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A NOTE ON CONDITIONED GALTON-WATSON TREES I: THE

INFINITE SPINE CASE

ROMAIN ABRAHAM AND JEAN-FRANÇOIS DELMAS

Abstract. We give a necessary and sufficient condition for the convergence in distribution
of a conditioned Galton-Watson tree to Kesten’s tree. This yields elementary proofs of
Kesten’s result as well as other known results on local limits of conditioned Galton-Watson
trees. We then apply this condition to get new results, in the critical and sub-critical cases,
on the limit in distribution of a Galton-Watson tree conditioned on having a large number
of individuals with out-degree in a given set.

1. Introduction

Galton-Watson (GW) processes constitute a very simple model of population growth where
all individuals give birth independently of each others to a random number of children with
the same reproduction law p. This population growth can be described by a genealogical tree
τ that we call the GW tree. It is well-known that in the sub-critical case (the mean number
of children of a single individual is strictly less than 1) and in the critical case (the mean
number of children of an individual is 1) the population becomes a.s. instinct. However, one
can define in these two cases a tree τ∗ with an infinite spine, that we call Kesten’s tree in
this paper, which can be seen as the tree conditioned on non-extinction, defined as the local
limit in distribution of the tree τ conditioned to reach height n, when n tends to infinity,
see Kesten [14]. This result is recalled here in Section 2.4. The tree τ∗ happens to be the
size-biased tree already studied earlier, see e.g. Hawkes [8], Joffe and Waugh [11] as well
as Lyons, Pemantle and Peres [17]. It also appears (for Galton-Watson processes only)
as a Q-process and can be viewed as a Galton-Watson tree with immigration, Athreya and
Ney [3].

We want to stress that we only consider here local limits i.e. we look at the trees up
to a fixed height h. Other limits can be considered such as scaling limits of conditioned
Galton-Watson trees (see [5, 16, 21]) but this is not the purpose here.

It is also known that, at least in the critical case, other conditionings such as conditioning
by the total progeny, see Kennedy [13] and Geiger and Kaufmann [7], or by the number
of leaves, see Kortchemski [15] or Mylläri [19] for associated works, lead to the same local
limit in distribution. See also the survey from Janson [10].

For all those cases, the conditioning event can be written {τ ∈ An} with An of the form:

An = {t, A(t) ≥ n} or An = {t, A(t) = n},

where A : t 7→ A(t) is a functional defined of the set of trees and satisfying an additive
property, see Equation (9). We prove our following main result, see Theorem 3.1 for a precise
statement, which unifies all the previous conditioning and gives a necessary and sufficient
condition to obtain Kesten’s tree as a limit. In the non-degenerate critical case, if A satisfies
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the additive property (9) with some aperiodic condition, then the following two statements
are equivalent:

• limn→+∞ P(τ ∈ An) = 0 and limn→+∞ P(τ ∈ An+1)/P(τ ∈ An) = 1,
• The distribution of τ conditionally on {τ ∈ An} converges to the distribution of
Kesten’s tree τ∗.

Using this result, we give elementary proofs for the convergence in distribution to Kesten’s
tree τ∗ of the GW tree conditioned on:

(i) Extinction after or at a large time (sub-critical and critical case), with A(t) = H(t)
the height of the tree t and conditioning event {H(τ) = n} or {H(τ) ≥ n}. See
Sections 4.1 and 4.2.

(ii) Large total population size (critical case), with A(t) = Card (t) the total size of the
tree and conditioning event {Card (τ) = n} or {Card (τ) ≥ n}. See Section 4.3.

(iii) Large number of leaves (critical case), with A(t) = L0(t) the total number of leaves
of t and conditioning event {L0(τ) = n} or {L0(τ) ≥ n}. See Section 4.4.

In fact the conditioning on the large total population size or on the large number of leaves
are particular cases of conditioning trees on large number of individuals with a given number
of children. This corresponds to the functional A(t) = LA(t) which gives the total number of
individuals of the tree t whose number of children belongs to a given set A. Such conditioning
has already been studied by Rizzolo [21], see also Mimami [18], but for global scaling limit
and not local limit. We obtain the convergence in distribution to Kesten’s tree τ∗ of the GW
tree conditioned on:

(iv) Large number of individuals with number of children in a given set A (critical case),
with A(t) = LA(t) and conditioning event {LA(τ) = n} or {LA(τ) ≥ n}. One has to
distinguish according to 0 ∈ A, Section 5.1, and 0 6∈ A, Section 5.2.

Let us remark that the total progeny (A = N), the number of leaves (A = {0}) and the
number of internal nodes (A = N \ {0}) are particular cases of this conditioning.

We then study the subcritical case and define a one-parameter family (pθ, θ ∈ I) of dis-
tributions on the set of integers such that the GW tree τ associated with the reproduction
law p and the GW tree τθ associated with the reproduction law pθ have the same conditional
distributions given LA, see Proposition 5.6. This generalizes Kennedy’s transformation [13]
concerning the total progeny, and the pruning of Abraham, Delmas and He [2] concerning
the number of leaves. We then immediately deduce, see Corollary 5.8, that if there exists
θ0 such that pθ0 is critical, then the distribution of τ conditionally on {LA(τ) = n} or on
{LA(τ) ≥ n} converges (in the aperiodic case) to the distribution of the Kesten’s tree τ∗θ0
associated with the reproduction law pθ0 . When there is no such θ0, then a condensation
phenomenon may appear, see Jonsson and Stefansson [12] or [10]. We shall complete
those results in the condensation case in a forthcoming paper [1].

Finally, we consider another conditioning which does not enter into the framework of
Theorem 3.1 : conditioning on the size on the n-th generation. However, we can adapt the
proof of Theorem 3.1 to get an analogous result in that case, see Proposition 6.1. We apply
this result to a geometric reproduction law where explicit computations can be performed
to prove that the corresponding tree conditioned on the n-th generation being on size n
converges in distribution to Kesten’s tree.

The paper is organized as follows. In Section 2, we recall the framework we use for discrete
trees and define the GW tree τ and Kesten’s tree τ∗ associated with a reproduction law p.
In Section 3, we state and prove the necessary and sufficient condition for convergence in
distribution of the conditioned tree to Kesten’s tree. We apply this result in Section 4 to
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recover the classical results on critical conditioned GW trees and we study in Section 5 the
case of the number of individuals with out-degree in a given set for the critical and sub-critical
case. Finally, we study in Section 6 the conditioning on the size of the n-th generation of the
tree.

2. Technical background on GW trees

2.1. First notations. We denote by N = {0, 1, 2, . . .} the set of non-negative integers and
by N

∗ = {1, 2, . . .} the set of positive integers.
If K is a subset of N∗, we call the span of K the greatest common divisor of K. If X is an

integer-valued random variable, we call the span of X the span of {n > 0, P(X = n) > 0}
the restriction to N

∗ of its support.

2.2. The set of discrete trees. We recall Neveu’s formalism [20] for ordered rooted trees.
We set

U =
⋃

n≥0

(N∗)n

the set of finite sequences of positive integers with the convention (N∗)0 = {∅}. For u ∈ U
let |u| be the length or generation of u defined as the integer n such that u ∈ (N∗)n. If u and
v are two sequences of U , we denote by uv the concatenation of the two sequences, with the
convention that uv = u if v = ∅ and uv = v if u = ∅. The set of ancestors of u is the set:

(1) Au = {v ∈ U ; there exists w ∈ U , w 6= ∅, such that u = vw}.

The most recent common ancestor of a subset s of U , denoted by MRCA(s), is the unique
element u of

⋂

u∈sAu with maximal length |u|.
A tree t is a subset of U that satisfies:

• ∅ ∈ t,
• If u ∈ t, then Au ⊂ t.
• For every u ∈ t, there exists a non-negative integer ku(t) such that, for every positive
integer i, ui ∈ t iff 1 ≤ i ≤ ku(t).

The integer ku(t) represents the number of offsprings of the vertex u ∈ t. The vertex u ∈ t

is called a leaf if ku(t) = 0. The vertex ∅ is called the root of t. Let us remark that, for a
tree t, we have

(2)
∑

u∈t

ku = Card (t)− 1.

Let t be a tree. The set of its leaves is L0(t) = {u ∈ t; ku(t) = 0}, its height is defined by

H(t) = sup{|u|, u ∈ t}

and can be infinite. For u ∈ t, we define the sub-tree Su(t) of t “above” u as:

Su(t) = {v ∈ U , uv ∈ t}.

Notice that by construction MRCA(Su(t)) = u.
We denote by T the set of trees, by

T0 = {t ∈ T; Card (t) < +∞}

the subset of finite trees, by

T
(h) = {t ∈ T;H(t) ≤ h}
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the subset of trees with height at most h ∈ N, and by

T1 = {t ∈ T; lim
n→+∞

|MRCA({u ∈ t; |u| = n})| = +∞}

the subset of trees with a unique infinite spine. Notice that T0 and T
(h) are countable and

T1 is uncountable. For h ∈ N the restriction function rh from T to T is defined by:

rh(t) = {u ∈ t, |u| ≤ h}.

We endow the set T with the ultrametric distance

d(t, t′) = 2−max{h∈N, rh(t)=rh(t
′)}.

A sequence (tn, n ∈ N) of trees converges to a tree t with respect to the distance d if and
only if, for every h ∈ N,

rh(tn) = rh(t) for n large enough.

The Borel σ-field associated with the distance d is the smallest σ-field containing the single-
tons for which the restrictions functions (rh, h ∈ N) are measurable. With this distance, the
restriction functions are contractant. Since T0 is dense in T and (T, d) is complete, we get
that (T, d) is a Polish metric space.

Consider the closed ball B(t, 2−h) = {t′ ∈ T; d(t, t′) ≤ 2−h} for some t ∈ T and h ∈ N and
notice that:

B(t, 2−h) = r−1
h ({rh(t)}).

Since the distance is ultrametric, the closed balls are open and the open balls are closed,
and the intersection of two balls is either empty or one of them. We deduce that the family
((r−1

h ({t}), t ∈ T
(h)), h ∈ N) is a π-system, and Theorem 2.3 in [4] implies that this family

is convergence determining for the convergence in distribution. Let (Tn, n ∈ N
∗) and T be

T-valued random variables. We denote by dist (T ) the distribution of the random variable
T (which is uniquely determined by the sequence of distributions of rh(T ) for every h ≥ 0),
and we denote

dist (Tn) −→
n→+∞

dist (T )

for the convergence in distribution on the sequence (Tn, n ∈ N
∗) to T .

We deduce from the Portmanteau theorem that the sequence (Tn, n ∈ N
∗) converge in

distribution to T if and only if for all h ∈ N, t ∈ T
(h):

lim
n→+∞

P(rh(Tn) = t) = P(rh(T ) = t).

As we shall only consider T0-valued random variables that converge in distribution to a T1-
valued random variable, we shall give an other characterization of convergence in distribution
that holds for this restriction. To present this result, we introduce some notations. If t, s ∈ T

and x ∈ L0(t) we denote by:

t⊛ (s, x) = {u ∈ t} ∪ {xv, v ∈ s}

the tree obtained by grafting the tree s on the leaf x of the tree t. For every t ∈ T and every
x ∈ L0(t), we shall consider the set of trees obtained by grafting a tree on the leaf x of t:

T(t, x) = {t⊛ (s, x), s ∈ T}.

It is easy to see that T(t, x) is closed. It is also open, as for all s ∈ T(t, x) we have that

B(s, 2−H(t)−1) ⊂ T(t, x).
Moreover, notice that the set T1 is a Borel subset of the set T.
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Lemma 2.1. Let (Tn, n ∈ N
∗) and T be T-valued random variables which belong a.s. to

T0
⋃

T1. The sequence (Tn, n ∈ N
∗) converges in distribution to T if and only if for every

t ∈ T0 and every x ∈ L0(t), we have:

(3) lim
n→+∞

P(Tn ∈ T(t, x)) = P(T ∈ T(t, x)) and lim
n→+∞

P(Tn = t) = P(T = t).

Proof. The subclass F = {T(t, x), t ∈ T0, x ∈ L0(t)} ∪ {{t}, t ∈ T0} of the Borel sets on
T0
⋃

T1 forms a π-system since we have

T(t1, x1) ∩ T(t2, x2) =



















T(t1, x1) if t1 ∈ T(t2, x2),

T(t2, x2) if t2 ∈ T(t1, x1),

{t1} if t1 = t2 and x1 6= x2,

∅ in the other cases.

For every h ∈ N and every t ∈ T
(h), we have that t′ belongs to r−1

h ({t})
⋂

T1 if and
only if t′ belongs to some T(s, x) where x is a leaf of t such that |x| = h and s belongs
to r−1

h ({t})
⋂

T0 such that x is also a leaf of s. Since T0 is countable, we deduce that F
generates the Borel σ-field on T0 ∪ T1. In particular F is a separating class on T0

⋃

T1.
Since A ∈ F is closed and open as well, according to Theorem 2.3 of [4], to prove that the

family F is a convergence determining class, it is enough to check that for all t ∈ T0
⋃

T1

and h ∈ N, there exists A ∈ F such that:

(4) t ∈ A ⊂ B(t, 2−h).

If t ∈ T0, this is clear as {t} = B(t, 2−h) for all h > H(t). If t ∈ T1, for all s ∈ T0 and

x ∈ L0(s) such that t ∈ T(s, x), we have t ∈ T(s, x) ⊂ B(t, 2−|x|). Since we can find such a
s and x such that |x| is arbitrary large, we deduce that (4) is satisfied. This proves that the
family F is a convergence determining class on T0

⋃

T1.
Since, for t ∈ T0 and x ∈ L0(t) the sets T(t, x) and {t} are open and closed, we deduce

from the Portmanteau Theorem that if (Tn, n ∈ N
∗) converges in distribution to T , then (3)

holds for every t ∈ T0 and every x ∈ L0(t). �

2.3. GW trees. Let p = (p(n), n ∈ N) be a probability distribution on the set of the non-
negative integers. We assume that

(5) p(0) > 0, p(0) + p(1) < 1, and µ :=

+∞
∑

n=0

np(n) < +∞.

A T-valued random variable τ is a Galton-Watson (GW) tree with reproduction law p if
the distribution of k∅(τ) is p and for n ∈ N

∗, conditionally on {k∅(τ) = n}, the sub-trees
(S1(τ),S2(τ), . . . ,Sn(τ)) are independent and distributed as the original tree τ . Equivalently,

for every h ∈ N
∗ and every t ∈ T

(h), we have

P(rh(τ) = t) =
∏

u∈rh−1(t)

p(ku(t)).

In particular, the restriction of the distribution of τ on the set T0 is given by:

(6) ∀t ∈ T0, P(τ = t) =
∏

u∈t

p(ku(t)).

The GW tree is called critical (resp. sub-critical, super-critical) if µ = 1 (resp. µ < 1, µ > 1).
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2.4. Conditioning on non-extinction. Let p be a reproduction law satisfying Assumption
(5) with µ ≤ 1 (i.e. the associated Galton-Watson process is critical or sub-critical). We
denote by p∗ = (p∗(n) = np(n)/µ, n ∈ N) the corresponding size-biased distribution.

According to Kesten [14], we can define an infinite random tree τ∗ which can be viewed as
the tree τ conditioned on non-extinction in the following sense:

∀h ∈ N
∗, ∀t ∈ T

(h), P(rh(τ
∗) = t) = lim

n→+∞
P(rh(τ) = t

∣

∣ H(τ) ≥ n).

The distribution of τ∗ is as follows. Almost surely, τ∗ belongs to T1, that is there exists
a unique infinite sequence (Vk, k ∈ N

∗) of positive integers such that, for every h ∈ N,
V1 · · ·Vh ∈ τ∗, with the convention that V1 · · ·Vh = ∅ if h = 0. The joint distribution of
(Vk, k ∈ N

∗) and τ∗ is determined recursively as follows: for each h ∈ N, conditionally given
(V1, . . . , Vh) and rh(τ

∗), we have:

• The number of children (kv(τ
∗), v ∈ τ∗, |v| = h) are independent and distributed

according to p if v 6= V1 · · ·Vh and according to p∗ if v = V1 · · ·Vh.
• Given also the numbers of children (kv(τ

∗), v ∈ τ∗, |v| = h), the integer Vh+1 is
uniformly distributed on the set of integers {1, . . . , kV1···Vh

(τ∗)}.

As a direct consequence we get that for all h ∈ N, t ∈ T
(h), u ∈ t such that |u| = h:

P(rh(τ
∗) = t, V1 · · ·Vh = u) = µ−h

P(rh(τ) = t),

and for all t ∈ T0, x ∈ L0(t):

(7) P(τ∗ ∈ T(t, x)) = µ−|x|
P(τ ∈ T(t, x)).

Since, for t ∈ T0 and x ∈ L0(t), P(τ = t) = P(τ ∈ T(t, x), kx(τ) = 0) = P(τ ∈ T(t, x))p(0),
we deduce that:

(8) P(τ∗ ∈ T(t, x)) =
1

µ|x|p(0)
P(τ = t).

Since τ∗ is in T1 a.s., this implies that (8) with t ∈ T0 and x ∈ L0(t) characterizes the
distribution of τ∗.

3. Main result

Let A be an integer-valued function defined on T satisfying the following additivity prop-
erty: there exists an integer-valued function D defined on T such that, for every t ∈ T0, every
x ∈ L0(t) and for every t̃ such that A(t ⊛ (t̃, x)) is large enough,

(9) A(t⊛ (t̃, x)) = A(t̃) +D(t, x).

Let n0 ∈ N ∪ {+∞} be given. We define for all n ∈ N
∗, the subset of trees

An = {t ∈ T;A(t) ∈ [n, n+ n0)}.

Typical values of n0 are 1 and +∞.
The following theorem states that the distribution of the GW tree τ conditioned to be

in A∞, the limit of An, is distributed as τ∗ as soon as the probability of An satisfies some
regularity. We denote by

dist (τ |τ ∈ An)

the conditional law of τ given {τ ∈ An}.

Theorem 3.1. Assume that Assumptions (5) and (9) hold as well as one of the two following
conditions

• µ = 1 or
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• µ < 1 and D(t, x) = |x| for all t ∈ T0, x ∈ L0(t).

Then, if

(10) lim
n→+∞

P(τ ∈ An) = 0 and lim
n→+∞

P(τ ∈ An+1)

P(τ ∈ An)
= µ,

we have:

dist (τ |τ ∈ An) −→
n→+∞

dist (τ∗),

that is:

(11) ∀h ∈ N
∗, ∀t ∈ T

(h), lim
n→+∞

P(rh(τ) = t
∣

∣ τ ∈ An) = P(rh(τ
∗) = t).

Conversely, if dist (τ |τ ∈ An) −→
n→+∞

dist (τ∗) that is (11) holds and if the span of {D(t, x); t ∈

T0 and x ∈ L0(t)}
⋂

N
∗ is one, then (10) holds.

Proof. Let us first remark that, as we supposed that m ≤ 1, we have a.s. τ ∈ T0 and thus
we are in the setting of Lemma 2.1.

Using (6), we have for every t ∈ T0, x ∈ L0(t) and t̃ ∈ T0:

P(τ = t⊛ (t̃, x)) =
1

p(0)
P(τ = t)P(τ = t̃).

Let t ∈ T0 and x ∈ L0(t). We deduced that for n large enough, so that we can apply Equation
(9):

P(τ ∈ T(t, x), τ ∈ An) =
∑

t̃∈T0

P(τ = t⊛ (t̃, x))1{n≤A(t⊛(t̃,x))<n+n0}

=
1

p(0)

∑

t̃∈T0

P(τ = t)P(τ = t̃)1{n≤A(t̃)+D(t,x)<n+n0}

=
1

p(0)
P(τ = t)P(n−D(t, x) ≤ A(τ) < n+ n0 −D(t, x))

= µ|x|
P(τ∗ ∈ T(t, x))P(τ ∈ An−D(t,x)),

where we used (8) for the last equality. Therefore we have

(12) P(τ ∈ T(t, x)
∣

∣ τ ∈ An) = P(τ∗ ∈ T(t, x))µ|x| P(τ ∈ An−D(t,x))

P(τ ∈ An)
·

Then, using (10) and that D(t, x) = |x| if µ < 1, we obtain that:

(13) lim
n→+∞

P(τ ∈ T(t, x)
∣

∣ τ ∈ An) = P(τ∗ ∈ T(t, x)).

As limn→+∞ P(τ ∈ An) = 0, we also deduce that for all t ∈ T0, P(τ = t, τ ∈ An) = 0 for n
large enough and thus:

(14) lim
n→+∞

P(τ = t
∣

∣ τ ∈ An) = 0 = P(τ∗ = t).

We deduce from Lemma 2.1 that (11) holds.
Conversely, if (11) holds, then Lemma 2.1 implies that (13) and (14) hold. Then (14)

readily implies that the first part of (10) holds. The fact that the span of {D(t, x); t ∈
T0 and x ∈ L0(t)}

⋂

N
∗ is one and (12) imply, with Bezout theorem, that the second part of

(10) holds. �
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4. Examples

4.1. Conditioning on extinction after large time. We give here a simple proof of
Kesten’s result for the convergence in distribution of a critical or sub-critical GW tree con-
ditioned on non-extinction, see [15].

Proposition 4.1. Let τ be a critical or sub-critical GW tree with reproduction law p satisfying
Assumption (5). Then, we have

(15) dist (τ |H(τ) ≥ n) −→
n→+∞

dist (τ∗).

Proof. Consider A(t) = H(t) and n0 = +∞ that is An = {t ∈ T; H(t) ≥ n}. Notice that in
this case for a tree t̃ such that H(t̃) is larger than H(t), we have for every x ∈ L0(t)

(16) A(t ⊛ (t̃, x)) = A(t̃) + |x|.

Therefore, Condition (9) is satisfied by A.
According to Theorem 3.1, it suffices to prove

(17) lim
n→+∞

P(H(τ) ≥ n) = 0, lim
n→+∞

P(τ ≥ n+ 1)

P(τ ≥ n)
= µ

to get (15). As we are in the critical or sub-critical case, H(τ) is finite a.s. and therefore, the
first part of (17) holds.

We denote by ϕ the generating function of p and we define recursively ϕ1 = ϕ and for
n ≥ 1, ϕn+1 = ϕn ◦ϕ. As ϕn is the generating function of the distribution of {u ∈ τ ; |u| = n}
the number of individuals at height n, we have P(τ ∈ An) = 1 − ϕn(0). We also have
limn→+∞ ϕn(0) = 1 and

lim
n→+∞

P(τ ∈ An+1)

P(τ ∈ An)
= lim

n→+∞

1− ϕ(ϕn(0))

1− ϕn(0)
= ϕ′(1) = µ

which is the second part of (17). �

4.2. Conditioning on extinction at large time.

Proposition 4.2. Let τ be a critical or sub-critical GW tree with reproduction law p satisfying
Assumption (5). Then we have

(18) dist (τ |H(τ) = n) −→ dist (τ∗).

Proof. We consider A(t) = H(t) with n0 = 1 that is An = {t ∈ T; H(t) = n}. Since (16) is
in force, we get that Condition (9) still holds. Again it suffices to prove

(19) lim
n→+∞

P(H(τ) = n) = 0, lim
n→+∞

P(H(τ) = n+ 1)

P(H(τ) = n)
= µ

to get (18). Since τ is a.s. finite, the first part of (19) is immediate.
Recall notation ϕn introduced in Section 4.1 and that limn→+∞ ϕn(0) = 1. We have

P(τ ∈ An) = ϕn+1(0) − ϕn(0) and:

lim
n→+∞

P(τ ∈ An+1)

P(τ ∈ An)
= lim

n→+∞

1−ϕ(ϕn(0))
1−ϕn(0)

− 1−ϕ2(ϕn(0))
1−ϕn(0)

1− 1−ϕ(ϕn(0))
1−ϕn(0)

=
µ− µ2

1− µ
= µ,

which is the second part of (19). �
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4.3. Conditioning on the total population size, critical case. We recover here results
from [13] (under the hypothesis that Var (X) is finite) or Theorem 7.1 in [10] (under no
condition on the variance of X) on the convergence in distribution of a critical Galton-Watson
tree conditioned on the size of its total progeny to Kesten’s tree.

Proposition 4.3. Let τ be a critical GW tree with reproduction law p satisfying Assumption
(5). Let d be the span of Card (τ)− 1 (that is the span of the set {k > 0, p(k) > 0}). Then
we have

(20) dist (τ |Card (τ) = nd+ 1) −→
n→+∞

dist (τ∗). and

and

(21) dist (τ |Card (τ) ≥ n) −→
n→+∞

dist (τ∗).

Remark 4.4. If we consider A(t) = Card (t) and n0 = +∞ that is An = {t ∈ T, Card (t) ≥
n}, it is easy to adapt the end of the proof of Theorem 3.1 to get

(22) lim
n→+∞

P(Card (τ) ≥ n+ 1)

P(Card (τ) ≥ n)
= 1.

Indeed, notice that the span of {D(t, x); t ∈ T0 and x ∈ L0(t)}
⋂

N
∗, with D(t, x) = A(t)

given in (23), is d. Then use that And+1 = · · · = And+d+1 to prove that (21) implies (22).
Notice it is not clear how we can obtain (22) directly.

Proof of Proposition 4.3. Consider A(t) = Card (t) and n0 = d. Then we have

An = {t ∈ T; Card (t) ∈ [n, n+ d)}.

We have for every t ∈ T, without any additional assumption,

(23) A(t⊛ (t̃, x)) = A(t̃) +A(t),

so Condition (9) holds. Again, it therefore suffices to prove

(24) lim
n→+∞

P(Card (τ) ∈ [n, n+ d)) = 0, lim
n→+∞

P(Card (τ) ∈ [n+ 1, n+ 1 + d))

P(Card (τ) ∈ [n, n+ d))
= 1

to get (20). The first part of (24) is a direct consequence of Card (τ) < +∞ a.s.
Before proving the second part of (24), we first recall Dwass formula (see [6]). Let (τk, k ∈

N
∗) be independent GW trees distributed as τ . Set Wk = Card (τk). Let (Xk, k ∈ N

∗) be
independent integer-valued random variables distributed according to p. For k ∈ N

∗ and
n ≥ k, we have:

(25) P(W1 + . . .+Wk = n) =
k

n
P(X1 + . . .+Xn = n− k).

We also recall some results on random walks. Let Y be an integrable random variable
taking values in Z, such that E[Y ] = 0, P(Y = 0) < 1 and the span of |Y | is 1. We consider
the random walk S = (Sn, n ∈ N) defined by:

(26) S0 = 0 and Sn =

n
∑

k=1

Yk for n ∈ N
∗.

Then the random walk S is recurrent. If S is aperiodic, the strong ratio theorem for recurrent
aperiodic random walks, see Theorem T1 p49 of [22], gives that, for ℓ ∈ Z:

(27) lim
n→+∞

P(Sn = ℓ)

P(Sn = 0)
= lim

n→+∞

P(Sn = 0)

P(Sn+1 = 0)
= 1.
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If S has period d, then for all k ∈ {1, . . . , d}, there exist jk ∈ Z and nk ∈ N
∗ such that

(28) ∀n ≥ nk, P(Snd+k = jk) > 0.

The strong ratio theorem can then easily be adapted (using arguments similar to those used
in the proof of Lemma 5.5) to get that, for ℓ ∈ Z, k ∈ {1, . . . , d}:

(29) lim
m→+∞

P(Smd+k = ℓd+ jk)

P(Smd = 0)
= 1.

By the definition of d, a.s. we have A(τ) ∈ dN+1. We consider an integer valued random
variable X distributed according to p and we set Y = X − 1 so that E[Y ] = 0 since we
supposed that m = 1. The random walk defined by (26) has period d and we can choose
j1 = −1 in (28) as P(Y = −1) > 0. Dwass formula (25) implies that, for m = ⌊(n − 1)/d⌋:

P(τ ∈ An) = P(A(τ) ∈ [n, n+ d)) = P(A(τ) = md+ 1) =
1

md+ 1
P(Smd+1 = −1).

Using (29), we deduce that:

lim
n→+∞

P(τ ∈ An+1)

P(τ ∈ An)
= lim

m→+∞

P(S(m+1)d+1 = −1)

P(Smd+1 = −1)
= 1

which implies readily the second part of (24).
Let’s turn now to the proof of (21). As dist (τ |τ ∈ An) is a mixture of dist (τ |Card (τ) = k)

for k ≥ n, we deduce from the first part of the proposition that (21) holds. �

Remark 4.5. Notice that the local limit theorem gives asymptotics for P(Sn = −1) when the
distribution of X belongs to the domain of attraction of a stable law, see Theorem 4.2.1 of
[9] or Theorem 1.10 in [15]. This gives asymptotics for P(τ ∈ An) which in turns allow to
recover Condition (10).

4.4. Conditioning on the number of leaves, critical case. For a finite tree t ∈ T0, we
denote by L0(t) = Card (L0(t)) the number of leaves of t. The next proposition (which
seems to be a new result) is in fact a particular case of the proposition of the next section.
However, we prove it separately for pedagogical purpose as its proof and in particular the
construction of the Galton-Watson tree that codes L0(t) of Remark 4.8 are much simpler in
that particular case.

Proposition 4.6. Let τ be a critical GW tree with reproduction law p satisfying Assumption
(5). Let d0 be the span of the random variable L0(τ)− 1. Then we have

(30) dist (τ |L0(τ) = nd0 + 1) −→
n→+∞

dist (τ∗).

and

(31) dist (τ |L0(τ) ≥ n) −→
n→+∞

dist (τ∗).

Proof. We consider A(t) = L0(t) and n0 = d0 which yields An = {t ∈ T; L0(t) ∈ [n, n+d0)}.
We have for every trees t, t̃ ∈ T0 and every x ∈ L0(t)

(32) A(t ⊛ (t̃, x)) = A(t̃) +A(t)− 1.

According to [18], see also Remark 4.8 below, L0(τ) is distributed as the total size of a
critical GW tree τ0 with reproduction law given by the distribution of:

(33) X0 =

N−1
∑

k=1

Zk,
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with (Zk, k ∈ N
∗) and N independent random variables such that (Zk, k ∈ N

∗) are inde-
pendent and distributed as X − 1 conditionally on {X ≥ 1} (where X is a random variable
distributed according to p) and N has a geometric distribution with parameter p(0). As
E[X0] = 1, we get that τ0 is critical. Notice that d0 is also the span of the random variable
X0.

We deduce from Subsection 4.3 that Condition (24) is satisfied and thus:

(34) lim
n→+∞

P(L0(τ) ∈ [n, n+ d0)) = 0, lim
n→+∞

P(L0(τ) ∈ [n+ 1, n+ 1 + d0))

P(L0(τ) ∈ [n, n+ d0))
= 1.

Then use Theorem 3.1 to get that (30) holds.
If we consider n0 = +∞ that is:

An = {t ∈ T0; L0(t) ≥ n},

arguing as in the proof of the second part of Proposition 4.3, we get (31). �

Remark 4.7. We deduce from Remark 4.4 that (31) implies

lim
n→+∞

P(L0(τ) ≥ n+ 1)

P(L0(τ) ≥ n)
= 1.

Remark 4.8. We shall briefly recall how one can prove that L0(τ) is distributed as the total
size of a Galton-Watson process by mapping the set of leaves L0(τ) onto a GW tree, see [18].

Let t be a tree. For u ∈ t, we define the left branch starting from u as:

Bt

g(u) = {uv; |v| ≥ 1 and v = {1}|v|} ∩ t.

We also define the left leaf G(u) of u and the left ancestors Ag(v) of a leaf v as:

Gt(u) = Bt

g(u) ∩ L0(t) and At

g(v) = {u ∈ Av; G
t(u) = v}.

For a leaf v ∈ L0(t), we define its leaf-children as:

Ct(v) = {Gt(ui); u ∈ At

g(v), 1 < i ≤ ku(t)},

labeled according to the following order: Gt(ui) < Gt(u′i′) if u < u′ in the lexicographic
order or if u = u′ and i < i′. This defines a tree, obtained from the leaves of t, denoted by
t{0} = F{0}(t). And we have Card (t{0}) = L0(t).

If τ is a GW tree then τ{0} = F{0}(τ) is also a GW tree with reproduction law given by
the distribution of X0 in (33).

Figure 1. A tree t on the left and the coding of L0(t) by a tree t0 = F (t)
tree on the right.
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5. Conditioning on the number of individuals having a given number of

children

Let A be a non-empty subset of N. For a tree t ∈ T, we write LA(t) = {u ∈ t; ku(t) ∈ A}
the set individuals whose number of children belongs to A and LA(t) = Card (LA(t)) its
cardinal. The case A = {0} represents the set of leaves of t and has been treated in Section
4.4. We can also have LA(t) = Card (t) by taking A = N or LA can also be the number of
internal nodes by taking A = N

∗.
Let us first remark that for every t ∈ T0, every x ∈ L0(t) and every t̃ ∈ T

LA(t⊛ (t̃, x)) =

{

LA(t) + LA(t̃)− 1 if 0 ∈ A,

LA(t) + LA(t̃) if 0 6∈ A,

and hence LA satisfies the additive property (9) with D(t, x) = LA(t)− 1{0∈A}.

Theorem 5.1. Let τ be a critical GW tree with reproduction law p satisfying Assumption
(5). Let dA be the span of the random variable LA(τ)− 1. Then we have

(35) dist (τ |LA(τ) = ndA + 1) −→
n→+∞

dist (τ∗).

and

(36) dist (τ |LA(τ) ≥ n) −→
n→+∞

dist (τ∗).

Remark 5.2. If 0 6∈ A, then dA = 1.

Remark 5.3. Arguing as in Remark 4.4, we get

(37) lim
n→+∞

P(LA(τ) ≥ n+ 1)

P(LA(τ) ≥ n)
= 1.

In what follows, we denote by X a random variable distributed according to p. To avoid
triviality, we assume that 0 < P(X ∈ A) ≤ 1. The proofs differ if 0 ∈ A or not, the next
two subsections are devoted each to one case. Then, we consider the same problem for the
sub-critical case, m = E[X] < 1, in a third subsection.

5.1. Proof of Theorem 5.1 when 0 ∈ A. We consider only P(X ∈ A) < 1, as the case
P(X ∈ A) = 1 corresponds to the critical case with A = N of Section 4.3. In this case,
extending the decomposition of [18], it is easy to see that LA(τ) is distributed as the total
size of a critical GW tree τA whose reproduction law is given by the distribution of:

(38) XA =

N−1
∑

k=1

Y ′
k + Y ′′,

where (Y ′
k, k ∈ N

∗), N and Y ′′ are independent random variables such that (Y ′
k, k ∈ N

∗)
are independent and distributed as X − 1 conditionally on {X 6∈ A}, N is geometric with
parameter P(X ∈ A) and Y ′′ is distributed as X conditionally on {X ∈ A}. See Remark 5.4
below for a construction of the corresponding GW tree.

As E[XA] = 1, we get that τA is critical. Remark that dA is also the span of XA. Consider
n0 = dA which gives

An = {t ∈ T; LA(t) ∈ [n, n+ dA)}.

As LA(τ) is distributed as the total size of a critical GW tree, we deduce from Subsection
4.3 that

(39) lim
n→+∞

P(LA(τ) ∈ [n, n+ dA)) = 0, lim
n→+∞

P(LA(τ) ∈ [n+ 1, n+ 1 + dA))

P(LA(τ) ∈ [n, n+ dA))
= 1
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and thus by Theorem 3.1 that (35) holds. �

Remark 5.4. We shall briefly indicate how one can prove that LA(τ) is distributed as the
total size of a Galton-Watson process by mapping the set LA(τ) onto a GW tree, generalizing
the construction of Remark 4.8, see also [18] for A = [0, n].

We use notations from Remark 4.8. For a tree t, u ∈ t and v ∈ LA(t), we define the left
descendant of u in LA(t) and the left ancestors At

g(v) of v as:

Gt

A(u) = argmin {|w|; w ∈ Bt

g(u) ∩ LA(t)} and At

g,A(v) = {u ∈ Av; G
t

A(u) = v}.

Remark that Gt

A(u) exists since we supposed that 0 ∈ A.
For v ∈ LA(t), we define its children as:

Ct

A(v) =

{

{Gt

A(ui); u ∈ At

g,A(v), 1 < i ≤ ku} if v ∈ L(t),

{Gt

A(ui); u ∈ At

g,A(v), 1 < i ≤ ku}
⋃

{vi, 1 ≤ i ≤ kv(t)}, if v 6∈ L(t),

labeled according to the following order: Gt

A(ui) < Gt

A(u
′i′) if u < u′ in the lexicographic

order or if u = u′ and i < i′; Gt

A(ui) < vi′ for u ∈ At

g,A(v) and 1 ≤ i′ ≤ kv(t); and vi < vi′

for 1 ≤ i < i′ ≤ kv(t). This defines a tree, obtained from LA(t), denoted by tA = FA(t).
And we have Card (t0) = LA(t).

If τ is a GW tree then τA = FA(τ) is also a GW tree with reproduction law given by the
distribution of XA in (38).

5.2. Proof of Theorem 5.1 when 0 6∈ A. Notice that in that case, P(X ∈ A) < 1. For a
tree t and u ∈ LA(t) we define SA

u (t) the sub-tree rooted at u with no progeny in A by:

SA
u (t) = {w ∈ Su;Aw ∩Ac

u ∩ LA(t) = ∅}.

We set p(A) = P(X ∈ A). We define p̃(0) = p(0) +
∑

k∈A p(k) and, for k ∈ N
∗, p̃(k) =

p(k)1{k 6∈A}. Let X̃ be a random variable with distribution p̃, so that E[X̃] = E[X1{X∈Ac}] <

1. Notice that SA
∅ (τ) is a GW tree with reproduction law p̃. We denote by L̃ be the number

of leaves of SA
∅ (τ). Elementary computations yields:

(40) E[L̃] =
p̃(0)

1− E[X̃]
=

p(0) + p(A)

E
[

X1{X∈A}

] ,

where we used that E[X] = 1 for the last equality.
We defined the children of u in A as:

Ct(u) = L0(S
A
u (t)) ∩ LA(t).

The number of children inA of the root ∅ is then Ñ∅ := Card (C(∅)). Notice that conditionally
given L̃, Ñ∅ has a binomial distribution with parameter (L̃, p(A)/p̃(0)). Let:

(41) XA =
Z′
∑

k=1

Ñk,

where Z ′ is a random variable distributed as X conditionally on {X ∈ A}, and (Ñk, k ∈ N
∗)

are independent random variables distributed as Ñ∅ and independent of Z. Notice that for
any u ∈ LA(τ) with u 6= ∅, its number of children in A, C(u), is distributed as XA.

Let τ ′ be a GW tree with reproduction law given by the law of XA and initial size 1. Let
(W ′

k, k ∈ N
∗) be independent random variables distributed as Card (τ ′) and independent of

Ñ∅. We deduce that LA(τ) is distributed as
∑Ñ∅

k=1W
′
k. Notice that LA(τ) is empty if Ñ∅ = 0.
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By construction, notice the span of XA is 1. The proof of the next lemma is postponed to
the end of the section.

Lemma 5.5. We have:

(42) lim
n→+∞

P(LA(τ) = n)

P(W ′
1 = n)

= E[Ñ∅].

Then, using Subsection 4.3, we have limn→+∞
P(W ′

1
=n)

P(W ′
1
=n+1)

= 1, and thus we deduce that:

(43) lim
n→+∞

P(LA(τ) = n)

P(LA(τ) = n+ 1)
= 1.

As the span of XA is 1, we consider n0 = 1 that is:

An = {t ∈ T; LA(t) = n}.

Since τ is a.s. finite, the first part of Condition (39) is satisfied; and (43) readily implies the
second part of Condition (39). As usual, we deduce that (35) holds. �

Proof of Lemma 5.5. We have, using (40):

E[XA] = E[Z ′]E[Ñk]

=
1

p(A)
E
[

X1{X∈A}

]

E[L̃]
p(A)

p(0) + p(A)

= 1.

Let S′
n =

∑n
k=1(X

′
k−1), where (X ′

k, k ∈ N
∗) are independent random variables distributed

as XA. By construction and using Dwass formula (25), we have:

P(LA(τ) = n) =

+∞
∑

k=1

P(Ñ∅ = k)P





k
∑

j=1

W ′
j = n



 =
1

n

+∞
∑

k=1

kP(Ñ∅ = k)P(S′
n = −k).

We set:

δn(k) =
P(S′

n = −k)

P(S′
n = −1)

·

The random walk (S′
n, n ∈ N) is recurrent and aperiodic as the span of XA is 1. We deduce

from the strong ratio theorem (27) that:

(44) lim
n→+∞

δn(k) = 1.

Using Fatou’s Lemma, we get:

lim inf
n→+∞

P(LA(τ) = n)

P(W ′
1 = n)

≥
+∞
∑

k=1

kP(Ñ∅ = k) lim inf
n→+∞

δn(k) = E[Ñ∅].

As W ′
1 is the total size of a Galton-Watson process with reproduction law given by XA,

we have that W ′
1 has the same distribution as:

1 +

XA
∑

k=1

W ′
k.



CONDITIONED GALTON-WATSON TREES 15

Using Dwass formula (25), we have:

P(W ′
1 = n+ 1)

P(W ′
1 = n)

=

+∞
∑

k=1

P(ZA = k)
P

(

∑k
j=1W

′
j = n

)

P(W ′
1 = n)

=
+∞
∑

k=1

kP(ZA = k)δn(k).

Let m0 ≥ 1 such that P(Z ′ = m0) > 0. We deduce from (41) that:

{Ñ1 = k, Ñ2 = 0, . . . , Ñm0
= 0, Z ′ = m0} ⊂ {XA = k},

and thus, with C−1 = P(Ñ∅ = 0)m0−1
P(Z ′ = m0) > 0 we have for all k ∈ N:

P(Ñ∅ = k) ≤ CP(XA = k).

We get for any K ∈ N
∗:

P(LA(τ) = n)

P(W ′
1 = n)

=
K
∑

k=1

kP(Ñ∅ = k)δn(k) +
+∞
∑

k=K+1

kP(Ñ∅ = k)δn(k)

≤
K
∑

k=1

kP(Ñ∅ = k)δn(k) + C

+∞
∑

k=K+1

kP(XA = k)δn(k)

=

K
∑

k=1

kP(Ñ∅ = k)δn(k)− C

K
∑

k=1

kP(XA = k)δn(k) + C
P(W ′

1 = n+ 1)

P(W ′
1 = n)

.

Using (44), we get:

lim sup
n→+∞

P(LA(τ) = n)

P(W ′
1 = n)

≤
K
∑

k=1

kP(Ñ∅ = k)− C

K
∑

k=1

kP(XA = k) + C.

Letting K goes to infinity and using that E[XA] = 1, we get:

lim sup
n→+∞

P(LA(τ) = n)

P(W ′
1 = n)

≤ E[Ñ∅].

This implies (42). �

5.3. The sub-critical case. Let p be a reproduction law. Let A ⊂ N such that p(A) > 0.
For every θ > 0 such that

∑

k∈N θkp(k) is finite, we define on N the function pθ by

∀k ≥ 0, pθ(k) =

{

cA(θ)θ
kp(k) if k ∈ A,

θk−1p(k) if k 6∈ A

where the normalizing constant cA(θ) is given by:

cA(θ) =
1−

∑

k 6∈A θk−1p(k)
∑

k∈A θkp(k)
·

We denote by I the set of θ such that pθ defines a probability distribution on N. Notice
that I is an interval with bounds θ0 < 1 ≤ θ1. We have the special cases θ0 = 0 if 0 ∈ A and
θ0 = p(0) if A = N

∗.
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Proposition 5.6. Let τ be a GW tree with reproduction law p satisfying p(0) > 0 and
p(0) + p(1) < 1. Let A ⊂ N such that p(A) > 0. For every θ ∈ I, let τθ be a GW tree with
reproduction law pθ. Then the conditional distributions of τ given {LA(τ) = n} and of τθ
given {LA(τθ) = n} are the same.

Remark 5.7. This proposition covers Kennedy’s result [13] for A = N and the pruning pro-
cedure of [2] for A = {0}.

Proof. Let t ∈ T0. Then we have, using the definition of pθ and (2):

P(τθ = t) =
∏

v∈t

pθ(kv(t))

=
∏

v∈t,kv(t)∈A

cA(θ)θ
kv(t)p(kv(t))

∏

v∈t,kv(t)6∈A

θkv(t)−1p(kv(t))

= cA(θ)
LA(t)θ

∑
v∈t

kv(t)−LAc (t)
P(τ = t)

= cA(θ)
LA(t)θCard (t)−1−LAc (t)

P(τ = t)

= θ−1(θcA(θ))
LA(t)

P(τ = t).

We deduce that

P(LA(τθ) = n) =
∑

t∈T0, LA(t)=n

P(τθ = t)

= θ−1(θcA(θ))
n

∑

t∈T0, LA(t)=n

P(τ = t)

= θ−1(θcA(θ))
n
P(LA(τ) = n)

and finally, for every t ∈ T0 such that LA(t) = n, we have

P(τθ = t
∣

∣ LA(τθ) = n) =
P(τθ = t)

P(LA(τθ) = n)

=
θ−1(θcA(θ))

n
P(τ = t)

θ−1(θcA(θ))nP(LA(τθ) = n)
= P(τ = t

∣

∣ LA(τ) = n).

�

Corollary 5.8. Let τ be a sub-critical GW tree with reproduction law p satisfying Assumption
(5). Let A ⊂ N such that p(A) > 0. For every θ ∈ I, let τθ be a GW tree with reproduction
law pθ. If there exists θc ∈ I such that pθc is critical, then

dist (τ |LA(τ) = ndA + 1) −→
n→+∞

dist (τ∗θc).

and
dist (τ |LA(τ) ≥ n) −→

n→+∞
dist (τ∗θc).

Remark 5.9. The first convergence of the corollary remains valid for a super-critical repro-
duction law but not the second one as the conditional distribution cannot be written as a
mixture of the first one as the tree may be infinite.

Remark 5.10. If the critical value θc of Corollary 5.8 does not exist, then we observe a
condensation phenomenon: the limiting tree does not have an infinite spine, but exhibits a
unique vertex with an infinite number of children, see [10] for A = N and the forthcoming
paper [1] for the general case.
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6. Conditioning by the size of a high generation

We end this paper with a conditioning which does not enter into the framework of Theorem
3.1. However its proof can be easily adapted. For a tree t, we denote by

Gn(t) = Card ({u ∈ t, |u| = n})

the size of the n-th generation of t. Then we have

Proposition 6.1. Let τ be a critical GW tree with reproduction law p satisfying Assumption
(5). Let (αn, n ∈ N) be a sequence of positive integers. If for all j ∈ N

∗

(45) lim
n→+∞

P(Gn−j(τ) = αn)

P(Gn(τ) = αn)
= 1,

then we have

(46) dist (τ |Gn(τ) = αn) −→
n→+∞

dist (τ∗).

Proof. For every tree t ∈ T0, every x ∈ L0(t) and every tree t̃ ∈ T, we have

Gn(t⊛ (t̃, x)) = Gn(t) + Gn−|x|(t̃)

which generalizes Assumption (9).
The same computations as in the proof of Theorem 3.1 give for t ∈ T0, x ∈ L0(t) and

n ≥ H(t):

P(τ ∈ T(t, x),Gn(τ) = αn) =
1

p(0)
P(τ = t)P(Gn−|x|(τ) = αn − Gn(t))

= P(τ∗ ∈ T(t, x))P(Gn−|x|(τ) = αn).

Therefore, we obtain by Assumption (45):

lim
n→+∞

P(τ ∈ T(t, x)|Gn(τ) = αn) = lim
n→+∞

P(τ∗ ∈ T(t, x))
P(Gn−|x|(τ) = αn)

P(Gn(τ) = αn)

= P(τ∗ ∈ T(t, x)).

The result follows from Lemma 2.1. �

Corollary 6.2. Let τ be a critical GW tree with reproduction law p given by a mixture of a
geometric distribution with parameter ρ ∈ (0, 1] and a Dirac mass at 0, i.e. p(0) = 1− ρ and
p(k) = ρ2(1 − ρ)k−1 for k ≥ 1. Let (αn, n ∈ N) be a sequence of positive integers such that
limn→+∞ n−2αn = 0. Then we have:

dist (τ |Gn(τ) = αn) −→
n→+∞

dist(τ∗).

Proof. In that particular case, the generating function ϕn of Gn(τ) is explicitely known and
we have for every s ∈ [0, 1]

ϕn(s) =
nc− (nc− 1)s

(nc+ 1)− ncs

with c = (1− ρ)/ρ. Expending ϕn gives for every k ≥ 1:

P(Gn(τ) = k) =
(nc)k−1

(nc+ 1)k+1
,
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and therefore for j ≥ 1

lim
n→+∞

P(Gn−j(τ) = αn)

P(Gn(τ) = αn)
= lim

n→+∞

n(nc+ 1)

(n− j)((n − j)c + 1)

(

1 + 1
nc

1 + 1
(n−j)c

)αn

= 1.

Then use Proposition 6.1 to conclude. �

Remark 6.3. As for Theorem 3.1, we can obtain the converse of Proposition 6.1. We de-
duce that, in the geometric case of Corollary 6.2, the Galton-Watson tree τ conditioned on
{Gn(τ) = k⌊na⌋}, with k ∈ N

∗, converges in distribution to Kesten’s tree if and only if
a ∈ [0, 2).
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