Carleman Estimate and Inverse Source Problem for Biot's Equations Describing Wave Propagation in Porous Media - Archive ouverte HAL
Rapport Année : 2013

Carleman Estimate and Inverse Source Problem for Biot's Equations Describing Wave Propagation in Porous Media

Résumé

According to Biot's paper in 1956, by using the Lagrangian equations in classical mechanics, we consider a problem of the filtration of a liquid in porous elastic-deformation media whose mechanical behavior is described by the Lam'e system coupled with a hyperbolic equation. Assuming the null surface displacement on the whole boundary, we discuss an inverse source problem of determining a body force only by observation of surface traction on a suitable subdomain along a sufficiently large time interval. Our main result is a Hölder stability estimate for the inverse source problem, which is proved by a new Carleman estimat for Biot's system.
Fichier principal
Vignette du fichier
Bellassoued-Biot-Holder.pdf (187.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00816142 , version 1 (20-04-2013)

Identifiants

Citer

Mourad Bellassoued, Masahiro Yamamoto. Carleman Estimate and Inverse Source Problem for Biot's Equations Describing Wave Propagation in Porous Media. 2013. ⟨hal-00816142⟩
148 Consultations
253 Téléchargements

Altmetric

Partager

More