image

pixels using a Bayesian approach an aGaussian process latent vari-

able model for the nonlinear function (relating the abundance vec-

tors to the observations). The endmembers are subsequently esti-

mated using Gaussian process regression. The performance of the

unmixing strategy is Þrst evaluated on synthetic data. The pro-

posed method provides accurate abundance and endmember es-

timations when compared to other linear and nonlinear unmixing

strategies. An interesting property is its robustness to the absence

of pure pixels in the image. The analysis of a real hyperspectral

image shows results that are in good agreement with state of the

art unmixing strategies and with a recent classiÞcation method.

Index Terms—Gaussian processes, hyperspectral imaging, spec-

tral unmixing.

I. INTRODUCTION

S PECTRAL UNMIXING (SU) is a major issue when
analyzing hyperspectral images. It consists of identifying

the macroscopic materials present in an hyperspectral image
and quantifying the proportions of these materials in the image
pixels. Many SU strategies assume that pixel reßectances are
linear combinations of pure component spectra [1]–[4]. The
resulting linear mixing model (LMM) has been widely adopted
in the literature and has provided some interesting results. How-
ever, as discussed in [1], the LMM can be inappropriate for
some hyperspectral images. Nonlinear mixing models provide
an interesting alternative to overcome the inherent limitations of
the LMM. For instance, the presence of relief can induce mul-
tiple scattering effects between the different materials present
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in the image. These nonlinear scattering effects typically occur
in vegetation areas [5] and urban scenes [6]. A speciÞc class
of nonlinear models referred to as bilinear models has been
studied in [5], [7]–[9] for modeling these multiple scattering
effects. Conversely, the bidirectional reßectance-based model
of [10] focusses on hyperspectral images including intimate
mixtures, i.e., when the pure spectral components do not sit
side-by-side in the pixel and when the photons are then inter-
acting with all the materials simultaneously. These intimate
mixtures can occur in sand-like or mineral areas. Other more
ßexible unmixing techniques have been also proposed to handle
wider classes of nonlinearities, including radial basis function
networks [11], [12] post-nonlinear mixing models [13] and
kernel-based models [14]–[17].

Most existing unmixing strategies can be decomposed into
two steps referred to as endmember extraction and abundance
estimation. Endmember identiÞcation is usually achieved be-
fore estimating the abundances for all the image pixels. In the
last decade, many endmember extraction algorithms (EEAs)
have been developed to identify the pure spectral components
contained in a hyperspectral image (see [1] for a recent review
of these methods). Most EEAs rely on the LMM, which, as dis-
cussed, is inappropriate for the case of nonlinear mixtures of
the endmembers. More recently, an EEA was proposed in [18]
to extract endmembers from a set of nonlinearly mixed pixels.
The nonparametric approach proposed in [18] was based on the
assumption that the observed pixels lie on a manifold and that
the endmembers are extreme points of this manifold. An approx-
imation of the geodesic distance associated with this manifold
was then used to identify the endmembers from the data. Simi-
larly, our approach assumes that the data lie on a (possibly non-
linear) manifold. However, this paper proposes a parametriza-
tion of the manifold through the use of a kernel. The main ad-
vantages of this kernel-based parametric approach are 1) a better
description of the manifold when the number of image pixels is
reduced, and 2) a better endmember identiÞcation when there
is no pure pixel in the image. This paper proposes Þrst to es-
timate the abundance vectors and to estimate the endmembers
during a second step, using the prediction capacity of Gaussian
processes (GPs). This approach breaks from the usual paradigm
of spectral unmixing. More precisely, this paper considers a
kernel-based approach for nonlinear SU based on a nonlinear di-
mensionality reduction using a Gaussian process latent variable
model (GPLVM). The main advantage of GPLVMs is their ca-
pacity to accurately model many different nonlinearities. In this
paper, we propose to use a particular form of kernel based on
existing bilinear models, which allows the proposed unmixing
strategy to be accurate when the underlying mixing model is bi-
linear. Note that the LMM is a particular bilinear model. The
algorithm proposed herein is “unsupervised” in the sense that



the endmembers contained in the image and the mixing model
are not known. Only the number of endmembers is assumed to
be known. As a consequence, the parameters to be estimated
are the kernel parameters, the endmember spectra and the abun-
dances for all image pixels.

The paper is organized as follows. Section II presents the non-
linear mixing model considered in this paper for hyperspectral
image unmixing. Section III introduces the GPLVM used for la-
tent variable estimation. A constrained GPLVM for abundance
estimation is detailed in Section IV. Section V studies the end-
member estimation procedure using GP regression. Some sim-
ulation results conducted on synthetic and real data are shown
and discussed in Sections VI and VII. Finally, conclusions are
drawn in Section VIII.

II. NONLINEAR MIXING MODEL

Consider a hyperspectral image of pixels, composed
of endmembers and observed in spectral bands. For
convenience, the data are assumed to have been previously
centered, i.e., the sample mean of the original pixels
has been subtracted from each observed pixel. The -spec-
trum of the th mixed pixel

is deÞned as a transformation of its corre-
sponding abundance vector as
follows

(1)

where is a linear or nonlinear unknown func-
tion. The noise vector is an independent, identically dis-
tributed (i.i.d.) white Gaussian noise sequence with variance ,
i.e., , . Without loss
generality, the nonlinear mapping (1) from the abundance space
to the observation space can be rewritten

(2)

where , is an matrix and the dimension
is the dimension of the subspace spanned by the transformed

abundance vectors , . Of course, the per-
formance of the unmixing strategy relies on the choice of the
nonlinear function . In this paper, we will use the following
nonlinearity

(3)

with . The primary motivation for considering
this particular kind of nonlinearity is the fact that the resulting
mixingmodel is a bilinearmodel with respect to each abundance
, .More precisely, this mixingmodel extends the

generalized bilinear model proposed in [9] and thus the LMM.
It is important to note from (2) and (3) that contains the
spectra of the pure components present in the image and

interaction spectra between these components. Note also
that the analysis presented in this paper could be applied to any
other nonlinearity .

Due to physical constraints, the abundance vector
satisÞes the following posi-

tivity and sum-to-one constraints

(4)

Since the nonlinearity is Þxed, the problem of unsupervised
spectral unmixing is to determine the spectrum matrix

, the abundance matrix
satisfying (2) under the constraints (4) and the noise variance

. Unfortunately, it can be shown that the solution of this con-
strained problem is not unique. In the noise-free linear case, it is
well known that the data are contained in a simplex whose ver-
tices are the endmembers. When estimating the endmembers in
the linear case, a simplex of minimum volume embedding the
data is expected. Equivalently, the estimated abundance vectors
are expected to occupy the largest volume in the simplex de-
Þned by (4). In a similar fashion to the linear case, the estimated
abundance matrix resulting from an unsupervised nonlinear SU
strategy may not occupy the largest volume in the simplex de-
Þned by (4). To tackle this problem, we Þrst propose to relax
the positivity constraints for the elements of the matrix and
to consider only the sum-to-one constraint. For ease of under-
standing, we introduce vectors satisfying the sum-to-one
constraint

(5)

referred to as latent variables and denoted as
, . The positivity con-

straint will be handled subsequently by a scaling procedure
discussed in Section IV. The next section presents the Bayesian
model for latent variable estimation using GPLVMs.

III. BAYESIAN MODEL

GPLVMs [19] are powerful tools for probabilistic nonlinear
dimensionality reduction that rewrite the nonlinear model (1)
as a nonlinear mapping from a latent space to the observation
space as follows

(6)

where is deÞned in (3), is an
matrix with , and .
Note that from (2) and (6) the columns of span the same
subspace as the columns of . Consequently, the columns of

are linear combinations of the spectra of interest, i.e., the
columns of . Note also that when is full rank, it can be
shown that the latent variables are necessarily linear combina-
tions of the abundance vectors of interest. Figs. 1 and 2 illustrate
the mapping from the abundance vectors to the observations
that will be used in this paper. Note that the linear mapping be-
tween the abundances and the latent variables will be explained
in detail in Section IV. For brevity, the vectors
will be denoted as in the sequel. Assuming independence
between the observations, the statistical properties of the noise



Fig. 1. Nonlinear mapping from the abundances vectors to the observed mixed
pixels.

Fig. 2. Example of mapping decomposition from the abundance vectors to the
observed nonlinearly mixed pixels through the latent variables .

lead to the following likelihood of the observation matrix

(7)

where is the latent variable
matrix. Note that the likelihood can be rewritten as a product of
Gaussian distributions over the spectral bands as follows

(8)

where and is
an matrix. The idea of GPLVMs is to consider as
a nuisance parameter, to assign a Gaussian prior to and to
marginalize the joint likelihood (7) over , i.e.,

(9)

where is the prior distribution of . The estimation of
and can then be achieved by maximizing (9) following the
maximum likelihood estimator (MLE) principle. An alternative
consists of using an appropriate prior distribution , as-
suming prior independence between and , and max-
imizing the joint posterior distribution

(10)

with respect to (w.r.t.) , yielding the maximum a poste-
riori (MAP) estimator of . The next paragraph discusses
different possibilities for marginalizing the joint likelihood (8)
w.r.t. .

A. Marginalizing

It can be seen from (9) that the marginalized likelihood and
thus the associated latent variables depend on the choice of the

prior . More precisely, assigning a given prior for fa-
vors particular representations of the data, i.e., particular solu-
tions for the latent variable matrix maximizing the posterior
(10).When using GPLVMs for dimensionality reduction, a clas-
sical choice [19] consists of assigning independent Gaussian
priors for , leading to

(11)

However, this choice can be inappropriate for SU. First, (11) can
be incompatible with the admissible latent space, constrained
by (5). Second, the prior (11) assumes the columns of (linear
combinations of the spectra of interest) are a priori Gaussian,
which is not relevant for real spectra in most applications. A
more sophisticated choice consists of considering a priori corre-
lation between the columns (inter-spectra correlation) and rows
(inter-bands correlation) of using a structured covariance
matrix to be Þxed or estimated. In particular, introducing cor-
relation between close spectral bands is of particular interest
in hyperspectral imagery. Structured covariance matrices have
already been considered in the GP literature for vector-valued
kernels [20] (see [21] for a recent review). However, computing
the resulting marginalized likelihood usually requires the esti-
mation of the structured covariance matrix and the inversion
of an covariance matrix,1 which is prohibitive for
SU of hyperspectral images since several hundreds of spectral
bands are usually considered when analyzing real data. Sparse
approximation techniques might be used to reduce this compu-
tational complexity (see [23] for a recent review). However, to
our knowledge, these techniques rely on the inversion of ma-
trices bigger than matrices. The next section presents an
alternative that only requires the inversion of an covari-
ance matrix without any approximation.

B. Subspace IdentiÞcation

It can be seen from (6) that in the noise-free case, the
data belong to a -dimensional subspace that is spanned by
the columns of . To reduce the computational complexity
induced by the marginalization of the matrix while con-
sidering correlations between spectral bands, we propose to
marginalize a basis of the subspace spanned by instead of

itself. More precisely, can be decomposed as follows

(12)

where is an matrix ( is vector)
whose columns are arbitrary basis vectors of the -dimensional
subspace that contains the subspace spanned by the columns of

and is a matrix that scales the
columns of . Note that the subspaces spanned by and are
the same when is full rank, resulting in a full rank matrix .
The joint likelihood (8) can be rewritten as

(13)

1See technical report [22] for further details.



where is an matrix. The proposed subspace
estimation procedure consists of assigning an appropriate prior
distribution to (denoted as ) and to marginalize from
the joint posterior of interest. It is easier to choose an infor-
mative prior distribution that accounts for correlation be-
tween spectral bands than choosing an informative since

is an arbitrary basis of the subspace spanned by , which
can be easily estimated (as will be shown in the next section).

C. Parameter Priors

GPLVMs construct a smooth mapping from the latent space
to the observation space that preserves dissimilarities [24]. In
the SU context, it means that pixels that are spectrally different
have different latent variables and thus different abundance vec-
tors. However, preserving local distances is also interesting:
spectrally close pixels are expected to have similar abundance
vectors and thus similar latent variables. Several approaches
have been proposed to preserve similarities, including back-
constraints [24], dynamical models [25] and locally linear em-
bedding (LLE) [26]. In this paper, we use LLE to assign an ap-
propriate prior to . First, the nearest neighbors
of each observation vector are computed using the Eu-
clidian distance ( is the set of integers such that is a
neighbor of ). The weight matrix of size

providing the best reconstruction of from its neigh-
bors is then estimated as

(14)

Note that the solution of (14) is easy to obtain in closed form
since the criterion to optimize is a quadratic function of . Note
also that the matrix is sparse since each pixel is only described
by its nearest neighbors. The locally linear patches obtained
by the LLE can then be used to set the following prior for the
latent variable matrix

(15)

where is a hyperparameter to be adjusted and is the
indicator function over the set deÞned by the constraints (5).

In this paper, we propose to assign a prior to using the
standard principal component analysis (PCA) (note again that
the data have been centered). Assuming prior independence be-
tween , the following prior is considered for

(16)

where is an projection matrix con-
taining the Þrst eigenvectors of the sample covariance matrix
of the observations (provided by PCA) and is a dispersion
parameter that controls the dispersion of the prior. Note that
the correlation between spectral bands is implicitly introduced
through .

Fig. 3. DAG for the parameter priors and hyperpriors (the Þxed parameters
appear in dashed boxes).

Non-informative priors are assigned to the noise variance
and the matrix , i.e,

(17)

where the intervals and cover the possible
values of the parameters and . Similarly, the following non-
informative prior is assigned to the hyperparameter

(18)

where the interval covers the possible values of the hy-
perparameter . The resulting directed acyclic graph (DAG) is
depicted in Fig. 3.

D. Marginalized Posterior Distribution

Assuming prior independence between , , , and ,
the marginalized posterior distribution of
can be expressed as

(19)

where .
Straightforward computations leads to

(20)

where , is an vector,

is an matrix and
denotes the matrix trace.

Mainly due to the nonlinearity introduced through the non-
linear mapping, a closed form expression for the parameters
maximizing the joint posterior distribution (19) is impossible
to obtain. We propose to use a scaled conjugate gradient (SCG)
method to maximize the marginalized log-posterior. To en-
sure the sum-to-one constraint for , the following arbitrary
reparametrization



is used and the marginalized posterior distribution is optimized
w.r.t. the Þrst columns of denoted . The par-
tial derivatives of the log-posterior w.r.t. and are
obtained using partial derivatives w.r.t. and and the clas-
sical chain rules (see technical report [22] for further details).
The resulting latent variable estimation procedure is referred to
as locally linear GPLVM (LL-GPLVM).

Note that the marginalized likelihood reduces to the product
of independent Gaussian probability density functions since

(21)

and . Note also that the covariance matrix
is related to the covariance matrix of the 2nd order

polynomial kernel [27, p. 89].More precisely, the proposed non-
linear mapping corresponds to a particular polynomial kernel
whose metric is induced by the matrix . Finally, note that the
evaluation of the marginalized likelihood (20) only requires the
inversion of the covariance matrix . It can been seen
from the following Woodbury matrix identity [28]

(22)

that the computation of mainly relies on the inversion of
a matrix. Similarly, the computation of
mainly consists of computing the determinant of a ma-
trix, which reduces the computational cost when compared to
the structured covariance matrix based approach presented in
Section III-A.

E. Estimation of

Let us denote as the maximum a poste-
riori (MAP) estimator of obtained by max-
imizing (19). Using the likelihood (13), the prior distribution
(16) and Bayes’ rule, we obtain the posterior distribution of
conditioned upon , i.e.,

(23)

where and .
Since the conditional posterior distribution of is the product
of independent Gaussian distributions, the MAP estimator of

conditioned upon is given by

(24)

where , ,
and . The next

section studies a scaling procedure that estimates the abundance
matrix using the estimated latent variables resulting from the
maximization of (19).

IV. SCALING PROCEDURE

The optimization procedure presented in Section III-D pro-
vides a set of latent variables that represent the data but can
differ from the abundance vectors of interest. Consider

obtained after maximization of the pos-
terior (19). The purpose of this section is to estimate an
abundance matrix such that

(25)

where occupy the maximal volume in the sim-
plex deÞned by (4), is an
matrix and is an standard i.i.d Gaussian noise
matrix which models the scaling errors. Since the rows of
satisfy the sum-to-one constraint (5), estimating the relation be-
tween and is equivalent to estimate the relation between

and . However, when considering the mapping between
and , non-isotropic noise has to be considered since the rows
of and satisfy the sum-to-one constraint, i.e., they belong
to the same -dimensional subspace.

Eq. (25) corresponds to an LMM whose noisy observations
are the rows of . Since is assumed to occupy the largest
volume in the simplex deÞned by (4), the columns of are
the vertices of the simplex of minimum volume that contains

. As a consequence, it seems reasonable to use a linear un-
mixing strategy for the set of vectors to es-
timate and . In this paper, we propose to estimate jointly

and using the Bayesian algorithm presented in [29] for
unsupervised SU assuming the LMM. Note that the algorithm in
[29] assumed positivity constraints for the estimated endmem-
bers. Since these constraints for are unjustiÞed, the orig-
inal algorithm has slightly been modiÞed by removing the trun-
cations in the projected endmember priors (see [29] for details).
Once the estimator of has been obtained
by the proposed scaling procedure, the resulting constrained la-

tent variables denoted as are
deÞned as follows

(26)

with . Using the sum-to-one constraint
, we obtain

(27)

where is an ma-
trix. The Þnal abundance estimation procedure, including the
LL-GPLVM presented in Section III and the scaling procedure
investigated in this section is referred to as fully constrained
LL-GPVLM (FCLL-GPLVM) (a detailed algorithm is available
in [22]). Once the Þnal abundance matrix and the matrix
have been estimated, we propose an endmember extraction pro-
cedure based on GP regression. This method is discussed in the
next section.

V. GAUSSIAN PROCESS REGRESSION

Endmember estimation is one of the main issues in SU. Most
of the existing EEAs intend to estimate the endmembers from
the data, i.e., selecting the most pure pixels in the observed
image [30]–[32]. However, these approaches can be inefÞcient
when the image does not contain enough pure pixels. Some
other EEAs based on the minimization of the volume con-
taining the data (such as the minimum volume simplex analysis
[33]) can mitigate the absence of pure pixels in the image. This
section studies a new endmember estimation strategy based



on GP regression for nonlinear mixtures. This strategy can
be used even when the scene does not contain pure pixels. It
assumes that all the image abundances have been estimated
using the algorithm described in Section IV. Consider the set
of pixels and the corresponding estimated
abundance vectors . GP regression Þrst allows
the nonlinear mapping in (1) (from the abundance space to
the observation space) to be estimated. The estimated mapping
is denoted as . Then, it is possible to use the prediction
capacity of GPs to predict the spectrum corresponding to
any new abundance vector . In particular, the predicted spectra
associated with pure pixels, i.e., the endmembers, correspond
to abundance vectors that are the vertices of the simplex deÞned
by (4). This section provides more details about GP prediction
for endmember estimation. It can be seen from the marginalized
likelihood (20) that is the product of
independent GPs associated with each spectral band of the data
space (21). Looking carefully at the covariance matrix of
(i.e., to ), we can write

(28)

where is the white Gaussian noise vector associated
with the th spectral band (having covariancematrix ) and2

(29)

with the covariance matrix of
. The vector is referred to as hidden vector as-

sociated with the observation . Consider now an test
data with hidden vector , abundance vector

and . We assume that the
test data share the same statistical properties as the training data

in the sense that is a Gaussian vector such
that

(30)

where is the variance of and
contains the covariances between the training inputs and the test
inputs, i.e.,

(31)

Straightforward computations leads to

(32)

with

Since the posterior distribution (32) is Gaussian, the MAP
and MMSE estimators of equal the posterior mean

.
In order to estimate the endmembers, we propose to replace

the parameters , , and by their estimates , ,
and and to compute the estimated hidden vectors asso-

ciated with the abundance vectors for

2Note that all known conditional parameters have been omitted for brevity.

TABLE I
ARES: SYNTHETIC IMAGES

. For each value of , the th estimated hidden
vector will be the th estimated endmember.3 Indeed, for the
LMM and the bilinear models considered in this paper, the end-
members are obtained by setting in
the model (2) relating the observations to the abundances. Note
that the proposed endmember estimation procedure provides the
posterior distribution of each endmember via (32) which can be
used to derive conÞdence intervals for the estimates. The next
section presents some simulation results obtained for synthetic
and real data.

VI. SIMULATIONS ON SYNTHETIC DATA

A. Subspace IdentiÞcation

The performance of the proposed GPLVM for dimension-
ality reduction is Þrst evaluated on three synthetic images of

pixels. The endmembers contained in these
images have been extracted from the spectral libraries provided
with the ENVI software [34] (i.e., green grass, olive green paint
and galvanized steel metal). Additional simulations conducted
with different endmembers are available in [22]. The Þrst image

has been generated according to the linear mixing model
(LMM). The second image is distributed according to the
bilinear mixing model introduced in [5], referred to as the “Fan
model” (FM). The third image has been generated according
to the generalized bilinear model (GBM) studied in [9] with the
following nonlinearity parameters

The abundance vectors , have been randomly
generated according to a uniform distribution on the admissible
set deÞned by the positivity and sum-to-one constraints (4). The
noise variance has been Þxed to , which corresponds
to a signal-to-noise ratio which corresponds to
the worst case for current spectrometers. The hyperparameter
of the latent variable prior (15) has been Þxed to and
the number of neighbors for the LLE is for all the results
presented in this paper. The quality of dimensionality reduction
of the GPLVM can be measured by the average reconstruction
error (ARE) deÞned as

(33)

where is the th observed pixel and its estimate. For
the LL-GPLVM, the th estimated pixel is given by

where is estimated using (24). Table I compares

3Note that the estimated endmembers are centered since the data have pre-
viously been centered. The actual endmembers can be obtained by adding the
empirical mean to the estimated endmembers.



Fig. 4. Top: Representation of the pixels (dots) using the Þrst two
principal components provided by the standard PCA for the three synthetic im-
ages to . Bottom: Representation using the latent variables estimated by
the LL-GPLVM for the three synthetic images to .

Fig. 5. Manifolds spanned by the pixels (black dots) of , and
using the 3 most signiÞcant PCA axes. The colored surface is the manifold

identiÞed by the LL-GPLVM.

the AREs obtained by the proposed LL-GPLVM and the projec-
tion onto the Þrst principal vectors provided by the PCA.
The proposed LL-GPLVM slightly outperforms PCA for non-
linear mixtures in term of ARE.More precisely, the AREs of the
LL-GPLVM mainly consist of the noise errors ,
whereas model errors are added when applying PCA to non-
linear mixtures. Fig. 4 compares the latent variables obtained
after maximization of (20) for the three images to with
the projections obtained by projecting the data onto the
principal vectors provided by PCA. Note that only di-
mensions are needed to represent the latent variables (because
of the sum-to-one constraint). From this Þgure, it can be seen
that the latent variables of the LL-GPLVM describe a noisy sim-
plex for the three images. It is not the case when using PCA for
the nonlinear images. Fig. 5 shows the manifolds estimated by
the LL-GPLVM for the three images to . This Þgure shows
that the proposed LL-GPLVM can model the manifolds associ-
ated with the image pixels with good accuracy.

TABLE II
RNMSES: SYNTHETIC IMAGES

B. Abundance and Endmember Estimation

The quality of SU can be evaluated by comparing the esti-
mated and actual abundances using the root normalized mean
square error (RNMSE) deÞned by

(34)

where is the th actual abundance vector and its esti-
mate. Table II compares the RNMSEs obtained with different
unmixing strategies. The endmembers have been estimated by
the VCA algorithm in all simulations. The algorithms used for
abundance estimation are the FCLS algorithm proposed in [35]
for , the LS method proposed in [5] for and the gradient-
based method proposed in [9] for . These procedures are re-
ferred to as “SU” in the table. These strategies are compared
with the proposed FCLL-GPLVM. As mentioned above, the
Bayesian algorithm for joint estimation of and under pos-
itivity and sum-to-one constraints for (introduced in [29]) is
used in this paper for the scaling step. It can be seen that the pro-
posed FCLL-GPLVM is general enough to accurately approx-
imate the considered mixing models since it provides the best
results in term of abundance estimation.

The quality of reconstruction of the unmixing procedure is
also evaluated by the ARE. For the FCLL-GPLVM, the th re-

constructed pixel is given by . Table I
shows the AREs corresponding to the different unmixing strate-
gies. The proposed FCLL-GPLVMoutperforms the other strate-
gies in term of ARE for these images.

Finally, the performance of the FCLL-GPLVM for end-
member estimation is evaluated by comparing the estimated
endmembers with the actual spectra. The quality of endmember
estimation is evaluated by the spectral angle mapper (SAM)
deÞned as

(35)

where is the th actual endmember and its estimate.
Table III compares the SAMs obtained for each endmember
using the VCA algorithm, the nonlinear EEA presented in [18]
(referred to as “Heylen”) and the FCLL-GPLVM for the three
images to . These results show that the FCLL-GPLVM pro-
vides accurate endmember estimates for both linear and non-
linear mixtures.

C. Performance in Absence of Pure Pixels

The performance of the proposed unmixing algorithm is also
tested in scenarios where pure pixels are not present in the ob-
served scene. More precisely, the simulation parameters remain
the same for the three images to except for the
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TABLE IV
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abundance vectors, that are drawn from a uniform distribution
in the following set

(36)

The three resulting images are denoted as , and . Table I
shows that the absence of pure pixels does not change the AREs
signiÞcantly when they are compared with those obtained with
the images to . Moreover, FCLL-GPLVM is more robust
to the absence of pure pixels than the different SU methods.
The good performance of FCLL-GPVLM is due in part to the
scaling procedure. Table II shows that the performance of the
FCLL-GPLVM in term of RNMSE is not degraded signiÞcantly
when there is no pure pixel in the image contrary to the situ-
ation where when the endmembers are estimated using VCA.
Table IV shows the performance of the FCLL-GPLVM for end-
member estimation when there is no pure pixel in the image.
The results of the FCLL-GPLVM do not change signiÞcantly
when they are compared with those obtained with images to
, which is not the case for the two other EEAs. The accuracy

of the endmember estimation is illustrated in Fig. 6 which com-
pares the endmembers estimated by the FCLL-GPLVM (blue
lines) to the actual endmember (red dots) and the VCA estimates
(black line) for the image .

D. Performance With Respect to Endmember Variability

The proposed method assumes that the spectrum character-
izing a given material (i.e., an endmember) is unique for all the
image pixels. This assumption has been widely used in linear
unmixing, which has motivated the consideration of unique end-
members in this paper. However, taking endmember variability
into consideration is also an important problem, depending on
the observation conditions and the observed scene [36]–[38]. To

Fig. 6. Actual endmembers (red dots) and endmembers estimated by the
FCLL-GPLVM (blue lines) and VCA (black line) for the image .

evaluate the robustness of the proposed method to endmember
variability, additional experiments have been performed. More
precisely, sets of synthetic pixels have been gener-
ated according to the following nonlinear model

where has been generated uni-
formly in the simplex deÞned by the positivity and sum-to-one
constraints and endmember variability has been considered
using random endmembers, i.e.,
where , are the actual endmembers extracted
from the spectral library and is the endmember variance.
Note that this model is similar to the Fan model studied in [5]
except that the endmembers are random. Table V compares
the performance of the proposed method with the performance
of an unmixing strategy based on VCA (for endmember ex-
traction) and the least squares method of [5] (for abundance
estimation). This procedure is referred to as “SU” in the table.
Four values of have been considered. The higher ,
the higher the endmember variability. For each row, the best
result has been highlighted in blue. The spectral angle mappers
(SAMs) presented in Table V represent the angles between
the estimated endmembers and the actual endmembers ,

. From this table, it can be seen that for each
value of , the proposed method provides more accurate
abundance and endmember estimates (in term of RNMSE and
SAM, respectively), when compared with the SU approach.
In particular, the performance of the proposed method is not
signiÞcantly degraded for weak endmember variability.

VII. APPLICATION TO A REAL DATASET

The real image considered in this section was acquired in
2010 by the Hyspex hyperspectral scanner over Villelongue,
France ( and ). spectral bands were
recorded from the visible to near infrared with a spatial resolu-
tion of 0.5 m. This dataset has already been studied in [39] and
is composed of a forested area containing 12 identiÞed vegeta-
tion species (ash tree, oak tree, hazel tree, locust tree, chestnut
tree, lime tree, maple tree, beech tree, birch tree, willow tree,
walnut tree and fern). More details about the data acquisition
and pre-processing steps are available in [39]. The sub-image
of size 50 50 pixels chosen here to evaluate the proposed
unmixing procedure is depicted in Fig. 7. A reasonably small
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Fig. 7. Top: real hyperspectral Madonna data acquired by the Hyspex hyper-
spectral scanner over Villelongue, France. Bottom right: Region of interest
shown in true colors (right). Bottom left: ClassiÞcation map obtained in [39]
for the region of interest. The labeled pixels are classiÞed as Oak tree (red),
Chestnut tree (blue), Ash tree (green) and non-planted-tree pixels (white).

image is considered in this paper to ease the explanation of
the results and to keep the processing overhead quite low. This
image contains vegetation species of varying spatial density
such that some pixels do not contain identiÞed tree species.
More precisely, the scene is mainly composed of three com-
ponents since the data belong to a two-dimensional manifold
(see black dots of Fig. 8(a)). Consequently, we assume that the
scene is composed of endmembers.4 We propose to
use the set of 32224 label spectra used in [39] for the learning
step of the classiÞcation method presented herein to identify
the components present in the area of interest. More precisely,
Fig. 8(a) shows the reference clusters corresponding to oak trees
(red dots) and chestnut trees (blue dots) projected in a 3-dimen-
sional subspace (deÞned by the Þrst three principal components
of a PCA applied to the image of Fig. 7). These two clusters
are the two closest sets of pixels to vertices of the data cloud.
Consequently, oak and chestnut trees are identiÞed as endmem-
bers present in the image. Moreover, the new identiÞed end-
member is associated with the non-vegetation area (the strategy

4Results of simulations conducted for different values of have been omitted
in this paper for brevity. The results are available in [22].

Fig. 8. (a) Representation of the pixels (black dots) of the
Madonna image and the reference clusters corresponding to oak trees (red
dots) and chestnut trees (blue dots) using the Þrst three principal components
provided by the standard PCA. (b) Representation of the pixels
(dots) of the Madonna data and manifold identiÞed by the LL-GPLVM (colored
surface). (c) Representation of the pixels (dots) of the Madonna
data and boundaries of the estimated transformed simplex (blue lines).

conducted in [39] was restricted to vegetation species). In the
sequel, this endmember will be referred to as Endmember .

The simulation parameters have been Þxed to
and . The latent variables obtained by maximizing
the marginalized posterior distribution (10) are depicted in
Fig. 9 (blue dots). It can be seen from this Þgure that the latent
variables seem to describe a noisy simplex. Fig. 8(b) shows
the manifold estimated by the proposed LL-GPLVM. This
Þgure illustrates the capacity of the LL-GPLVM for modeling
the nonlinear manifold. Table VI (left) compares the AREs
obtained by the proposed LL-GPLVM and the projection onto
the Þrst principal vectors provided by PCA. The
proposed LL-GPLVM slightly outperforms PCA for the real
data of interest, which shows that the proposed nonlinear
dimensionality reduction method is more accurate than PCA
(linear dimensionality reduction) in representing the data. The
scaling step presented in Section IV is then applied to the
estimated latent variables. The estimated simplex deÞned by
the latent variables is depicted in Fig. 9 (red lines). Fig. 8 (c)
compares the boundaries of the estimated transformed simplex
with the image pixels. The abundance maps obtained after
the scaling step are shown in Fig. 10 (top). The results of the
unmixing procedure using the FCLL-GPLVM are compared



Fig. 9. Representation of the latent variables (dots) estimated by
the LL-GPLVM and the simplex identiÞed by the scaling step (red lines) for the
Madonna data.

TABLE VI
ARES: REAL IMAGE

Fig. 10. Top: Abundance maps estimated using the FCLL-GPLVM for the
Madonna image. Bottom: Abundance maps estimated using the VCA algorithm
for endmember extraction and the FCLS algorithm for abundance estimation.

to an unmixing strategy assuming the LMM. More precisely,
we use VCA to extract the endmembers from the data and use
the FLCS algorithm for abundance estimation. The estimated
abundance maps are depicted in Fig. 10 (bottom). The abun-
dance maps obtained by the two methods are similar which
shows the accuracy of the LMM as a Þrst order approximation
of the mixing model. However, the proposed unmixing strategy
provides information about the nonlinearly mixed pixels in the
image.

Moreover, Fig. 7 (bottom left) shows the classiÞcation map
obtained in [39] for the region of interest. The white pixels cor-
respond to areas where the classiÞcation method of [39] has not
been performed. Since the aim of the work presented in [39]
was to locate tree species, a non-planted-tree reference mask
was used in [39] to classify only planted-tree pixels. Even if
lots of pixels are not classiÞed, the classiÞed pixels can be com-
pared with the estimated abundance maps. First, we can note
the presence of the same tree species in the classiÞcation and
abundance maps, i.e., oak and chestnut. We can also see that

the pixels composed of chestnut trees and Endmember are
mainly located in the unclassiÞed regions, which explains why
they do not appear clearly in the classiÞcation map. Only one
pixel is classiÞed as being composed of ash trees in the region
of interest. If unclassiÞed pixels also contain ash trees, they are
either too few or too mixed to be considered as mixtures of an
additional endmember in the image.

Evaluating the performance of endmember estimation on real
data is an interesting problem. However, comparison of the esti-
mated endmembers with the ground truth is difÞcult here. First,
since the nature of Endmember is unknown, no ground truth
is available for this endmember. Second, because of the vari-
ability of the ground truth spectra associated with each tree
species, it is difÞcult to show whether VCA or the proposed
FCLL-GPLVM provides the best endmember estimates. How-
ever, the AREs obtained for bothmethods (Table VI, right) show
that the FCLL-GPLVM Þts the data better than the linear SU
strategy, which conÞrms the importance of the proposed algo-
rithm for nonlinear spectral unmixing.

VIII. CONCLUSIONS

We proposed a new algorithm for nonlinear spectral un-
mixing based on a Gaussian process latent variable model. The
unmixing procedure assumed a nonlinear mapping from the
abundance space to the observed pixels. It also considered the
physical constraints for the abundance vectors. The abundance
estimation was decomposed into two steps. Dimensionality
reduction was Þrst achieved using latent variables. A scaling
procedure was then proposed to estimate the abundances.
After estimating the abundance vectors of the image, a new
endmember estimator based on Gaussian process regression
was investigated. This decomposition of the unmixing proce-
dure, consisting of Þrst estimating the abundance vectors and
subsequently the endmembers, breaks the usual paradigm of
spectral unmixing. Simulations conducted on synthetic data
illustrated the ßexibility of the proposed model for linear and
nonlinear spectral unmixing and provided promising results
for abundance and endmember estimations even when there
are few pure pixels in the image. It was shown in this paper
that the proposed unmixing procedure provides better or com-
parable performance (in terms of abundance and endmember
estimation) than state of the art unmixing strategies assuming
speciÞc mixing models. The choice of the nonlinear mapping
used for the GP model is an important issue to ensure that
the LL-GPLVM is general enough to handle different nonlin-
earities. In particular, different mappings could be used for
intimate mixtures. In this paper, the number of endmembers
was assumed to be known, which is not true in most practical
applications. We think that estimating the number of compo-
nents present in the image is an important issue that should be
considered in future works. Finally, considering endmember
variability in linear and nonlinear mixing models is an inter-
esting prospect which is currently under investigation.
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