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3 LE STUDIUM r, Institute for Advanced Studies, Orléans, France
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Abstract

According to Biot’s paper in 1956, by using the Lagrangian equations in classical mechanics, we

consider a problem of the filtration of a liquid in porous elastic-deformation media whose mechanical

behavior is described by the Lamé system coupled with a hyperbolic equation. Assuming the null

surface displacement on the whole boundary, we discuss an inverse source problem of determining a

body force only by observation of surface traction on a suitable subdomain along a sufficiently large

time interval. Our main result is a Hölder stability estimate for the inverse source problem, which is

proved by a new Carleman estimat for Biot’s system.

1 Introduction

In 1956, Biot [7] presented a three-dimensional theory for coupled frame-fluid wave propagation in

fluid saturated porous media, treating the solid frame and the saturating fluid as two separate co-located

coupled continua. Two second order coupled partial differential equations were derived from this theory.

More precisely, let us consider an open and bounded domain Ω of R3 with C∞ boundary Γ = ∂Ω, and

let ν = ν(x) be the unit outward normal vector to ∂Ω at x. Given T > 0, Biot’s equation is written as:

̺11∂
2
t u

s + ̺12∂
2
t u

f −∆µ,λu
s(x, t)−∇

(
q divuf

)
= F1,

̺12∂
2
t u

s + ̺22∂
2
t u

f −∇ (q div u
s)−∇

(
r divuf

)
= F2, in Q := Ω× (−T, T )

(1.1)

with the boundary condition

u
s(x, t) = 0, u

f (x, t) · ν = 0, (x, t) ∈ Σ := Γ× (−T, T ) (1.2)
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and the initial condition

(us(x, 0), ∂tu
s(x, 0)) = (0, 0) ,

(
u
f (x, 0), ∂tu

f (x, 0)
)
= (0, 0) , x ∈ Ω (1.3)

where F = (F1, F2)
T is an external force with Fℓ = (F 1

ℓ , F
2
ℓ , F

3
ℓ )
T , ℓ = 1, 2, and ∆µ,λ is the elliptic

second-order linear differential operator given by

∆µ,λv(x) ≡ µ∆v(x) + (µ+ λ) (∇divv(x))

+ (div v(x))∇λ(x) +
(
∇v+ (∇v)T

)
∇µ(x), x ∈ Ω. (1.4)

Throughout this paper, t and x = (x1, x2, x3) denote the time variable and the spatial variable respec-

tively, and u
s = (us1, u

s
2, u

s
3)
T

and u
f =

(
uf1 , u

f
2 , u

f
3

)T
denote respectively the solid frame and fluid

phase displacement vectors at the location x and the time t.
Here and henceforth ·T denotes the transpose of matrices under consideration. We assume that the

Lamé parameters µ and λ satisfy

µ(x) > 0, λ(x) + µ(x) > 0, ∀x ∈ Ω.

The function q(x) > 0, x ∈ Ω, is the dilatational coupling factor between the fluid phase and the solid

frame. The coefficient r(x) > 0, x ∈ Ω is the bulk modulus of the fluid phase and ̺11(x), ̺22(x) > 0,

x ∈ Ω are the corrected mass densities for the solid phase and the fluid phase porosity and ̺12(x) is the

inertial coupling factor and see Hörlin an Peter [13].

We assume that the sources terms are given by

Fℓ(x, t) = pℓ(x)Rℓ(x, t), ℓ = 1, 2, (x, t) ∈ Q, (1.5)

where pℓ ∈ H2(Ω) is real-valued and Rℓ = (R1
ℓ , R

2
ℓ , R

3
ℓ )
T satisfy

3∑

j=2

(
‖∂jtR‖2L∞(Q) + ‖∂jt∇R‖2L∞(Q)

)
≤ C. (1.6)

The main subject of this paper is the inverse problem of determining p = (p1, p2) ∈ (H2(Ω))2 uniquely

from observed data of the displacement vector u = (us,uf ) in a subdomain ω ⊂ Ω. It is an important

problem, for example, in mechanics to determine the source p inside a porous body from measurements

of the slide frame and fluid phase displacements in ω.

1.1 Inverse problem

Let ω ⊂ Ω be an arbitrarily given subdomain such that ∂ω ⊃ ∂Ω, i.e., ω = Ω ∩ V where V is a

neighborhood of Γ in R
3 and let R(x, t) = (R1(x, t), R2(x, t)) be appropriately given. Then we want to

determine p(x) = (p1(x), p2(x)), x ∈ Ω, by measurements u|ω×(−T,T ).

Our formulation of the inverse problem requires only a finite number of observations. As for inverse

problems for non-stationary Lamé system by infinitely many boundary observations (i.e., Dirichlet-to-

Neumann map), we refer to Rachele [36], for example.

For the formulation with a finite number of observations, Bukhgeim and Klibanov [10] created a

method based on a Carleman estimate and established the uniqueness for inverse problems of deter-

mining spatially varying coefficients for scalar partial differential equations. See also Bellassoued [1],
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[2], Bellassoued and Yamamoto [3], [4], Benabdallah, Cristofol, Gaitan and Yamamoto [6], Bukhgeim

[8], Bukhgeim, Cheng, Isakov and Yamamoto [9], Imanuvilov and Yamamoto [18] - [20], Isakov [24],

[25], Khaı̆darov [28], Klibanov [29], [30], Klibanov and Timonov [32], Klibanov and Yamamoto [33],

Yamamoto [39]. In particular, as for inverse problems for the isotropic Lamé system, we can refer to

Ikehata, Nakamura and Yamamoto [15], Imanuvilov, Isakov and Yamamoto [21], Imanuvilov and Ya-

mamoto [22] - [23], Isakov [24], Isakov and Kim [26].

A Carleman estimate is an inequality for a solution to a partial differential equation with weighted L2-

norm and effectively yields the unique continuation for a partial differential equation with non-analytic

coefficients. As a pioneering work concerning a Carleman estimate, we refer to Carleman’s paper [11]

where what is called a Carleman estimate was proved and applied it for proving the uniqueness in the

Cauchy problem for a two-dimensional elliptic equation. Since [11], the theory of Carleman estimates

has been developed and we refer, for example, to Hörmander [14] and Isakov [25] for Carleman estimates

for functions having compact supports (that is, they and their derivatives of suitable orders vanish on the

boundary of a domain). For Carleman estimates for functions without compact supports, we refer to Bel-

lassoued and Yamamoto [5], Fursikov and Imanuvilov [12], [16], Lavrent’ev, Romanov and Shishat·skiı̆

[34], Tataru [38]. Moreover Carleman estimates have been applied for estimating the energy and see e.g.,

Imanuvilov and Yamamoto [23], Kazemi and Klibanov [27], Klibanov and Malinsky [31], Klibanov and

Timonov [32].

1.2 Notations and statement of main results

In order to formulate our results, we need to introduce some notations. For x0 ∈ R
3\Ω, we define the

following set of the scalar coefficients

C (m, θ) =

{
c ∈ C2(Ω), c(x) > c∗ > 0, x ∈ Ω, ‖c‖C2(Ω) ≤ m,

∇c · (x− x0)

2c
≤ 1− θ

}
, (1.7)

where the constants m > 0 and θ ∈ (0, 1) are given.

Assumption A.1

Throughout this paper, we assume that the coefficients (̺ij)1≤i,j≤2, µ, λ, q, r ∈ C2(Ω) satisfy the

following conditions

̺(x) = ̺11(x)̺22(x)− ̺212(x) > 0, ∀x ∈ Ω,

λ(x)r(x)− q2(x) > 0, ∀x ∈ Ω. (1.8)

Let A(x) = (aij(x))1≤i,j≤2 be the 2× 2-matrix given by

A(x) =
1

̺


 ̺22 −̺12

−̺12 ̺11





 2µ+ λ q

q r


 :=


 a11 a12

a21 a22


 . (1.9)

By (1.8), we can prove that (aij(x))1≤i,j≤2 is a positive definite matrix on Ω.

Assumption A.2:

Let A(x) have two distinct positive eigenvalues: µ2(x), µ3(x) > 0, µ2(x) 6= µ3(x). Moreover setting,

µ1 :=
(
̺−1̺22

)
µ, we assume

µ1, µ2, µ3 ∈ C (m, θ). (1.10)
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Assumption A.3:

We assume that the solution u = (us,uf ) satisfies the a priori boundedeness and regularity:

u ∈ H5(Q), ‖u‖H5(Q) ≤M0, (1.11)

for some positive constant M0.

Before stating the main result on the stability for the inverse source problem, we present Theorem

1.1 on the unique existence of strong solution to (1.1)-(1.2) with initial condition:

u(·, 0) = u0 and ∂tu(·, 0) = u1.

Let V (Ω) = (H1(Ω))3 ×H(div ,Ω), where

H(div ,Ω) =
{
u ∈ (L2(Ω))3; div u ∈ L2(Ω)

}
. (1.12)

The norm in V (Ω) is chosen as follows

‖(v1,v2)‖2V (Ω) = ‖v1‖2H1(Ω) + ‖v2‖2L2(Ω) + ‖div v2‖2L2(Ω), v = (v1,v2) ∈ V (Ω).

Theorem 1.1. Let F ∈ H1(−T, T ;L2(Ω)), (u0,u1) ∈ (H2(Ω) ∩ H1
0 (Ω))

6 × (H1(Ω))6. Then there

exists a unique solution u(x, t) =
(
u
s(x, t),uf (x, t)

)
of (1.1)-(1.2) with initial data (u0,u1) such that

u
s ∈ C([−T, T ];H2(Ω) ∩H1

0 (Ω)) ∩ C1([−T, T ];H1(Ω)) ∩ C2([−T, T ];L2(Ω))
u
f ∈ C2([−T, T ];L2(Ω)), divuf ∈ C([−T, T ];H1(Ω)) ∩ C1([−T, T ];L2(Ω)). (1.13)

In particular there exists a constant C > 0 such that

‖u‖C2([−T,T ];L2(Ω)) ≤ C(‖F‖H1(−T,T ;L2(Ω)) + ‖u0‖H2(Ω) + ‖u1‖H1(Ω)).

Moreover, if F = 0, then the energy of the solution u = (us,uf ) given by

E(t) =
1

2

∫

Ω

(
M(x)∂tu · ∂tu+ λ|divus|2 + 2µ|ε(us)|2 + r|divuf |2 + 2q(divuf )(divus)

)
dx

is conserved, that is,

E(t) = E(0), ∀t ≥ 0.

Here M(x) = (̺ij(x)I3)1,≤i,j≤2 and ε(v) = 1
2

(
∇v + (∇v)T

)
.

The proof is based on the Galerkin method and see Santos [37] for the case n = 2. For completeness

we will give a proof for dimension 3 in Section 4.

In order to formulate our stability estimates for the inverse problem we introduce some notations.

Let ϑ : Ω −→ R be the strictly convex function given by

ϑ(x) = |x− x0|2 , x ∈ Ω. (1.14)

Set

D2 = max
x∈Ω

ϑ(x), d2 = min
x∈Ω

ϑ(x), D2
0 = D2 − d2. (1.15)
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By Assumption A.2, there exist constants c∗j > 0, j = 1, 2, 3 such that µj(x) > c∗j > 0 for all x ∈ Ω,

j = 1, 2, 3. Let c∗0 = min{c∗1, c∗2, c∗3}. We choose β > 0 such that

β +
mD0√
c∗0

√
β < θc∗0, c∗0d

2 − βD2 > 0. (1.16)

Here we note that since x0 6∈ Ω, such β > 0 exists.

We set

T0 =
D0√
β
. (1.17)

The main results of this paper can be stated as follows:

Theorem 1.2. (Stability) Assume (A.1), (A.2), and (A.3). Let T > T0 and u be the solution of (1.1)-(1.2)

and (1.3). Moreover let assume that Φj(x) := Rj(x, 0) satisfy

Φj(x) · (x− x0) 6= 0 for all x ∈ Ω. (1.18)

Let M > 0. Then there exist constants C > 0 and κ ∈ (0, 1) such that the following estimate holds:

‖p1‖2H1

0
(Ω) + ‖p2‖2H1

0
(Ω) ≤ CEω(u)κ (1.19)

for any pℓ ∈ H2(Ω), ℓ = 1, 2, such that ‖pℓ‖H2 ≤M and pℓ = 0, ∇pℓ = 0 on Γ. Here

Eω(u) =
3∑

j=2

‖∂jtu‖2H2(ω×(−T,T )).

By Theorem 1.2, we can readily derive the uniqueness in the inverse problem:

Corollary 1.1. Under the assumptions in Theorem 1.2, we have the uniqueness:

Let u = (us,uf ) satisfy Biot’s system (1.1)-(1.3) such that u(x, t) = 0, (x, t) ∈ ω × (−T, T ). Then

p1(x) = p2(x) = 0 for all x ∈ Ω and u(x, t) = 0 in Q.

The remainder of the paper is organized as follows. In section 2, we give a Carleman estimate for the

Biot’s system. In section 3 we prove Theorem 1.2. Section 4 is devoted to the proof of Theorem 1.1.

2 Carleman estimate for Biot’s system

In this section we will prove a Carleman estimate for Biot’s system, which is interesting of itself. In

order to formulate our Carleman estimate, we introduce some notations. Let ϑ : Ω −→ R be the strictly

convex function given by (1.14), where x0 /∈ Ω.

We define two functions ψ,ϕ : Ω× R −→ R of class C∞ by

ψ(x, t) = |x− x0|2 − β |t|2 for all x ∈ Ω, −T ≤ t ≤ T,

ϕ(x, t) = eγψ(x,t), γ > 0,

(2.1)

where T > T0. Therefore, by (1.17) and (1.15), we have

ϕ(x, 0) ≥ d0, ϕ(x,±T ) < d0 (2.2)
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with d0 = exp(γd2). Thus, for given η > 0, we can choose sufficiently small ε = ε(η) such that

ϕ(x, t) ≤ d0 − η ≡ d1 for all (x, t) ∈ {(x, t) ∈ Q; |t| > T − 2ε} , (2.3)

ϕ(x, t) ≥ d0 −
η

2
≡ d2 for all (x, t) ∈ {(x, t) ∈ Q; |t| < ε} .

Let (us,uf ) satisfy Biot’s system

̺11∂
2
t u

s(x, t) + ̺12∂
2
t u

f −∆µ,λu
s(x, t)−∇

(
q divuf

)
= F1,

̺12∂
2
t u

s(x, t) + ̺22∂
2
t u

f −∇ (r div u
s)−∇

(
q divuf

)
= F2, in Q.

(2.4)

The following theorem is a Carleman estimate for Biot’s system (2.4).

Theorem 2.1. There exist τ∗ > 0 and C > 0 such that the following estimate holds:

∫

Q
τ
(
|∇x,tu

s|2 + |∇x,t(divu
s)|2 + |∇x,t(divu

f )|2
)
e2τϕdxdt

+

∫

Q
τ3

(
|us|2 + |divus|2 + |divuf |2

)
e2τϕdxdt ≤ C

∫

Q

(
|F |2 + |∇F |2

)
e2τϕdxdt (2.5)

for any τ ≥ τ∗ and any solution (us,uf ) ∈ (H2(Q))6 to (2.4) which is supported in a fixed compact set

K ⊂ int(Q).

In order to prove Theorem 2.1, we use a Carleman estimate for a coupling hyperbolic system, which

we discuss in the next subsection.

2.1 Carleman estimate for a hyperbolic system

First we recall the following Carleman estimate for a scalar hyperbolic equation. As for the proof, we

refer to Bellassoued and Yamamoto [5], and Imanuvilov and Yamamoto [20] for example.

Lemma 2.1. Let c ∈ C (m, θ). There exist constants C > 0 and τ∗ > 0 such that the following Carleman

estimate holds:

C

∫

Q
e2τϕ

(
τ |∇x,ty|2 + τ3 |y|2

)
dxdt ≤

∫

Q
e2τϕ

∣∣(∂2t − c∆)y
∣∣2 dxdt

whenever y ∈ H2(Q) is supported in a fixed compact set K ⊂ int(Q) and any τ ≥ τ∗.

Let v = (v1, v2) ∈ (H2(Ω))2 satisfy the following hyperbolic system





∂2t v1 − b11(x)∆v1 − b12(x)∆v2 = g1 inQ

∂2t v2 − b21(x)∆v1 − b22(x)∆v2 = g2 inQ,
(2.6)

for g = (g1, g2) ∈ (L2(Q))2. We assume that the matrix B(x) = (bij(x))1≤i,j≤2 has two distinct

positive eigenvalues c1, c2 ∈ C (m, θ). Then, by Lemma 2.1, we have the following Carleman estimate.
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Lemma 2.2. There exist constants C > 0 and τ∗ > 0 such that the following Carleman estimate holds

C

∫

Q
e2τϕ

(
τ |∇x,tv|2 + τ3 |v|2

)
dxdt ≤

∫

Q
e2τϕ |g|2 dxdt

for any τ ≥ τ∗, whenever v ∈ H2(Q) is a solution of (2.6) and supported in a fixed compact set

K ⊂ int(Q).

Proof. The system (2.6) can be written in the equivalent form

∂2t v −B(x)∆v = g in Q. (2.7)

By the assumption on B(x), there exists a matrix P (x) such that

(
P−1BP

)
(x) = Diag (c1(x), c2(x)) = Λ(x), x ∈ Ω.

Therefore system (2.7) can be written in an equivalent form:

∂2t ṽ − Λ(x)∆ṽ = g̃ + B1(x, ∂)v,

where

ṽ(x, t) = P−1(x)v(x, t), g̃(x, t) = P−1(x)g(x, t), (2.8)

and B1 is a first-order differential operator.

Since cj ∈ C (m, θ) for j = 1, 2, we can apply Lemma 2.1 for the two components of ṽ and obtain

C

∫

Q
e2τϕ

(
τ |∇x,tṽ|2 + τ3 |ṽ|2

)
dxdt ≤

∫

Q
e2τϕ|g̃|2dxdt+

∫

Q
e2τϕ

(
|v|2 + |∇v|2

)
dxdt

and, by (2.8), we easily obtain

|v(x, t)| ≤ C |ṽ(x, t)| , |∇v(x, t)| ≤ C (|∇ṽ(x, t)| + |ṽ(x, t)|) , |g̃(x, t)| ≤ C |g(x, t)|

for (x, t) ∈ Q. This completes the proof. �

2.2 Proof of the Carleman estimate for Biot’s system

In this section, we derive a global Carleman estimate for a solutions of system (2.4). We consider the

6× 6-matrix

M(x) =


 ̺11(x)I3 ̺12(x)I3

̺12(x)I3 ̺22(x)I3


 . (2.9)

Here I3 is the 3× 3 identity matrix. Then by Assumption A.1, we have

M−1(x) =
1

̺


 ̺22(x)I3 −̺12(x)I3

−̺12(x)I3 ̺11(x)I3


 .
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Let vs = divus, vf = divuf , v = (vs, vf ) and w
s = curlus. Put G = M−1F , F = (F1, F2)

T

and apply M−1 to system (2.4), we obtain

∂2t u
s − µ1∆u

s − (µ1 + λ1)∇ (divus)− q1∇
(
divuf

)
= G1 + R1u

s + R0divu
f , inQ

∂2t u
f + µ2∆u

s − r2∇
(
divuf

)
− q2∇ (divus) = G2 + R′

1u
s + R′

0divu
f , inQ.

(2.10)

Here, Rj , R′
j , j = 0, 1 are differential operators of order j with coefficients in L∞(Q), and

µ1 = ̺−1µ̺22, λ1 = ̺−1 (λ̺22 − q̺12) , q1 = ̺−1 (q̺22 − r̺12)

µ2 = ̺−1µ̺12, q2 = ̺−1 (q̺11 − (µ+ λ)̺12) , r2 = ̺−1 (r̺11 − q̺12) . (2.11)

Henceforth Pj , j = 1, ..., 4 denote some first-order operators with L∞(Q)-coefficients.

We apply div to the equations in (2.10), and can derive the following two equations:

∂2t v
s − a11∆v

s − a12∆v
f = divG1 + P1(v

f , vs,us,ws)

∂2t v
f − a21∆v

s − a22∆v
f = divG2 + P2(v

f , vs,us,ws), (2.12)

where (aij)1≤i,j≤2 is given by (1.9). We apply the curl to the first equation (2.10) to obtain

∂2tw
s − µ1∆w

s = curlG1 + P3(v
f , vs,us,ws) (2.13)

and

∂2t u
s − µ1∆u

s = G1 + P4(v
f , vs,us,ws). (2.14)

Applying Lemma 2.2 to system (2.12), we have for v = (vs, vf )

C

∫

Q
e2τϕ

(
τ |∇x,tv|2 + τ3 |v|2

)
dxdt ≤

∫

Q
e2τϕ

(
|F |2 + |∇F |2

)
dxdt

+

∫

Q
e2τϕ

(
|us|2 + |ws|2 + |∇u

s|2 + |∇w
s|2

)
dxdt.

Applying Lemma 2.1 to (2.13) and (2.14), we obtain

C

∫

Q
e2τϕ

(
τ |∇x,tw

s|2 + τ3 |ws|2 + τ |∇x,tu
s|2 + τ3 |us|2

)
dxdt

≤
∫

Q
e2τϕ

(
|F |2 + |∇F |2

)
dxdt+

∫

Q
e2τϕ

(
|v|2 + |∇v|2

)
dxdt.

Therefore, for τ sufficiently large, we obtain (2.5). This completes the proof of Theorem 2.1.

3 Proof of Theorem 1.2

In this section we prove the stability (Theorem 1.2) for the inverse source problem.

For the proof, we apply the method in Imanuvilov and Yamamoto [19] which modified the argument

in [10] and proved the stability for an inverse coefficient problem for a hyperbolic equation. For it, the

Carleman (Theorem 2.1) is a key.
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3.1 Modified Carleman estimate for Biot’s system

Let ωT = ω×(−T, T ). We modify Theorem 2.1 for functions which vanish at ±T with first t-derivatives.

Lemma 3.1. There exist positive constants τ∗, C > 0 and C0 > 0 such that the following inequality

holds:

∫

Q
τ
(
|∇x,tv

s|2 + |∇x,t(div v
s)|2 + |∇x,t(div v

f )|2
)
e2τϕdxdt

+

∫

Q
τ3

(
|vs|2 + |divvs|2 + |div vf |2

)
e2τϕdxdt ≤ C

∫

Q

(
|G|2 + |∇G|2

)
e2τϕdxdt

+ CeC0τ‖v‖2H2(ωT ) (3.1)

for any τ ≥ τ∗ and any v = (vs,vf ) ∈ H2(Q) satisfying, for G = (G1, G2)

̺11∂
2
t v

s + ̺12∂
2
t v

f −∆µ,λv
s −∇

(
q div vf

)
= G1,

̺12∂
2
t v

s + ̺22∂
2
t v

f −∇ (q div v
s)−∇

(
r divvf

)
= G2 in Q

(3.2)

such that

∂jt v(x,±T ) = 0 for all x ∈ Ω, j = 0, 1. (3.3)

Proof. Let ω0 ⊂ ω. In order to apply Carleman estimate (2.5), we introduce a cut-off function ξ
satisfying 0 ≤ ξ ≤ 1, ξ ∈ C∞(R3), ξ = 1 in Ω\ω0 and Supp ξ ⊂ Ω. Let v ∈ H2(Q) satisfy (3.2) and

(3.3). Put

w(x, t) = ξ(x)v(x, t), (x, t) ∈ Q,

and let Q0 = (Ω\ω)× (−T, T ). Noting that w ∈ H2(Q) is compactly supported in Q and w = v in Q0

and applying Carleman estimate (2.5) to w, we obtain

∫

Q0

τ
(
|∇x,tv

s|2 + |∇x,t(divv
s)|2 + |∇x,t(divv

f )|2
)
e2τϕdxdt

+

∫

Q
τ3

(
|vs|2 + |divvs|2 + |div vf |2

)
e2τϕdxdt ≤ C

∫

Q

(
|G|2 + |∇G|2

)
e2τϕdxdt

+ C

∫

Q
|Q2v|2e2τϕdxdt

for any τ ≥ τ∗. Here Q2 is a differential operator of order 2 whose coefficients are supported in ω.

Therefore

∫

Q
τ
(
|∇x,tv

s|2 + |∇x,t(div v
s)|2 + |∇x,t(div v

f )|2
)
e2τϕdxdt

+

∫

Q
τ3

(
|vs|2 + |divvs|2 + |div vf |2

)
e2τϕdxdt ≤ C

∫

Q

(
|G|2 + |∇G|2

)
e2τϕdxdt

+ CeC0τ‖v‖2H2(ωT ).

This completes the proof of the lemma. �
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By Nτ,ϕ(v) we denote

Nτ,ϕ(v) =

∫

Q
τ
(
|∇x,tv

s|2 + |∇x,t(divv
s)|2 + |∇x,t(divv

f )|2
)
e2τϕdxdt

+

∫

Q
τ3

(
|vs|2 + |divvs|2 + |divvf |2

)
e2τϕdxdt (3.4)

where v = (vs,vf ).
Now, we recall (2.2) and (2.3) for the definition of d0, η and ε and we introduce a cut-off function ζ
satisfying 0 ≤ ζ ≤ 1, ζ ∈ C∞(R) and

ζ = 1 in (−T + 2ε, T − 2ε), Supp ζ ⊂ (−T + ε, T − ε). (3.5)

Finally we denote by ṽ the function

ṽ(x, t) = ζ(t)(vs,vf )(x, t), (x, t) ∈ Q. (3.6)

Lemma 3.2. There exist positive constants τ∗, C and C0 such that the following inequality holds:

CNτ,ϕ(ṽ) ≤
∫

Q

(
|F |2 + |∇F |2

)
e2τϕdxdt+ eC0τ‖v‖2H2(ωT ) + e2d1τ‖v‖2H1(−T,T ;H1(Ω))

for any τ ≥ τ∗ and any v = (vs,vf ) ∈
(
H2(Q)

)6
satisfying

̺11∂
2
t v

s + ̺12∂
2
t v

f −∆µ,λv
s −∇

(
q divvf

)
= F1(x, t)

̺12∂
2
t v

s + ̺22∂
2
t v

f −∇ (q div v
s)−∇

(
r divuf

)
= F2(x, t), (x, t) ∈ Q

Proof. We note that ṽ ∈
(
H2(Q)

)6
and

̺11∂
2
t ṽ

s + ̺12∂
2
t ṽ

f −∆µ,λṽ
s −∇

(
q div ṽf

)
= ζ(t)F1(x, t) + P1(v, ∂tv),

̺12∂
2
t ṽ

s + ̺22∂
2
t ṽ

f −∇ (q div ṽ
s)−∇

(
r div ṽf

)
= ζ(t)F2(x, t) + P2(v, ∂tv), (x, t) ∈ Q,

where P1 and P2 are zeroth-order operators and supported in |t| > T − 2ε. Therefore, applying Lemma

3.1 to ṽ and using (2.3), we complete the proof of the lemma. �

3.2 Preliminary estimates

Let ϕ(x, t) be the function defined by (2.1). Then

ϕ(x, t) = eγψ(x,t) =: ρ(x)α(t), (3.7)

where ρ(x) and α(t) are defined by

ρ(x) = eγϑ(x) ≥ d0, ∀x ∈ Ω and α(t) = e−βγ t
2 ≤ 1, ∀t ∈ [−T, T ]. (3.8)

Next we present the following Carleman estimate of a first-order partial differential operator:

L(x,D)v =
3∑

i=1

ai(x)∂iv + a0(x)v, x ∈ Ω

10



where

a0 ∈ C(Ω), a = (a1, a2, a3) ∈
[
C1(Ω)

]3
(3.9)

and

|a(x) · (x− x0)| ≥ c0 > 0, on Ω (3.10)

with a constant c0 > 0. Then

Lemma 3.3. In addition to (3.9) and (3.10), we assume that ‖a0‖C(Ω) ≤ M and ‖ai‖C1(Ω) ≤ M ,

1 ≤ i ≤ 3. Then there exist constants τ∗ > 0 and C > 0 such that

τ

∫

Ω
|v(x)|2 e2τρ(x)dx ≤ C

∫

Ω
|L(x,D)v(x)|2 e2τρ(x)dx

for all v ∈ H1
0 (Ω) and all τ > τ∗.

The proof is direct by integration by parts and see e.g., [19].

Consider now the following system

̺11∂
2
t u

s + ̺12∂
2
t u

f −∆µ,λu
s(x, t)−∇

(
q divuf

)
= F1(x, t),

̺12∂
2
t u

s + ̺22∂
2
t u

f −∇ (q div u
s)−∇

(
r divuf

)
= F2(x, t), (x, t) ∈ Q,

(3.11)

with the boundary condition

u
s(x, t) = 0, u

f (x, t) · ν = 0, (x, t) ∈ Σ (3.12)

and the initial condition

(us(x, 0), ∂tu
s(x, 0)) = (0, 0),

(
u
f (x, 0), ∂tu

f (x, 0)
)
= (0, 0), x ∈ Ω, (3.13)

where the functions F1 and F2 are given by

F1(x, t) = p1(x)R1(x, t), F2(x, t) = p2(x)R2(x, t). (3.14)

We introduce the following notations:

u = (us,uf ), vj(x, t) = ∂jtu(x, t), (x, t) ∈ Q, j = 0, 1, 2, 3. (3.15)

The functions vj , j = 1, 2, 3 solve the following system

̺11∂
2
t v

s
j + ̺12∂

2
t v

f
j −∆µ,λv

s
j(x, t)−∇

(
q divvfj

)
= ∂jtF1(x, t),

̺12∂
2
t v

s
j + ̺22∂

2
t v

f
j −∇

(
q div v

s
j

)
−∇

(
r divvfj

)
= ∂jtF2(x, t), (x, t) ∈ Q,

(3.16)

with the boundary condition

v
s
j(x, t) = 0, v

f
j (x, t) · ν = 0, (x, t) ∈ Σ. (3.17)

We set

ṽj = ζvj,

11



where ζ(t) is given by (3.5). We apply Lemma 3.2 to obtain the following estimate:

CNτ,ϕ(ṽj) ≤
∫

Q

(
|∂jtF |2 + |∇∂jtF |2

)
e2τϕdxdt

+ eC0τ‖vj‖2H2(ωT ) + e2d1τ‖vj‖2H1(−T,T ;H1(Ω)), j = 0, 1, 2, 3, (3.18)

provided that τ > 0 is large enough.

Lemma 3.4. There exists a positive constant C > 0 such that the following estimate

∫

Ω
|z(x, 0)|2dx ≤ C

∫

Q

(
τ |z(x, t)|2 + τ−1|∂tz(x, t)|2

)
dxdt

for any z ∈ L2(Q) such that ∂tz ∈ L2(Q).

Proof. Let ζ be the cut-off function given by (3.5). By direct computations, we have

∫

Ω
ζ2(0)|z(x, 0)|2dx =

∫ 0

−T

d

dt

(∫

Ω
ζ2(t)|z(x, t)|2dx

)
dt

= 2

∫ 0

−T

∫

Ω
ζ2(t)z(x, t)∂tz(x, t)dxdt

+2

∫ 0

−T

∫

Ω
ζ ′(t)ζ(t)|z(x, t)|2dxdt.

Then we have ∫

Ω
|z(x, 0)|2dx ≤ C

∫

Q

(
τ |z(x, t)|2 + τ−1|∂tz(x, t)|2

)
dxdt.

This completes the proof of the lemma. �

Lemma 3.5. Let φℓ(x) = div (pℓ(x)Φℓ(x)). Then there exists a constant C > 0 such that

2∑

ℓ=1

∫

Ω
e2τρ

(
|φℓ(x)|2 + |∇φℓ(x)|2

)
dx

≤ C (Nτ,ϕ(ṽ2) +Nτ,ϕ(ṽ3)) +
2∑

ℓ=1

∫

Ω

(
|pℓ|2 + |∇pℓ|2

)
e2τρdx,

provided that τ is large.

Proof. We set v(1) = v
s
2 and v

(2) = v
f
2 . Applying Lemma 3.4 for zj(x, t) = eτϕ(x,t)div ṽ

(j)
2 (x, t),

j = 1, 2, we obtain the following inequality:

Cτ2
∫

Ω
e2τρ

2∑

j=1

∣∣∣divv(j)(x, 0)
∣∣∣
2
dx ≤ τ3

∫

Q
e2τϕ

2∑

j=1

∣∣∣div ṽ(j)(x, t)
∣∣∣
2
dxdt

+ τ

∫

Q
e2τϕ

2∑

j=1

∣∣∣∂tdiv ṽ(j)(x, t)
∣∣∣
2
dxdt ≤ Nτ,ϕ(ṽ2). (3.19)
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Applying Lemma 3.4 again with wj(x, t) = eτϕ(x,t)∇div (ṽ(j)(x, t)), we obtain

C

∫

Ω
e2τρ

2∑

j=1

∣∣∣∇divv(j)(x, 0)
∣∣∣
2
dx ≤ τ

∫

Q
e2τϕ

2∑

j=1

∣∣∣∇div ṽ(j)(x, t)
∣∣∣
2
dxdt

+ τ−1

∫

Q
e2τϕ

2∑

j=1

(∣∣∇div ∂3t ṽ
s(x, t)

∣∣2 +
∣∣∣∇div ∂3t ṽ

f (x, t)
∣∣∣
2
)
dxdt

≤ Nτ,ϕ(ṽ2) +Nτ,ϕ(ṽ3). (3.20)

Adding (3.19) and (3.20), we find

∫

Ω
e2τρ

2∑

j=1

(∣∣∣divv(j)(x, 0)
∣∣∣
2
+

∣∣∣∇divv(j)(x, 0)
∣∣∣
2
)
dx ≤ C (Nτ,ϕ(ṽ2) +Nτ,ϕ(ṽ3)) . (3.21)

Since

M(x)
(
v
s
2(x, 0),v

f
2 (x, 0)

)T
= (p1(x)Φ1(x), p2(x)Φ2(x))

T , x ∈ Ω

we have

|φℓ(x)|2 + |∇φℓ(x)|2 ≤ C
(
|vs2(x, 0)|2 + |∇v

s
2(x, 0)|2 +

∣∣∣vf2 (x, 0)
∣∣∣
2
+
∣∣∣∇v

f
2 (x, 0)

∣∣∣
2

+ |divvs2(x, 0)|2 + |∇div vs2(x, 0)|2 + |div vf2 (x, 0)|2 + |∇divvf2 (x, 0)|2
)

(3.22)

for x ∈ Ω. On the other hand, using (3.11), we obtain

|vs2(x, 0)|2 + |∇v
s
2(x, 0)|2 +

∣∣∣vf2 (x, 0)
∣∣∣
2
+
∣∣∣∇v

f
2 (x, 0)

∣∣∣
2
≤ C

2∑

ℓ=1

(
|pℓ|2 + |∇pℓ|2

)
, x ∈ Ω. (3.23)

Combining (3.23), (3.22) and (3.21), we complete the proof of the lemma. �

Lemma 3.6. There exists a constant C > 0 such that

τ

∫

Ω

(
|∇pℓ(x)|2 + |pℓ(x)|2

)
e2τρdx ≤ C

∫

Ω

(
|∇φℓ(x)|2 + |φℓ(x)|2

)
e2τρ(x)dx

for all large τ > 0, ℓ = 1, 2.

Proof. We have

div ((∂kpℓ)(x)Φℓ(x)) = ∂kφℓ(x)− div (pℓ∂kΦℓ(x)) for all k = 1, 2, 3.

Therefore

∫

Ω

(
|div ((∂kpℓ)Φℓ)|2 + |div (pℓΦℓ)|2

)
e2τρdx ≤

∫

Ω

(
|∇φℓ|2 + |φℓ|2

)
e2τρ(x)dx

+ C

∫

Ω

(
|pℓ|2 + |∇pℓ|2

)
e2τρdx. (3.24)
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Since pℓ = 0 and ∇pℓ = 0 on the boundary Γ and ∇Φℓ · (x − x0) 6= 0, we can apply Lemma 3.3

respectively with the choice v = pℓ and v = ∂kpℓ to obtain

τ

∫

Ω

(
|∂kpℓ(x)|2 + |pℓ(x)|2

)
e2τρdx ≤ C

∫

Ω

(
|div ((∂kpℓ)Φℓ)|2 + |div (pℓΦℓ)|2

)
e2τρdx (3.25)

for ℓ = 1, 2 and k = 1, 2, 3. Inserting (3.24) into the left-hand side of (3.25) and choosing τ > 0 large,

we obtain

τ

∫

Ω

(
|∇pℓ(x)|2 + |pℓ(x)|2

)
e2τρdx ≤ C

∫

Ω

(
|∇φℓ(x)|2 + |φℓ(x)|2

)
e2τρ(x)dx.

The proof is completed. �

3.3 Completion of the proof of Theorem 1.2

By Lemmata 3.5 and 3.6, we obtain

τ

2∑

ℓ=1

∫

Ω
e2τρ(x)

(
|∇pℓ(x)|2 + |pℓ(x)|2

)
dx ≤ C

2∑

ℓ=1

∫

Ω

(
|∇pℓ(x)|2 + |pℓ(x)|2

)
e2τρ(x)dx

+ C (Nτ,ϕ(ṽ2) +Nτ,ϕ(ṽ3)) .

Therefore, choosing τ > 0 large to absorb the first term on the right-hand side into the left-hand side and

applying (3.19), we obtain

τ
2∑

ℓ=1

∫

Ω
e2τρ(x)

(
|∇pℓ(x)|2 + |pℓ(x)|2

)
dx ≤ C

3∑

j=2

(∫

Q

(
|∂jtF |2 + |∂jt∇F |2

)
e2τϕdxdt

+ CeC0τ‖vj‖2H2(ωT ) + Ce2d1τ‖vj‖2H1(−T,T ;H1(Ω))

)

≤ C

2∑

ℓ=1

∫

Q

(
|∇pℓ(x)|2 + |pℓ(x)|2

)
e2τϕdxdt+ CeC0τEω(u) + Ce2d1τM0. (3.26)

Then the first term of the right-hand side of (3.26) can be absorbed into the left-hand side if we take large

τ > 0.

Since ρ(x) ≥ d0, we obtain

2∑

ℓ=1

∫

Ω

(
|∇pℓ(x)|2 + |pℓ(x)|2

)
dx ≤ Ce2(d1−d0)τ + eC0τEω(u) ≤ Ce−ǫτ + eC0τEω(u). (3.27)

At the last inequality, we used: By 0 < d1 < d0, we can choose ǫ > 0 such that e2(d1−d0)τ ≤ e−ǫτ for

sufficiently large τ > 0.
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4 Well posedness of the direct problem

This section is devoted to the study the existence, uniqueness and regularity of solutions of the following

system:

̺11∂
2
t u

s + ̺12∂
2
t u

f −∆µ,λu
s(x, t) −∇

(
q divuf

)
= F1(x, t),

̺12∂
2
t u

s + ̺22∂
2
t u

f −∇ (q div u
s)−∇

(
r divuf

)
= F2(x, t), (x, t) ∈ Q

(4.1)

with the boundary condition

u
s(x, t) = 0, u

f (x, t) · ν = 0, (x, t) ∈ Σ = Γ× (−T, T ) (4.2)

and the initial condition

(us(x, 0), ust (x, 0)) = (us0, u
s
1) ,

(
u
f (x, 0), uft (x, 0)

)
=

(
u
f
0 ,u

f
1

)
, x ∈ Ω. (4.3)

4.1 Function spaces

We denote by D(Ω) the space of compactly supported, infinitely differentiable function in Ω equipped

with the inductive limit topology. We denote by D ′(Ω) the space dual to D(Ω). In general, we denote by

X ′ the space dual to the function space X. We denote by (f, g) the inner product in L2(Ω) and by 〈f, g〉
the value of f ∈ X ′ on g ∈ X. We use usual notations for Sobolev spaces. If X is a Banach space, then

we denote by Lp(0, T ;X) the space of functions f : (0, T ) −→ X which are measurable, take values in

X and satisfy:
(∫ T

0
‖f(t)‖pXdt

)1/p

= ‖f‖Lp(0,T ;X) <∞

for 1 ≤ p <∞, while

‖f‖L∞(0,T ;X) = esssupt∈(0,T )‖f(t)‖X <∞
for p = ∞. It is known that the space Lp(0, T ;X) is complete.

We define the space

H(div ; Ω) =
{
u ∈

(
L2(Ω)

)3
; divu ∈ L2(Ω)

}
,

equipped with the norm

‖u‖H(div ;Ω) =
(
‖u‖2L2(Ω) + ‖divu‖2L2(Ω)

)1/2
.

Let us consider the space

V (Ω) =
(
H1(Ω)3

)
×H(div ; Ω),

equipped with the norm

‖u‖V (Ω) =
(
‖u2‖2H1(Ω) + ‖u2‖2L2(Ω) + ‖divu2‖2L2(Ω)

)1/2
.
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4.2 Generalized solution

We introduce the bilinear form on V (Ω) by

B(u,v) =
1

2

∫

Ω

(
λdiv (us)div (vs) + 2µ (ε(us) : ε(vs)) + rdiv (uf )div (vf )

)
dx

+
1

2

∫

Ω
q
(
div (uf )div (vs) + div (vf )div (us)

)
dx (4.4)

for any u = (us,uf ) ∈ V (Ω), v = (vs,vf ) ∈ V (Ω). We recall that the matrix M is given by (2.9).

Definition 4.1. We say that u = (us,uf ) is a generalized solution of problem (4.1)-(4.2), if u ∈
L2(0, T ;V (Ω)) satisfies the initial condition (4.3) and the following identity

(
M∂2t u(t),v(t)

)
+B(u(t),v(t)) = (F (t),v(t)) , almost all t ∈ (0, T ) (4.5)

for any v ∈ L2(0, T ;V (Ω)).

We note that in (4.5) the integration is only in x.

Lemma 4.1. For η > 0, we set

Bη(u,v) = B(u,v) + η (u,v) , u,v ∈ V (Ω).

Then there exists sufficiently large constant η such that the symmetric bilinear form Bη satisfies

(i) |Bη(u,v)| ≤ C1‖u‖V (Ω)‖v‖V (Ω), for any u,v ∈ V (Ω),

(ii) Bη(u,u) ≥ C2‖u‖2V (Ω), for any u ∈ V (Ω).

Proof. By (4.4) we obtain, for any u,v ∈ V (Ω)

|B(u,v)| ≤
(
‖us‖H1(Ω) + ‖divuf‖L2(Ω)

)(
‖vs‖H1(Ω) + ‖divvf‖L2(Ω)

)

≤ C‖u‖V ‖v‖V . (4.6)

Then for any η, we can derive (i).

Now, we note that for a vector us ∈ H1
0 (Ω) we have the following Korn’s inequality

C1‖us‖2H1(Ω) ≤
∫

Ω
ε(us) : ε(us)dx.

Then, for W =
(
divus,divuf

)
, we have

B(u,u) ≥ µC1‖us‖2H1(Ω) +
1

2

∫

Ω
M0W ·Wdx

where M0 is the symmetric 2× 2-matrix given by

M0(x) =


 λ q

q r


 ≥ γ0I2.
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Which implies

B(u,u) ≥ µC1‖us‖2H1(Ω) +
γ0
2

(
‖divus‖2L2(Ω) + ‖divuf‖2L2(Ω)

)

≥ µC1‖us‖2H1(Ω) +
γ0
2
‖divuf‖2L2(Ω) −

γ0
2
‖u‖2L2(Ω)

≥ C2‖u‖2V − η‖u‖2L2(Ω). (4.7)

This completes the proof of the lemma. �

4.3 Construction of approximate solutions

Let A :
(
L2(Ω)

)6 →
(
L2(Ω)

)6
be the self-adjoint operator defined by

A u =


 ∆µ,λu

s +∇
(
qdivuf

)

∇ (qdivus) +∇
(
rdivuf

)


 .

Then system (4.1) can be written as

M∂2t u− A u = F, (x, t) ∈ Q (4.8)

with initial condition

u(x, 0) = (us0(x),u
f
0 (x)), ∂tu(x, 0) = (us1(x),u

f
1 (x)) (4.9)

and the boundary condition

u
s(x, t) = 0, u

f · ν = 0, (x, t) ∈ Σ. (4.10)

Let (wj)j≥1 be a sequence of solutions in
(
H2(Ω) ∩H1

0 (Ω)
)6

such that for all m ∈ N, w1, ...,wm are

linearly independent and all the finite linear combinations of (wj)j≥1 are dense in
(
H2(Ω)

)6
.

We seek approximate solutions of the problem in the form

um(t) =
m∑

j=1

gjm(t)wj . (4.11)

The functions gjm(t) are defined by the solution of the system of ordinary differential equations

(
M∂2t um,wj

)
+B(um,wj) = (F (t),wj) , 1 ≤ j ≤ m, (4.12)

with the initial conditions

um(0) = u0m → u0 in
(
H2(Ω) ∩H1

0 (Ω)
)6
,

∂tum(0) = u1m → u1 in
(
H1(Ω)

)6
. (4.13)

The system (4.12)-(4.13) depends on gjm(t) and therefore has a solution on some segment [0, tm]; see

[35]. From a priori estimates below and the theorem on continuation of a solution we deduce that it is

possible to take tm = T .
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4.4 A priori estimates

Multiplying (4.8) by g′jm(t) and summing over j from 1 to m, we obtain

(
M∂2t um, ∂tum

)
+B(um, ∂tum) = (F (t), ∂tum) . (4.14)

Hence

1

2

d

dt

[
‖M1/2∂tum(t)‖2L2(Ω) +Bη(um(t),um(t))

]
= (F (t), ∂tum(t)) +

η

2

d

dt
‖um(t)‖2L2(Ω). (4.15)

Let

Φ2(t) = ‖M1/2∂tum(t)‖2L2(Ω) +Bη(um(t),um(t)).

From (4.15) we obtain

1

2

d

dt
Φ2(t) ≤ C

[
‖F (t)‖2L2(Ω) + ‖∂tum(t)‖2L2(Ω) + ‖um(t)‖2L2(Ω)

]
. (4.16)

Integrating with respect to τ from 0 to t, we obtain

Φ2(t) ≤ C

[
‖F‖2L2(Q) +Φ2(0) +

∫ t

0

(
‖∂tum(τ)‖2L2(Ω) + ‖um(τ)‖2L2(Ω)

)]
. (4.17)

Since

Φ2(t) ≥ C
(
‖∂tum(t)‖2L2(Ω) + ‖um(t)‖2V (Ω)

)
(4.18)

and

Φ2(0) ≤ C + ‖u0‖2H2(Ω) + ‖u1‖2H1(Ω), (4.19)

we have from (4.18)

‖um(t)‖2V (Ω) + ‖∂tum(t)‖2L2(Ω) ≤ R0 +

∫ t

0

(
‖∂tum(τ)‖2L2(Ω) + ‖um(τ)‖2L2(Ω)

)
, (4.20)

where R0 = C + ‖u0‖2H2(Ω) + ‖u1‖2H1(Ω) + ‖F‖2L2(Q). By the Gronwall inequality, we conclude that

‖um(t)‖2V (Ω) + ‖∂tum(t)‖2L2(Ω) ≤ R0 (4.21)

for all t ∈ (0, T ) and m ≥ 1.

In order to obtain the second a priori estimate, we observe that

‖∂2t um(0)‖2L2(Ω) ≤ C
[
‖F (0)‖2L2(Ω) + ‖um(0)‖2H2(Ω) + ‖∂tum(0)‖2L2(Ω)

]
≤ R1. (4.22)

Indeed, multiplying (4.8) by g′jm(0), summing over j and setting t = 0, we obtain

(
M∂2t um(0), ∂

2
t um(0)

)
+B(um(0), ∂

2
t um(0)) =

(
F (0), ∂2t um(0)

)
. (4.23)

Consequently,

(
M∂2t um(0), ∂

2
t um(0)

)
=

(
F (0), ∂2t um(0)

)
+

(
A u0m, ∂

2
t um(0)

)
, (4.24)
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which implies

‖∂2t um(0)‖2 ≤ C
(
‖F (0)‖2L2(Ω) + ‖u0m‖2H2(Ω)

)
≤ CR2. (4.25)

Differentiating (4.14) with respect to t, multiplying by gjm and summing over j, we obtain the identity

1

2

d

dt

[
‖M1/2∂tum(t)‖2L2(Ω) +Bη(um(t),um(t))

]
= (F (t), ∂2t um(t)) +

η

2

d

dt
‖∂tum(t)‖2L2(Ω). (4.26)

Then, we conclude that

‖∂2t um(t)‖2L2(Ω) + ‖∂tum(t)‖2V ≤ R2 + ‖∂tum(0)‖2L2(Ω)

+ C

∫ t

0

(
‖∂2t um(τ)‖2L2(Ω) + ‖∂tum(τ)‖2V

)
dτ. (4.27)

By (4.27) and the Gronwall inequality, we obtain

‖∂2t um(t)‖2L2(Ω) + ‖∂tum(t)‖2V ≤ R1. (4.28)

Taking into consideration that um = 0 in Σ, we see

um ∈ L∞(0, T ;V (Ω)), ∂tum ∈ L∞(0, T ;V (Ω)),

∂2t um ∈ L∞(0, T ;L2(Ω)). (4.29)

4.5 Passage to the limit

By (4.29), we can extract a sequence from (um)m≥0, which we denote again by (um)m, such that

um → u in the weak-star topology in L∞(0, T ;V (Ω))

∂tum → ∂tu in the weak-star topology in L∞(0, T ;V (Ω))

∂2t um → ∂2t u in the weak-star topology in L∞(0, T ;L2(Ω)) (4.30)

and

(um, ∂tum) → (u, ∂tu) a.e., on Σ.

Multiplying (4.8) by θ ∈ L1(0, T ) and integrating, we have

∫ T

0

((
M∂2t um(t),wj

)
+B(um,wj)

)
θ(t)dt =

∫ T

0
(F (t),wj) θ(t)dt. (4.31)

On the other hand ∫ T

0
B(um,wj)θ(t)dt = −

∫ T

0
(um,A wj)θ(t)dt, (4.32)

so that

lim
m→∞

∫ T

0
B(um,wj)θ(t)dt = −

∫ T

0
(u,A wj)θ(t)dt =

∫ T

0
B(u,wj)θ(t)dt. (4.33)

Thus, we obtain

∫ T

0

((
M∂2t u(t),wj

)
+B(u,wj)

)
θ(t)dt =

∫ T

0
(F (t),wj)θ(t)dt. (4.34)
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Taking into account that wj are dense in
(
H2(Ω) ∩H1

0 (Ω)
)6

and therefore in V , we obtain

(
M∂2t u,v

)
+B(u(t),v(t)) = (F (t),v), t ∈ (0, T ) (4.35)

for all v ∈ L2(0, T ;V (Ω)).
We have B(u(t),v(t)) = −(A u(t),v(t)) for any v ∈ D(Ω), where the application of the differential

operator A to u is in the distributional sense in D ′(Ω). Hence we obtain

M∂2t u− A u = F, in D
′(Ω), a.e. in(0, T ). (4.36)

On the other hand, ∂2t u, ∂tu, F ∈ L∞(0, T ;L2(Ω)). Hence (4.36) holds in L∞(0, T ;L2(Ω)).
The boundary condition (4.2) is satisfied by the choice of the space V (Ω). We prove that the initial

conditions are satisfied. Suppose θ ∈ C1(0, T ) and θ(T ) = 0. For any j we have

∫ T

0

(
∂

∂t
(um − u),wj

)
θ(t)dt = − (um(0)− u(0),wj) θ(0)−

∫ T

0
(um(t)− u(t),wj) θ

′(t)dt.

(4.37)

Then, by (4.30), we have

lim
m→∞

|(um(0)− u(0),wj)| = 0.

Since u0m(x) = um(0, x) and u0m → u0, we obtain u(0) = u0, and can argue similarly for u1.

Then, we conclude that, there exists a solution u of (4.1) such that

∂tu ∈ L∞(0, T ;V (Ω)), and ∂2t u ∈ L∞(0, T ;L2(Ω)), (4.38)

which implies

u
s ∈ C1(0, T ;H1

0 (Ω)), ∂2t u
s ∈ C(0, T ;L2(Ω))

u
f ∈ C1(0, T ;H(div ,Ω)), ∂2t u

f ∈ C(0, T ;L2(Ω)). (4.39)

On the other hand

∇ (qdivus) +∇
(
rdivuf

)
∈ C(0, T ;L2(Ω)),

∆µ,λu
s +∇

(
qdivuf

)
∈ C(0, T ;L2(Ω)). (4.40)

Consequently,

∆
µ,λ̃

u
s ∈ C(0, T ;L2(Ω)), λ̃ = λ− q2

r
.

Then by the elliptic regularity, us ∈ H1
0 (Ω) yields

u
s ∈ C(0, T ;H2(Ω)).

By divuf ∈ C(0, T ;H1(Ω)), we see

u
s ∈ C(0, T ;H2(Ω) ∩H1

0 (Ω)) ∩ C1(0, T ;H1(Ω))

u
f ∈ C2(0, T ;L2(Ω)), divuf ∈ C(0, T ;H1(Ω)) ∩ C1(0, T ;L2(Ω)). (4.41)
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4.6 Uniqueness

Let u1 and u2 be two solutions to (4.1)-(4.2) with the same initial data, and set u = u1 − u2. Then for

every function v ∈ V (Ω), we have

(
M∂2t u,v

)
+B(u,v) = 0, ∀t ∈ (0, T ).

Since ∂tu ∈ V (Ω), we may take v = ∂tu, and this equation can be reduced to equality

1

2

d

dt

[
‖M1/2∂tu‖2L2(Ω) +Bη(u,u)

]
=
η

2

d

dt
‖u(t)‖2L2(Ω).

Then

‖∂tu(t)‖2L2(Ω) + ‖u(t)‖2V (Ω) ≤ C

∫ t

0

(
‖∂tu(τ)‖2L2(Ω) + ‖u(τ)‖2L2(Ω)

)
dτ.

This implies that ‖u‖V (Ω) = 0 = ‖∂tu‖L2(Ω) and u1 = u2 a.e. in Q.

The proof of Theorem 1.1 is completed.
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deux variables indépendents, Ark. Mat. Astr. Fys. 2B (1939), 1-9.

[12] A.V. Fursikov and O.Yu. Imanuvilov: Controllability of Evolution Equations, Seoul National Uni-

versity, Seoul (1996).

[13] N.-E. Hörlin and G.Peter: Weak, anisotropic symmetric formulations of Biot’s equations for vibro-

acoustic modelling of porous elastic materials. Internat. J. Numer. Methods Engrg. 84 (2010), no.

12, 1519-1540.
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