Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions - Archive ouverte HAL
Article Dans Une Revue Calculus of Variations and Partial Differential Equations Année : 2009

Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions

Résumé

We study the existence and uniqueness of solutions of the convective-diffusive elliptic equation −div(D∇u) + div(V u) = f posed in a bounded domain Ω ⊂ RN , with pure Neumann boundary conditions D∇u * n = (V * n) u on ∂Ω. Under the assumption that V ∈ Lp (Ω)N with p = N if N ≥ 3 (resp. p > 2 if N = 2), we prove that the problem has a solution u ∈ H 1 (Ω) if Ω f dx = 0, and also that the kernel is generated by a function u ∈ H 1 (Ω), unique up to a multiplicative constant, which satisfies u > 0 a.e. on Ω. We also prove that the equation −div(D∇u) + div(V u) + ν u = f has a unique solution for all ν > 0 and the map f → u is an isomorphism of the respective spaces. The study is made in parallel with the dual problem, with equation −div(D T ∇v) − V * ∇v = g. The dependence on the data is also examined, and we give applications to solutions of nonlinear elliptic PDE with measure data and to parabolic problems.
Fichier principal
Vignette du fichier
droniou-vazquez_cvpde.pdf (237.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00808697 , version 1 (06-04-2013)

Identifiants

Citer

Jerome Droniou, Juan-Luis Vazquez. Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions. Calculus of Variations and Partial Differential Equations, 2009, 34 (4), pp.413-434. ⟨10.1007/s00526-008-0189-y⟩. ⟨hal-00808697⟩
191 Consultations
668 Téléchargements

Altmetric

Partager

More