Decomposable and Indecomposable Algebras of Degree 8 and Exponent 2 - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Decomposable and Indecomposable Algebras of Degree 8 and Exponent 2

Résumé

We study the decomposition of central simple algebras of exponent $2$ into tensor products of quaternion algebras. We consider in particular decompositions in which one of the quaternion algebras contains a given quadratic extension. Let $B$ be a biquaternion algebra over $F(\sqrt{a})$ with trivial corestriction. A degree $3$ cohomological invariant is defined and we show that it determines whether $B$ has a descent to $F$. This invariant is used to give examples of indecomposable algebras of degree $8$ and exponent $2$ over a field of $2$-cohomological dimension $3$ and over a field $\mathbb M(t)$ where the $u$-invariant of $\mathbb M$ is $8$ and $t$ is an indeterminate. The construction of these indecomposable algebras uses Chow group computations provided by A. S. Merkurjev in Appendix.
Fichier principal
Vignette du fichier
DecIndec.pdf (253.11 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00809490 , version 1 (09-04-2013)

Identifiants

Citer

Demba Barry. Decomposable and Indecomposable Algebras of Degree 8 and Exponent 2. 2013. ⟨hal-00809490⟩
135 Consultations
198 Téléchargements

Altmetric

Partager

More