Local limits of conditioned Galton-Watson trees I: the infinite spine case. - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Local limits of conditioned Galton-Watson trees I: the infinite spine case.

Résumé

We give a necessary and sufficient condition for the convergence in distribution of a conditioned Galton-Watson tree to Kesten's tree. This yields elementary proofs of Kesten's result as well as other known results on local limit of conditioned Galton-Watson trees. We then apply this condition to get new results, in the critical and sub-critical cases, on the limit in distribution of a Galton-Watson tree conditioned on having a large number of individuals with out-degree in a given set.
Fichier principal
Vignette du fichier
local-GW-2013-09.pdf (199.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00813145 , version 1 (15-04-2013)
hal-00813145 , version 2 (28-08-2013)
hal-00813145 , version 3 (10-09-2013)
hal-00813145 , version 4 (16-10-2013)

Identifiants

Citer

Romain Abraham, Jean-François Delmas. Local limits of conditioned Galton-Watson trees I: the infinite spine case.. 2013. ⟨hal-00813145v2⟩

Collections

ENPC CERMICS
352 Consultations
430 Téléchargements

Altmetric

Partager

More