Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations

Résumé

In this paper we study the bifurcation of branches of non-symmetric solutions from the symmetric branch of solutions to the Euler-Lagrange equations satisfied by optimal functions in functional inequalities of Caffarelli-Kohn-Nirenberg type. We establish the asymptotic behavior of the branch for large values of the bifurcation parameter. We also perform a formal expansion in a neighborhood of the first bifurcation point on the branch of symmetric solutions, that characterizes the local behavior of the non-symmetric branch. These results are compatible with earlier numerical and theoretical observations. Further numerical results allow us to distinguish two global scenarii. This sheds a new light on the symmetry breaking phenomenon.
Fichier principal
Vignette du fichier
DE-2013.pdf (1.07 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00812996 , version 1 (14-04-2013)
hal-00812996 , version 2 (02-11-2013)

Identifiants

Citer

Jean Dolbeault, Maria J. Esteban. Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations. 2013. ⟨hal-00812996v1⟩
222 Consultations
189 Téléchargements

Altmetric

Partager

More