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Noncoercive convection-diffusion

elliptic problems with Neumann
boundary conditions

JEROME DRONIOU * AND JUAN-LUIS VAzZQUEZ |

Abstract

We study the existence and uniqueness of solutions of the convective-diffusive elliptic equation
—div(DVu) + div(Vu) = f
posed in a bounded domain Q € RY, with pure Neumann boundary conditions
DVu-n=(V-n)u on 0f).

Under the assumption that V € LP(Q)N with p= N if N > 3 (resp. p > 2 if N = 2), we prove
that the problem has a solution v € H'() if fQ fdz =0, and also that the kernel is generated
by a function 4 € H'(Q), unique up to a multiplicative constant, which satisfies u > 0 a.e. on
Q). We also prove that the equation

—div(DVu) +div(Vu) +vu = f

has a unique solution for all ¥ > 0 and the map f +— wu is an isomorphism of the respective
spaces. The study is made in parallel with the dual problem, with equation

—div(DTVv) = V- Vv =g.
The dependence on the data is also examined, and we give applications to solutions of nonlinear
elliptic PDE with measure data and to parabolic problems.
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1 Introduction and main result

We study the existence and uniqueness of solutions for the following convective-diffusive elliptic
problem with pure Neumann boundary conditions

—div(DVu) + div(Vu) = f in Q 11
DVu-n=(V-n)u on 052, (1.1)

under the following basic assumptions:
(H1) Q is a bounded connected open set of RN, N > 2, with a Lipschitz-continuous boundary,

(H2) The matrix valued function D : @ — My (R) is bounded and measurable and there exists
a > 0 such that
D(x)&- &> alé? for all ¢ € RN and a.e. z € 9,

(H3) Ve LP(Q)N withp= N if N >3, or p> 2 if N = 2,
(H4) f € (H'())"

Here, n is the unit normal to 9 and dot indicates scalar product in RY. We are mainly
interested in the effect of the convection term on the existence of solutions and in finding a
natural functional framework where the problem is well-posed. Equations of this form where
the convection speed V is the gradient of a potential, V(z) = V®(x), are known as the stationary
version of the Fokker-Planck equation, [20], but we will not be confined here to such gradient
speeds.

We consider weak solutions to (1.1) understood in the standard sense, that is
u€ HY(Q),

Ve € HY(Q), / DVu-Vede — / uV - Vipdz = (£, )y (1.2)
Q Q

Here, (-,-) is the duality pairing. Under suitable assumptions on the divergence of V and the

values of V on 99, the bilinear form a(u,p) = [, DVu - Vedr — [quV - Vo da appearing in

(1.2) is coercive on H'(Q), and existence of a solution to this problem is then an immediate

consequence of the Lax-Milgram theorem.

However, for general vector fields V, this bilinear form fails to be coercive and existence of a
solution is less obvious; it is well known that, in any case, such elliptic problems (for Neumann
or other boundary conditions) have finite dimensional kernels and that their solvability requires
the right-hand side to satisfy a number of equations (as many equations as the dimension of the
kernel of the elliptic problem), see e.g. [6], [17]. The question is then to determine how many
equations are needed and, more precisely, which ones.

For other boundary conditions (Dirichlet, Fourier or mixed conditions), the answer was given
in [12] and is quite simple: no condition on f is required, the convection-diffusion problem
always has one and only one solution (it is also the same for some non-linear equations, see [11],
and for some singular right-hand sides, see [14] and [13]). But, in these references, the proof
of the existence of solutions is made via a priori estimates which are not available, at least by
direct methods, in the case of pure Neumann boundary conditions. Hence, the question for (1.2)
remains open: which necessary and sufficient conditions must be placed on f, and what are the
degrees of freedom on the solutions?



The study of non-coercive linear elliptic problems as (1.1) is usually performed simultaneously
with the study of the associated dual problem, that is
{ —div(DTVv) =V -Vu =g in Q,

D'Vy-n=0 on 0, (1.3)

where g € (H'(2))" and DT is the transpose of D, cf. for instance [12] for the study with other
boundary conditions. The weak formulation of this dual problem is

ve HY(Q),

Yo e HY(Q), /DTVU-Vgpd:U—/@V-Vvdx:(g,g0>(H1)/,H1. (1.4)
Q Q

Here too, the bilinear form a in the left-hand side of (1.4) is not coercive without special
assumptions on V, so the question is now to understand under which conditions this problem
has a solution.

There are however two straightforward facts on these primal and dual problems.

a) In order for (1.2) to have a solution, one must have (f, 1) g1y g1 = 0.
b) If v is a solution to (1.4), then so is v+ C.

Assertion a) states at least one condition on the right-hand side of (1.2): we need to determine
if it is the only one. Moreover, since there are as many conditions as the dimension of the kernel
of this problem, such a kernel is non-trivial: can we describe it? How can we select one and only
one solution?

The same holds for (1.4): assertion b) shows that the kernel of the dual problem is non trivial;
so we ask ourselves, are there any functions other than the constant functions in this kernel?
And since this kernel is non-trivial, there must be some condition, that we want to find, on ¢
for (1.4) to have a solution.

Statement of the main result

We use the notation H, = {u € H'(Q) | [oudz =0}, and for ¢ € H'(Q) we define

Hy, ={f € (H'Q)) | (f,0)ary,m = 0}
These spaces are endowed with the topologies of H(Q) and (H'(Q)) respectively. Here is our
main result on Problems (1.1) and (1.3), which answers the preceding questions.

Theorem 1.1 Assume that (H1)—(H4) hold. Then,

(i) There exists a function w € H*(SY), unique up to a multiplicative constant, which is a solution
of Problem (1.2) with f =0, satisfies u > 0 a.e. on ), and moreover

(i) Problem (1.2) has a solution if and only if f € Hél; in this case, there exists a unique
solution u to (1.2) in H, and the set of all solutions is w+ Ru = {u+ cu : ¢ € R}. Moreover,
the application T : f +— u is a bounded linear map from Hél mnto H,.

(iii) Problem (1.4) has a solution if and only if g € Héa; in this case, there exists a unique
solution v to (1.4) in H, and the set of all solutions is v + R1. Moreover, the application
T': g+ v is a bounded linear map from Héa mto H,.



A simple case: V is a gradient

(i) If D is the identity matrix and V is a gradient, say V = V® with ® € C'(Q), then we can
take 2 = e® in Theorem 1.1. Indeed, in this situation,

—Ae® + div(Ve?) = —div(Ve? — Ve?) = —div(e? VO — VP e?) =0 in Q

and
Ve n—V . ne® =e®Ved - n—-Ved-ne® =0 on 090.

P

In fact, in this situation, solving (1.1) is best done by the change of unknown w = e~ ®u, which

leads to

{ —div(e®Vw) = f  inQ, (1.5)

e?Vw-n=0 on 0,
that is to say a classical heterogeneous Neumann problem (notice that, for some g > 0, f <
e® < 87! on Q). The usual choice to select one and only one solution to (1.5) is to impose
Jowdz = 0, which means that the chosen solution u to (1.2) satisfies [, e~ ®udr = 0 and not
Jqudz = 0 but, adding a suitable constant to w, we can find back the solution in H, of (1.2)
given by Theorem 1.1.

(ii)_ In the case where D # Id, the same considerations hold if V. = DV® for some ¢ €
C1(Q). In this case, we still have 4 = e® and w = e~ ®u satisfies —div(e® DVw) = f in Q and
e®*DVw - n =0 on 99.

2 Preliminary considerations. Kernels

Let L : HY(Q) — (H'(22))" be the bounded linear operator defined by the bilinear form a(u, ¢)
appearing in (1.2), that is to say

(Lu, ©)(mry m :/QDVU-Vapdx—/QuV-Vgodx.

Thanks to (H1)-(H3) and the Sobolev embeddings, L is well defined. For v € R we denote
L, = L+~I where I : H'(Q) — (H'(2))' is the natural embedding through L?(f2), that is to
say

(Lyus @) (mr1y 1 :/QDVu-Vapdx—/QuV-Vgodx—F’y/prdx.

It is well-known that, for v > 0 large enough, L, : H'(Q) — (H'(Q))’ is an isomorphism (see
also Lemma 4.1); from now on, we take such a v fixed. The restriction of v(L,)™1 : (H}(2)) —
H'(Q) to L?(Q) is a compact operator K : L?(Q) — L?(92). Moreover, since K has values in
H(9),
(ue L*(Q) and Ku=u) <= (ue H'(Q) and Ku = u)
< (ue H'(Q) and yu = L)
< (ue H'(Q) and Lu=0) .

In other terms,

ker(Id;2 — K) = ker(L). (2.1)



The following lemma gives a first description of ker(L), which will be made precise below.
Its proof summons up a technique close to the one used in [3] (to prove the uniqueness of a
non-monotone elliptic equation with Dirichlet boundary conditions), but in the framework of
Neumann boundary conditions.

Lemma 2.1 Assume that (H1)—(H3) hold. If u € ker(L)\{0}, then either v > 0 a.e. on Q or
u <0 a.e. on Q. In particular, ker(L) has dimension 0 or 1.

Proof of Lemma 2.1. Since u is not a.e. null, there exists n > 0 such that u < —p or u > 7
on a set of non-null Lebesgue measure; upon changing v into —u, we can assume that the case
u > mnoccurs. Let o-(r) =0ifr > e, p(r) =r—cif 0 <r <eand p.(r) = — if r <0 (see
figure 1).

A%

Figure 1: The function ..

The function u satisfies (1.2) with f = 0; using ¢.(u) € H'(Q) as a test function in this
equation, since V(p:(u)) = ljocu<e} Vu (where 1p stands for the characteristic function of a
set B), we obtain

/QDV(%(U))-V(%(U)) dz = /{O<u<€} uV-V(p:(u) dz < &|[V|| 12 qocucey ¥ [V (e (W) L2 (v -

Since the measure of {0 < u < e} tends to 0 as € — 0, we deduce from this inequality and (H2)
that [[V(ee(u))|[L2@ny < éaHVHLg({OQKE})N = ew(e) where w(e) — 0 as e — 0. Let E be a
set of non-null Lebesgue measure such that v > n on E; for all 0 < ¢ < 1 we have ¢-(u) = 0
on E and thus, by Lemma 8.1 (see Appendix), there exists Cz not depending on ¢ €]0, 7| such
that [lp.(w)ll 20 < CrlIV (- ()l 2y < Crzw(). But [pe(u)] > £/2 on {u < £/2}, which
implies

1/2
rm<u>\rL2(Q)z</{< wu)r?dx) > = (meas({u < £/2}))"

and therefore (meas({u < £/2}))"/? < 2CEw(e); we deduce that

meas({u < 0}) = ?_}n% meas({u < e/2}) =0,
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that is to say u > 0 a.e. on 2.

The proof that the dimension of ker(L) cannot be more than 1 is rather simple. We take non-
null functions (u,v) € ker(L) and prove that they are collinear. Since v # 0, then either v > 0
or v < 0 a.e. on €2; in particular, A\ = fQ udzx/ fQ vdx is well defined. The function w = u — A\v
belongs to ker(L) and, thus, either w > 0 or w < 0 or w = 0 a.e. on €2; since widx =0 by
choice of A, the first two cases cannot occur, and we therefore have w = 0, which means that
u = Av and concludes the proof. m

The operator L* : HY(Q2) — (H'(Q2))" defined by the bilinear form a in (1.4), that is to say

(L*v, ) (mry,mt = / DTVy-Vedr — / eV -Vodz,
Q Q
is the adjoint of L: it satisfies

(Lo, V) gy e = (L™, @) gy g for all (p,1) € HY(Q). (2.2)

Hence, for v > 0 such that L, is an isomorphism, L} = L* +~I : H'(Q) — (H'(Q))’ is also an
isomorphism. It is easy to see from (2.2) that the restriction of W(Lf‘y)_l S (HY(Q)) — HY(Q) to
L?(9) is the dual operator K* : L?(Q) — L?(2) to K. Hence, as (2.1) we have

ker(Id;2 — K*) = ker(L"). (2.3)

The properties of compact operators and Lemma 2.1 now allow us to give a precise description
of the kernels of L and L*.

Proposition 2.2 Assume that (H1)—-(H3) hold. Then,

1. ker(L) is one-dimensional, and is spanned by a function u € H'(Q) which satisfies @ > 0
a.e. on S,

2. ker(L*) is exactly the set of constant functions.

Proof. Since K : L?(Q2) — L*(Q2) is compact, we have dim(ker(Id;> — K)) = dim(ker(Id > —
K*)) (see [17]). Properties (2.1) and (2.3) and the second part of Lemma 2.1 then show that
dim(ker(L*)) = dim(ker(L)) < 1. But the constant functions obviously are in ker(L*), so that
ker(L*) is exactly made out of these functions and dim(ker(L)) = 1. The fact that ker(L) has a
generator function which is a.e. positive then follows from the first part of Lemma 2.1. ®

Remark 2.3 Note that u is constant only if div(V) =0 in Q and V-n =0 on 0Q. In this
case, for all p € H () one has fQ pV -Vodx =0 and, by the Poincaré- Wirtinger’s inequality,
the bilinear forms in (1.2) and (1.4) are coercive on Hy; Theorem 1.1 (with u = 1) is then a
trivial consequence of the Lax-Milgram theorem.



3 Proof of Theorem 1.1

The proof is a direct consequence of the Fredholm alternative and the characterization of the
kernels of L and L*. For the sake of completeness, let us quickly recall the reasoning which leads
to these results.

Solving (1.2) comes down to finding u € H'(Q) such that Lu = f; this is equivalent to
Lou = f+~u and thus u = (L) f + v(Ly) tu = (L;l)f + Ku since u € L?(). Let
w = (L,)"'f € HY(Q); since K has values in H(Q), finding u € H(Q) such that u = w + Ku
is equivalent to finding v € L?(Q) such that u = w + Kwu; but, K being compact, we have
(Idg2 — K)(L?(Q)) = (ker(Id;> — K*))* (see [17] (*)) and therefore, by (2.3), there exists
u € L*(Q) such that u = w + Ku if and only if w € (ker(Id;2 — K*))* = (ker(L*))*. But, by
definition of w = (L,)~1f, for all ¢ € ker(L*), since both w and ¢ are in L?*(Q2),

(f, 80>(H1)',H1 = (Lw +7wa80>(H1)',H1 = <L*90,w>(H1)’,H1 +7/Qw90 dz = W/QZUSD dz,

and therefore w € (ker(L*))* if and only if (f, )1y g1 = 0 for all ¢ € ker(L*), i.c. if and only
if (f, 1)1y, = 0 by Proposition 2.2. Hence, (1.2) has a solution if and only if f € H,.

All the solutions to (1.2) can then be written u = ug + z where ug is any fixed solution and
z € ker(L), that is to say, using the u given by Proposition 2.2, u = ug + A\u for some A\ € R.
Since [, udx > 0 (because u > 0 a.e. on €2), we can select one and only one solution by imposing
Joudz =0 (this fixes A = — [, updxz/ [, udz), and all the other solutions lie in v + Ra.

We have therefore proved that, for all f &€ Hél, (1.2) has a unique solution v € H,. This
defines an application T : Hé1 — H, which is clearly linear, and the proof of the continuity of 7
can be made by way of the closed-graph theorem: if {f,,},>1 is a sequence in H, él that converges
to some f in Hj and if {u, = T f,} converges to some u in H, then, writing (1.2) with uy,
and f, and passing to the limit n — 400 we see that u € H, is a solution to (1.2) with f as
right-hand side, i.e. that uw = T f; the graph of T is therefore closed and 7 is continuous.

The study of (1.4) is completely similar, inverting the roles of L and L*.

4 Estimates and global continuity

Since the application f € Hél — u € H, solution to (1.2) is linear and continuous, there exists
C > 0 not depending on f such that ||ul|g1) < C||f|[(a1(q))y; however, the preceding proof
does not allow to estimate C' and, in particular, to understand how it depends on D or V (the
same holds for the solution to Problem (1.4)). Such estimates can be of importance in the case
where one wants to study the behaviour of u as D or V wvaries. In this section, we intend to
make clearer the way C' depends on these data, and to prove that the solution and the kernel of
the operator are both continuous with respect to these data.

To study this dependence, we need to vary V; in order to emphasize on the dependence of L
on V, we therefore write L = LV (and similarly L,= L,YV) Moreover, if E' is Banach space and
r > 0, B(r; E) denotes the closed ball in E of center 0 and radius 7.

'Here and in the following, the orthogonal sets are always taken with respect to the scalar product in L?(Q).



Let us begin by making precise how vy must be chosen, for a given V, in order for Ly to be
an isomorphism.

Lemma 4.1 Assume that (H1) and (H2) hold. Let p= N if N >3 orp > 2 if N =2. Let also
s>p and R > 0. Then, there exist g > 0, M > 0, and vy > 0 such that for all v > ~y and all
V € B(eo; LP(Q)N) + B(R; L*(Q)N), L,YV : HY Q) — (HY(Q)) is an isomorphism and we have

WYY gy my < M. (4.1)
More precisely, we can take any e9 < a/S(,p), where S(2,p) is the Sobolev constant of the
2
embedding H(Q) — LP%(Q), and then vy = v (Q, a, p, s,€0, R) and M = M(Q, o, p, 0, R).

Proof. For all u € H'(Q) and all v > 0, using Young’s inequality, we have

LYu,u) gy g = | DVu-Vudz — [ wV-Vudz+~ [ w?dz
K e Q Q Q

> al|VullZa g + lullZ2) = V|2 @ [ Vull 2 o)y (4.2)
We then write V. = Vi + Vy with [[Vi[|pqv < 0 and |[Va|psqv < R. By the Sobolev
embedding H'(Q) — L%(Q), we have
[uVl[r2@)n < [[uVillrz@)n + [[uVall g2
< ||u||Lp ||V1||LP(Q vt [l 2 ) V2l @

< S(Q7P)EOHUHH1(Q

L2(Q)

But, since 25 < 28 H(Q) is compactly embedded in LSQTSQ(Q) and, therefore, for all v > 0
there exists C(€,s,v) > 0 such that ||u||LQTS2(Q) < V[|Vullp2 v + C(Q, s, v)||ul|p2(q). We

deduce that
[uVlr2@n < (S(Q,p)eo + Rv)|[Vullp2 ) + (S(, p)eo + RC(Q, 5, v))||ul[12(q)
and, coming back to (4.2) and using Young’s inequality, for all n > 0,

(LY w,u) ey, > (@ = S(Q,p)eo = Rv) [|[Vul[f2 gy +vlullZ2(q)
— (8(2,p)eo + RO, s,v))||ul[ 20 Vull 20~
> (= 5(Q,p)eo — By — ) |[Vul[72 0y

1
+ (7 3 (5@pz0 + R 5,0 Il
Fixing ¢9 < a/S(€,p), we can choose v = v(Q, a,p,e9,R) > 0 and n = n(Q, a,p,e0, R) > 0
such that 5(Q,a,p,e0,R) = a — S(Q2,p)eg — Rv —n > 0 and, taking (92, a,p, s,e0, R) =
B(Q, a,p,e0, R) + ﬁ(S(Q,p)EQ + RC(Q, s,v))? we see that, for all v > 40(Q, o, p, 5,0, R),

(LY w,w) gy > B(Q, @, p, €0, R)||ulfn - (4.3)
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Lax-Milgram’s theorem then shows that LY : H!(Q) — (H'(€))’ is an isomorphism and, for all

f e (H'(Q)), applying (4.3) to u = (LY) ' f, we find ||u| g1(q) < B, o, p,20, R) [ f]|(m10)y»
which concludes the proof. m

We can now state and prove some more precise estimates on the bounds of the solution to
(1.2) in H,.

Theorem 4.2 Assume that (H1) and (H2) hold. Let p =N if N >3 orp>2 if N =2. Let
s>pand R >0, and let S(Q,p) and g < a/S(2,p) be as in Lemma 4.1. Then, there exists
C(Q, D, p,s,e0,R) > 0 such that, for all V € B(eo; LP(Q)N) + B(R; L*()N) and all f € Hy,
if u is the solution to (1.2) in H, then

[ull @) < O D, p, s, 0, R)|| ] (1 () - (4.4)
Remark 4.3 Note that, for all eg > 0 and all s > N,
L2 = B(eo; LM ()Y) + UrsoB(R; L* (7).

Hence, this theorem gives an estimate for any V satisfying (H3); this estimate however does
not only depend on the norm of V in LP(Q)N but also on the way we can split V as a small
function in LP(Q)N and a function slightly more integrable; it is therefore completely similar
to the estimates obtained for non-coercive elliptic problems with other boundary conditions (see
[12]).

Proof of Theorem 4.2. By linearity, it is sufficient to make the proof for ||f|[g1 () = 1. As-
sume that the result does not hold: then there exists (V,,),>1 € B(eo; LP(Q)N) + B(R; L¥(Q))
such that the solution u, € Hy to (1.2) with V = V,, satisfies ||un||g1(q) — +00 as n — +o0.

By Lemma 4.1, there exists v > 0 and M > 0 not depending on n such that, for all n > 1,

Lyn is an isomorphism and
NLY ™) ey my < M. (4.5)

As we have seen in the proof of Theorem 1.1, the fact that u,, is a solution to (1.2) with V.=V,
i.e. that LY7u, = f, is equivalent to

Up = Wy, + ’y(L,YV")*lun, (4.6)

where (wn)p>1 = ((LY") ™! f)n>1 is bounded in H*(Q) thanks to (4.5). If (uy)pn>1 were bounded
in L*(), and therefore in (H'(Q))', then (4.5) would give a bound on (y(LY") 'u,),>1 in
HY(Q), and, by (4.6), (u,)n>1 would be bounded in H'(Q); but we have precisely rejected this
from the beginning.

Hence, (un)n>1 is not bounded in L?(Q) and, up to a subsequence, ||un||r2@q) — +oo as
n — +00. Let hy, = un/||un||r2(q) € Hy; from (4.6) we deduce

Wn

B, +Y(LY")  h. (4.7)

a HunHL2(Q)

We have ||hy||r2(q) = 1 for all n > 1 and thus (4.5) implies that (’y(L,YV")*lhn)nzl is bounded in
HY(Q); by (4.7), (hn)n>1 is therefore bounded in H*(Q2). Up to a subsequence, (hy,),>1 converges



to some h weakly in H'(Q) and strongly in L*(2). Since [q, hydz = 0 and [|hy,|[12(q) = 1 for
all n > 1, the same holds for h; in particular, fQ hdx =0 and h # 0.

Let p € C°°(Q); by definition of u, and hy, = u,/||unl|12(q), we can write

/ DVh, -Vedr — / hnV, - Vodz = ( s P)(HLY H1 - (4.8)
Q Q

HunHL2(Q)
Since (V,,)n>1 is bounded in LP(2)V, up to a subsequence we can assume that V,, — V weakly
in LP(Q)", and in particular weakly in L2(Q)"; the convergence of h,, to h weakly in H'(2) and
strongly in L*(Q) and the fact that ||un||z2(q) — 400 then allow to pass to the limit n — 400
in (4.8) to see that

/DVh-chdx—/hV-Vgodx:O.
Q Q

This equation has been proved for ¢ € C*®(Q) but, since h € HY(Q) and V € LP(Q)N, by
density it also holds for all ¢ € H'(f), which proves that h € ker(LV). Since [,hdz = 0
and h # 0, this is in contradiction with Proposition 2.2 which entails, in particular, that the
only function in ker(LV) which has a null mean value is the null function. Hence, the proof is
concluded. m

Remark 4.4 This proof shows how C depends on V (through p, s, €9 and R), but it does
not give an explicit bound on this constant or on the way it depends on D, contrary to the
direct estimates made in the case of other boundary conditions (see [12]). In fact, for other
boundary conditions, the existence of a solution is deduced from a priori explicit estimates; here,
we first proved existence of a solution and then deduced a posteriori non-explicit estimates on
this solution. This can be a problem when transferring these estimates to a discrete setting, in
order to study numerical schemes on (1.1) (see e.g. [15] for the adaptation of the continuous
estimates to the setting of finite volume schemes, in the case of convection-diffusion noncoercive
problems with Dirichlet boundary conditions).

Remark 4.5 There are however some situations where we can ensure that the constant C
in Theorem 4.2 does not explode as D varies: for example, if (Dy)n>1 s a bounded sequence
of matriz-valued functions which satisfy (H2) (with a uniform o > 0) and which converges
a.e. to some D, then a straightforward adaptation of the proof of Theorem 4.2 shows that the
corresponding C(S2, Dy, p, $,€0, R) stays bounded as n — oo. This particular case will be useful
i the following.

Remark 4.6 A result similar to Theorem 4.2 holds for the solution to (1.4) in Hy. It can
be deduced from Theorem 4.2 using the following simple reasoning: if g € Héa, and v is the

solution to (1.4) in H, then, for all F € (H*(Q))', denoting u the solution to (1.2) in H, with
f=F— m(F,1>(H1)/,H1 € Hél, since [qvdr =0,

(Fo)any . = (Fv)anym = (LY u,v) oy m
= (LYY v, w)
= <gau>(H1)’,H1
< gll¢z @y 1wl mr
<O D, p, s, c0, R)||gll @y 1 |z )y
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and it is clear that |||l )y < 2||F ||y so that, taking the supremum on F € (H'())
having norm smaller than 1, we obtain |[v||g1(q) < 2C(S2, D, p, s,0, R)||g[l(m1 @)y -

Let us now study the continuity of the kernel of L and the solution to (1.2) with respect to all
the data. We normalize the choices of functions u in Theorem 1.1 by imposing ||u||z1 = 1.

Theorem 4.7 Let (H1) hold and takep = N if N > 3 orp > 2 if N = 2. Assume that (Dy,)n>1
s a bounded sequence of uniformly elliptic matriz-valued functions which converges a.e. to some
D, and let V,, — V in LP(Q)N. Then,

i) The (normalized) function u, from Theorem 1.1 corresponding to (D, V,) converges in
HY(Q) to the (normalized) function U corresponding to (D, V),

it) If fn— [ in Hél, then the solution u,, € H, of (1.2) for (D, V., fn) converges in H'(£2)
to the solution u € H, of (1.2) for (D, V, f).

Remark 4.8 We could of course also state a result on the continuity of the solution to (1.4).
Proof of Theorem 4.7. The proofs of i) and ii) are completely similar, so we only consider ii).

Since (V,)n>1 converges in LP(2)V | it is easy to see that, for all g > 0, there exists R > 0 such
that, for alln > 1, V,, € B(go; LP(Q)N)+ B(R; L>®(Q)N) (write V,, = (Vo =T (Vi) +Tar (Vi)
for M large enough, where T)s is the truncation of each component at level M). Hence, by
Theorem 4.2 and Remark 4.5, (uy,),>1 is bounded in H*(2), and converges up to a subsequence
weakly in H'(Q) and strongly in L%(Q) to some u € H,. The strong convergence of the data
and the weak convergence of the solutions allow to pass to the limit in the equations (1.2) with
(Dy, Vi, fn) statisfied by w, to see that u is the (unique in H,) solution to this problem with
(D,V, f) (and thus that the whole sequence w,, converges to u, not only a subsequence). It
remains to prove that the convergence of u, to u is strong in H(Q).

In order to do so, we first notice that
/ D,Vuy - Vu, = / Un Vi - Vup + <fnaun>(H1)/7H1
Q Q
up

Since u,, is bounded in H(Q), V(u2/2) = u, Vu, is bounded in L (Q)" by our choice of p’ and
the Sobolev embeddings, and thus it weakly converges in this space to some U; but u2 — u?
strongly in L'(2) and, therefore, V(u2/2) — V(u?/2) in the sense of distributions; this shows
that U = V(u?/2). By weak convergence of u, and V(u2/2) and strong convergence of f,, and
V,,, we can then pass to the limit in the right-hand side of (4.9) and we deduce, since u is a
solution to (1.2),

2
lim | D,Vu, -Vu, = / V.-V <u_> + (f,w) (mry,
Q 2 ’

n—oo Q

= /uV-Vu+<f,u>(H1)/7H1 :/DVU-VU. (4.10)
Q Q

11



The rest is quite classical: we have
a||Vu, — Vu||%2(Q)N < / D,V (up, — u) - V(up, —u)
Q
= / D, Vu, - Vu, — / D, Vu, - Vu— / D,Vu-Vu,
Q Q Q
=+ / D, Vu-Vu
Q

and, by strong convergence of D,,, weak convergence of Vu,, and (4.10), we can pass to the limit
to see that [|Vu, — Vu|[p2(q)v — 0. Combined with the strong convergence of u, in L?(€), this
concludes the proof. m

As a consequence we can state the continuity of the normalized map S : V + @, where @ is
the unique normalized function of Theorem 1.1 and V satisfies (H3). It is a nonlinear map into
H,, and we know that for V = 0 we get a positive constant: S(0) = |Q|~1/2.

Corollary 4.9 S : V 4 is continuous from L if N > 3 (resp. LP withp > 2 if N =2) to
H,.

5 Spectral analysis. Optimal solvability

There is an immediate generalization of (2.1) to other possible eigenvalues of K (the restriction
to L2(2) of y(L,)™1):

Va # 0, ker(aldys — K) = ker (L,Y(PL)> . (5.1)

o

This allows in particular to prove that there is no necessity to take v large in order for L to
be invertible.

Proposition 5.1 Assume that (H1)-(H3) hold. Then, L, : HY(Q) — (H'(Q))’ is an isomor-
phism for every v > 0.

Proof. Let us first prove that L, is one-to-one. Let u € ker(L,) and define T.(r) =
min(e, max(r, —¢)) the truncature function at level e. Then V(T.(u)) = 1{_.cy<yVu and
thus

0= (Lyu, T-(w) g1y, g1 = /QDVu -V (T:(u))dx — /qu -V (Te(u)) dz + V/QUTa(U) dz

> al[ V(T2 ()32 — lIVIl 2@ V(T2 (w) |20 + v /Q uT(u) da.
Hence, using Young’s inequality,

eIV
9} 4o
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so that [ uT:(u)/edz < Ce with C not depending on e. But, as ¢ — 0, T.(u)/e — sgn(u) while
staying bounded by 1 and, passing to the limit thanks to the dominated convergence theorem,
we deduce [, |uldz <0, that is to say u = 0. This proves that ker(L,) = {0}.

To prove that L, is onto, let y > 1 and denote by K the restriction to L*(2) of (v+)(Ly+,) "
As at the beginning of the the proof of Theorem 1.1, we notice that, for all f € (H'(Q2))’, finding

u € H'(Q) such that L,u = f is equivalent to finding u € L?() such that u = w + ﬁKu

(where w = (L,1,)"'f € HY(2)), that is to say V+T“u - Ku = l’”LT“w. But (5.1) applied to
y=v+pand o = %ﬁ shows that

ker (” : Pldps — K) — ker(L,) = {0}.

Since K is compact, this implies that ”T“Isz — K is onto (see [17]) and therefore that there
exists u € L?(f2) such that H'T“u — Ku = V—FT“w, which concludes the proof. m

Remark 5.2 It is in fact possible to prove this proposition (which comes down to solving (1.1)
with an additional term +vu in the left-hand side of the PDE) using the techniques in [13]. The
proof we give above is however much shorter, although it does not give estimates on the norm of

(L)~

From this proposition and (5.1), we deduce that all the eigenvalues of K are in |0, 1] (it is
quite clear that 0 is not an eigenvalue of K). The spectral analysis of compact operators then
tells that the eigenvalues of K form a decreasing sequence which tends to 0. In terms of L,
this means that the eigenvalues of L form a sequence of increasing nonnegative numbers which
tends to +00. Moreover, using Proposition 2.2, we see that the first eigenvalue of L is 0, is of
multiplicity 1 and is associated with an a.e. positive eigenfunction (?).

This property of positivity of the first eigenfunction (and therefore its uniqueness up to multi-
plication by a scalar) is exactly what is stated in the strong forms of the Krein-Rutman theorem.
However, since the data D and V we consider are irregular, we had to conduct the study of (1.1)
in Sobolev spaces in which the interior of the cone of nonnegative functions is empty; hence, on
the contrary to what can be done for smooth solutions (see [16]), it does not seem possible to
easily deduce the positivity of the first eigenfunction from a strong Krein-Rutman theorem (see
[10] in the case of Dirichlet boundary conditions and regular data).

6 An application: uniqueness for nonlinear problems with mea-
sure data

One of the main applications of noncoercive convective-diffusive problems (i.e. without any
assumption on the divergence of the convection) is the obtention of uniqueness results for non-
linear elliptic equations with measure data, as shown in [14] in the case of Dirichlet, Fourier or
mixed boundary conditions. Now that we have shown how to solve convective-diffusive prob-
lems with pure Neumann boundary conditions, we can extend the uniqueness result of [14] to
this setting. This is however not completely trivial, because of the lack of explicit estimates

2The same holds for L*, by the properties of the spectrums of compact operators and their adjoint.
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on the solutions to (1.2) and (1.4) as D varies (see Remark 4.4); therefore, the adaptation of
[14] to Neumann boundary conditions demands a few more arguments than those used for other
boundary conditions.

Consider the following nonlinear elliptic equation

—div(a(z,w, Vw)) = u in Q, (6.1)
a(x,w,Vw) -n=0 on 0N ’
where

e ;1 is a bounded signed measure on §2 such that () =0, (6.2)

ea:Q xR xRN - RN is a Caratheodory function satisfying:
3y >0, 30 € L'(Q) such that a(z,s,&) - € > y[€]2 — O(x), (6.3)

3B >0, 3h € L*(Q) such that |a(z, s, €)| < h(z) + Bls| + Bl¢],
e 30 > 0 such that (a(,5,€) — a(z,5,m)) - (€ — 1) = al¢ - nl?, (6.4)
e JA > 0 such that |a(x,s,§) — a(x, s,n)| < AlE —n], (6.5)
e 35 >0, Jwe [0, 5[, Ix € [0, 5[ such that (6.6)

la(z,5,€) — a(z,t, &) < bls — (1 + [s[ + [¢[* + [£]X).

We refer to [14] for a discussion on these assumptions — notice that Assumption (6.6) is slightly
more general here.

The existence of a weak solution to (6.1) in the case of homogeneous Dirichlet boundary
conditions is now quite classical, see e.g. [2]. One way to prove this existence is to approximate
p in the weak-* topology by a sequence of data (u,)n>1 € L1(2) N H~1(Q), to consider a weak
solution w,, € H(Q) to —div(a(z, wy, Vwy,)) = fi,, to prove that (wy,),>1 is bounded in Wol’q(Q)
for all g < %, and to show the strong convergence in these spaces of this sequence towards a

weak solution to —div(a(z, w, Vw)) = u; the solution thus obtained belongs to ﬂq<LW01’q(Q).
N-1

With our assumptions on a, this proof of existence of a solution can be easily adapted to the
case of Neumann boundary conditions, using an approximation p, € L'(Q)N(H'(Q2))" with null
mean value and selecting a solution w, € H'(2) to (6.1) with p = p,, which also has a null mean
value; the proof of the a priori estimates on (wy,),>1 can be made using the same test-functions
and methods as in [5] (3) and, to prove the strong convergence of (wy),>1, the method from [1]
works fine. This gives a solution to (6.1) in N__ N Wh4(Q) with null mean value. A solution
constructed this way is called a limit solution, or a SOLA: Solution Obtained as the Limit of
Approximations (see [7]).

The next quaestion concerns the uniqueness of the solution, see e.g. [1], [4], [9], [19] for some
results on this subject (for Dirichlet boundary conditions). In the framework of SOLAs and with
Neumann conditions, being able to solve linear convective-diffusive problems with non-smooth
data D and V (Theorem 1.1) allows to prove the following uniqueness result.

Theorem 6.1 Under assumptions (6.2)—(6.6), Problem (6.1) has a unique SOLA.

3Tt is not clear that the other techniques used in the literature to prove a priori estimates in the case of Dirichlet
boundary conditions can be adapted to Neumann boundary conditions.
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Remark 6.2 We could also state and prove a stability result for the SOLA to (6.1), as it is
done in [14] for other boundary conditions.

Proof of Theorem 6.1. Let (w,w) be two SOLA of (6.1). There exists thus (g )n>1 € LH(Q) N
Hy and (fin)n>1 € LY(Q)N Hj, which converge weakly-+ to y and such that, for some w, € H,
and w, € H, weak solutions to (6.1) with respectively u,, and f, instead of u, we have w, — w
and w,, — @ in WH4(Q) for all ¢ < 2.

Thanks to the assumptions on a and the fact that (wy)n,>1 and (w,),>1 strongly converge
in WL(Q), the functions a,(zr) = a(z,w,(z), Vw,(x)) — a(z, w,(z), Vio,(z)) and b,(r) =
Vuwy,(z) — Vwy(z) satisfy, up to a subsequence, the assumptions of Lemma 8.2 in the ap-
pendix; we still note (an)n>1 and (by)n>1 the subsequences involved and we let (Dy,),>1 be the
matrix-valued functions given by this lemma. These matrices are thus bounded and uniformly
elliptic (independently of n) and there exists (ey,)p>1 which tends to 0 as n — oo such that, on
(IVwa(2) — Vitn(2)] > 20},

a(x,wy(z), V() — a(z,w,(z), Vo, (z)) = Dy(x)(Vw,(z) — Vo (z)). (6.7)
Hence, subtracting the equations satisfied by w,, and w,, and denoting

a(z, wy(x), Vi (x)) — a(z, w,(x), Vi, (x))

wp () — Wy (x)

)

Vi(z) = —
we see that T, = w, — w, € H, satisfies, for all ¢ € H(Q),

/ D, VT, -Vodr — / Lo Vo - Vodz = (un — fin, ©) 51y, mt
Q Q
(6.8)
- / (a(z, Wy, Vwy,) — a(x,wy, Vw,) — D,VI',) - Vedz.
{IVIn|<en}

Thanks to Assumption (6.6) we see that |V,,| < 6(1+4|wy, | +|wy|Y +|Vw,|X) and, since (wy,)n>1
and (Wy)y>1 are bounded in W14(Q) for all ¢ < 2=, we infer that (V,,),>1 is bounded in
L (Q)N for some s > N.

Let h € L®(Q) and denote by @, € H'(Q) a positive function given by Theorem 1.1 for

. hty, d

D = D, and V =V,,. Defining t,, = ffﬂ%d;,
consider the solution v, to (1.4) with D = D,,, V.=V, and g = h —t,, that is to say: ¥, € H,
and

Vo € HY(Q), /D£V¢n-Vg0dx—/ OVn Vb, dx = (h—tn, 0) g1y, m :/(h—tn)gpdx. (6.9)
Q Q Q

we see that h — ¢, € H, éan and we can therefore

We notice that |t,| < |||/ and therefore (h — t,),>1 is bounded in L*>°(Q2) (and thus also
in (H'(Q))"); since (V,,)p>1 is bounded in L¥(Q)Y for some s > N and (D,,),>1 is bounded
uniformly elliptic and converges a.e. on €2, Remark 4.5 (see also Remark 4.6) shows that

(¢n)n>1 is bounded in H(Q). (6.10)

Moreover, using again the bound on (h — t,),>1 in L>(€2), Theorem A.1 in [11, Appendix A]
shows that there exists £ > 0 such that

(¢n)n>1 is bounded in the Holder space C%%(). (6.11)
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Pluging ¢ =T, in (6.9) and ¢ = 9, in (6.8) we deduce, since I';, has a null mean value,

/ hl', dx = / (h —t,)Ty, dx
Q Q
= <,U'n — Hn, wn>(H1)’,H1 (612)

— / (a(z, wy, Vwy,) — a(z, wy,, V) — D,VT,) - Vib, dz.
{IVTn|<en}

Assumption (6.5) implies |1{|V[‘n‘<€n} (a(z, Wy, Vwyp,) — a(x, wy, V,) — DnVI’n)‘ < (¢, with
C not depending on n and (6.10) therefore shows that the last term of (6.12) tends to 0 as n — oo.
Moreover, by (6.11), (1, )n>1 is relatively compact in C'(€2) and, since g, —fi,, — 0 weakly-* in the
space of bounded measures on Q, we deduce that (1, — fin, Yn) g1y, 11 = Jo Yn(fn — Hin) dz — 0

asn — oo. As I, = w — w in L}(€), we finally obtain, by letting n — +oc in (6.12),

/Qh(w—@)dx:O.

This equality being true for all h € L>°(Q2), we infer that w = w and the proof is concluded. m

7 Accretivity and monotonicity. Parabolic equation

We examine here a different perspective for the solution of equation (1.1) with the given bound-
ary conditions. This consists in investigating the properties of the solution map in the LP-
spaces. In view of the application of these properties to the solution of parabolic problems and
the generation of continuous semigroups using the Hille-Yosida-Phillips theorem, a fundamental
assumption is accretivity. This concept can be defined as follows: we consider a Banach space
X and a (possibly nonlinear) operator A defined in a subset D(A) C X with values in X. The
operator is then called accretive if for every constant h > 0 and every uj,ugs € D(A) we have

lur —uzllx < [|(I +hA)ur — (I +hA)uz|x

In other words, the map I + hA : D(A) — X is one-to-one and its inverse is a contraction from
the range R(I+hA) into D(A), if measured with the X-norm. This inverse is usually denoted as
Jn(A) and is called the h-resolvent. When the operator is linear we can replace the differences
by simply

Jullx <117 + hA)yullx

for every u € D(A) and h > 0. Actually, a stronger variant of this concept appears in the
practice when X is a space of real-valued functions, and is called T-accretivity. It consists
in replacing || - [|x by ||(-)+||x in the above formulas. Here, (-); denotes positive part (taken
pointwise).

Another important ingredient in the construction of solutions of evolution problems with accre-
tive operators is the so-called range condition. In its stronger version we require R(I +hA) = X
for all h > 0 and the operator is called m-accretive. But, in fact, the generation of a semigroup
happens under the milder condition D(A) C R(I 4+ hA) for all h > 0.

The L' setting
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In order to apply these ideas to our problem we have to select the space X. The choice that better
suits our convection-diffusion operator is X = L'(Q2). Then, we have to adapt the operator to
this framework. To be precise, we define D(A;) as the set of weak solutions u of Problem (1.1)
with right-hand f such that v € H'(Q) € LY(Q) and f € (HY(Q))' N LY(Q). If u € D(A;) we
define A;(u) = f, i.e., Ay is a restriction of the differential operator plus boundary conditions
used up to now in this paper.

Theorem 7.1 Under assumptions (H1), (H2) and (H3), Ay defined in this way is a T-accretive
operator in L' (). Moreover, for every h > 0 we have R(I + hA;) = (H'(2)) N LY(Q) so that
it is dense in LY(Q). Finally, D(A1) C R(I + hA;y) and D(A;) is dense in L'(£2).

Proof. (i) Write A instead of A; for brevity. Checking the T-accretivity in L!'(£2) means
therefore that when u € H'(Q) is the weak solution of the problem

{ —hdiv(DVu —uV) +u=f in Q

(DVu—uV)-n=0 on 012, (7.1)

with f € (HY(Q))' N LY(Q), then |luy|1 < ||f+]1. There is a standard trick in this theory that
consists in using as test functions expressions of the form p,(u) where p, are nondecreasing
piecewise C'! (with bounded derivative) functions which approximate the positive sign function
sign,. We do that and get

—/ div(DVu — u'V)p,(u) de = / ph,(u)DVu - Vudx — / uwV - pl(u)Vudz.

Q Q Q

The first term in the right-hand side is nonnegative. Choosing for instance p,(s) = 0 on
| —00,0], pp(s) = ms on [0,1/n] and p,(s) = 1 on [1/n,oc0[, the second term in the right-
hand side is bounded from above by [, 1{o<u<1/n}|V||Vu| which tends to 0 as n — oo (by the
dominated convergence theorem). Hence, passing to the limit we have

—/ div(DVu — u V) sign 4 (u) dz > 0.
Q
Using the equation, this means that

il = [ wsign (o < [ fsign (s <174l

(i) Let us now prove that R(I + hA) = (H*(Q))' N LY(Q). Indeed, by Proposition 5.1 we can
find a weak solution of the equation with h > 0 for every f € (H'(Q))". If f € L'(Q) then we
write

—div(DVu) + div(Va) = %( f—u) e (HY(Q) N LYQ),

to conclude that u € D(A) in the sense of our definition of operator A, so that hA(u) +u = f
and (HY(Q)) N LY(Q) C R(I + hA) (the other inclusion is trivial). We also derive from this
statement that R(I + hA) is dense in L'(Q).

We now examine the definition of D(A) and see that in particular v € H*(Q) c (H'(2))' N
L' (). We conclude that D(A) C R(I + hA).
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(iii) Finally, we prove that D(A;) is dense in LY(Q). Let u € HY(Q) and define f € (HY(Q))’
by: for all ¢ € H'(Q),

(fs0) mry, m :/DVU'VQD—/UV'VQD—F/UQD,
Q Q Q

i.e. f = Lyu with the notation of Section 2. We can approximate f in (H'(£2))" by functions
fn € (HYQ)) N LY(Q) (simply approximate DVu, uV and u in L?(Q2) by some functions in
C>(2)); by Proposition 5.1, u, = (L1)~'f, converges to u = (L1)~'f in H'(Q); moreover,
Liu, = f, implies in particular Lu, = f, —u, € (H'(Q)) N LY(Q), and thus u, € D(4;).
Hence, D(A;) is dense in H'(2) and, since H'(Q) is dense in L*(2) and the topology of L'(f)
is weaker than the topology of H'(Q), this concludes the proof. m

The L? setting

In Hilbert spaces the concept of accretivity coincides with the better known concept of mono-
tonicity and the theory has better properties. We take as functional space X = L?(Q2) and define
the operator A, in L?(Q) by further restriction of the domain and range so that A, goes from
D(Ay) C L*(Q) into L*(Q2). In that case the corresponding estimate amounts to multiply the
equation by u instead of p(u). We easily get

h(Azu,u) + [[ul3 < 1 fll2llull2

Now,
(Agu, u) = / D(z)Vu - Vudx — / uV - Vudz,
Q Q

and the last term equals

—1/V-V(u%dm:l/(v-V)u?dx—l/ (V-n)u*ds.
2 Jo 2 Jo 2 Joa

Therefore, the two conditions : (i) V-V > 0in Q, and (ii) V-n < 0 on 912, imply that
the operator A, is accretive (i.e., monotone) in L?(Q2). The theory can still be done if the
first condition is replaced by V -V > —2w, with w constant, then (Asu,u) > —w|ul?, and
the operator is only w-monotone instead of monotone. All this is classical theory that is only
mentioned as a reminder.

It is quite easy in that case to prove that R(I +hAs) = L*(Q) C (H'(Q)), and also that D(A)
is contained in R(I + hAs) and is dense in L?(9).

7.1 Parabolic equation. Semigroup
We now want to solve the evolution problem consisting of the equation

Ou = —div(DVu) + div(Vu) for (z,t) € Q@ = Q x (0,00),
supplied with boundary conditions

DVu-n—u(V-n)=0 on 99 x [0, 00),
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and initial data
u(z,0) = up(z) for z € Q.

We proceed as follows: using the Hille-Yosida Theorem, [6] for linear operators, or more generally,
the Crandall-Liggett theorem [8] in the nonlinear case, for every accretive operator A (linear or
nonlinear) acting in a Banach space X and satisfying the range condition D(A) C R(I + hA)
for all small h > 0, we can construct a continuous semigroup S; that associates to every initial

datum wuy € D(A) a trajectory u(t) € C([0,00); X) that solves the abstract problem

du
220 Ay =
7 +A(u) =0

in the mild sense. Moreover, the accretivity property implies contractivity of the semigroup: for
every two solutions uj, us we have

lug (t) — w2 (t)||x < [|ui(s) — ua(s)|x forall t>s>0.
In the case of T-accretivity we get the stronger property

[(u1(t) —u2(t)) +llx < [[(ua(s) —uals))4llx  forall £=>s>0.
Finally, in the case of w-monotonicity we get

llui(t) — ue(t)]|x < e”tHul(S) —u2(s)|lx forall t>s5>0.

8 Appendix

8.1 Technical results

The proof of the following lemma can be made in a very classical manner, by way of contradiction;
we leave it as an exercise to the reader.

Lemma 8.1 Assume that (H1) holds and let E a subset of Q with positive Lebesgue measure.
Then there exists a constant Cr > 0 such that, for all v € H'(Q) satisfying v =0 a.e. on E,
we have ||v|12() < Crl|Vv|r2(q)-

The next lemma is used in the proof of Theorem 6.1.

Lemma 8.2 Let (ap)n>1 and (by)n>1 be two sequences of measurable functions Q — RN such
that there exists « > 0 and A > 0 satisfying, for all n > 1 and a.e. x € Q, ay(x) - by(x) >
alb,(z)? and |a,(z)| < A|bn(z)|. Assume moreover that (a,)n>1 and (bp)n>1 converge a.e. on
Q). Then, there exist subsequences (an, )r>1 and (by, )r>1 and measurable matriz-valued functions
(Dy)k>1 satisfying the following properties:

3p > 0 such that, for allk > 1, a.e. x € Q and all € € RN, Dy(z)€ - € > pl€|?,

AC > 0 such that, for all k > 1 and a.e. x € Q, ||Dg(2)|| < C,

Jer — 0 such that, for all k > 1 and a.e. x € Q, if |by, (x)| > ek then Di(x)by,, (x) = an, (x),

(Dk)g>1 converges a.e. toward a bounded uniformly elliptic matriz-valued function.
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Proof. Let v > 0 and x € Q such that b,(z) # 0; define the matrix M, ()p,() by:
M, (2),b, (2)bn(T) = an(z) and My, (1), () = 7Id on the orthogonal space of Rb, (), i.e.

Moot = (€ ) e+ (6= (6 520 o)

Let ¢ € RY; decomposing & on Rb, () and (Rb,(x))* as & = rb,(z) +y, we have, using Young’s
inequality,

an(m),bn(x)£ §= (Tan(x) + r)/y) ’ (Tbn(x) + y)
= rzan(x) b (2) +ran(z) -y + 'Y’y‘z

> ar? (b () — r|bn(z)| Aly| + v]y[*
o o 9 A2 9

> — - )

> 57 1bn(@)” + (’Y 2a> ly|

Fixing v = 5= —|— 5, we obtain
o
Ma,,(2)bn(@)€ - € = —( “lon(@)* + 1y[*) = 1P (8.1)
Moreover, |Mq, (2) b, ()& < €] ('ﬁ:é?' ), that is to say
1M I<asy—at o (8.2)
an(x),bp(x)ll = Y= 2% 9 .

It is also clear that, if b, (z) — b(z) # 0 and a,(x) — a(x), then M, ()4, (2) = Ma(a)p(z)- Hence,
if by, (z) is nowhere null and nowhere converges to 0, the choice D,, = M, (2),bn(x) concludes the
proof.

In order to take into account the possibility that b,(z) — 0, we take h; : [0,400[— [0,1] a
continuous function which is null on [0,1/(2{)] and equal to 1 on [1/l,+occ] and we define

«
Ry () = M| (2)]) May (2) b, (@) + (1 = hu([bn(2)])) 51d

(with the obvious choice R, (x) = §Id if b,(z) = 0). Since, at each point, R;,(z) is either §Id
or a convex combinaison between this function and M, ()4, (x), We deduce from (8.1) and (8.2)
that R;,, is uniformly elliptic and bounded independently of [ and n. Moreover, if |b,(x)| > 1/1
then Ry ,,(2)bn(2) = Mg, (2) b, (2)bn (%) = an(z). Denoting a and b the respective a.e. limits of a,
and b,, we see that, for a.e. x,

o
Rin(@) = Ri(2) = hi([b(2)]) Maz) by + (1 = lu([b(@)])) 51d  as n — oo
(whatever the definition of M,(,) () if b(x) = 0, since hy(0) = 0). It is also clear that, for all z,
a
Fi(x) = R(z) = L) 20y Mag) @) + Lpp(a) =0y 51d - as 1= oo,

Since R;, and R; are uniformly bounded, these convergences also hold in LI(Q)N *N We can
thus take ¢ : N — N increasing such that, for all | > 1, |[R; o) — Ril|r < 1/1 and we have
|Ri o) — Rllrr < 7+ |[Ri— R||z1 — 0 as I — +oo. Hence, there is a subsequence Dy, = Ry, ;)
which converges a.e. on  and the proof is concluded by denoting ny = ¢(l;) and e = 1/l;. &
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8.2 Maximum principle for other boundary conditions

The maximum principle states that if the right-hand side of the equation is nonnegative, then
so is the solution. Of course, it is irrelevant to pure Neumann boundary conditions, because the
necessary condition f € Hél prevents any admissible non-trivial right-hand side to be nonnega-
tive. But the question of this principle is relevant for other boundary conditions and, although
the existence and uniqueness of solutions to non-coercive problems is known since [12], there
does not seem to be any proof of this maximum principle, at least not in the case of irregular
data without assumption on div(V) (for regular data, this principle is known for (1.3) and can
therefore be deduced by duality for (1.1) and, for bounded convection V' such that div(V') > 0,
it is proved in [18]). It could be deduced for irregular data from the case of regular data by
approximation; however, slightly modifying the test function used in the proof of Lemma 2.1,
it is in fact possible to give a direct and very simple proof of this principle for non-coercive
elliptic equations with Dirichlet, Fourier or mixed boundary conditions with irregular data, as
shown in the following proposition (stated in the case of pure Dirichlet boundary conditions for
convenience).

Proposition 8.3 Assume that (H1)—(H3) hold, take f € H 1(Q) and let u € HE(Q) be the
weak solution to

{ —div(DVu) + div(Vu) = f  in Q, (8.3)

u=20 on 082.
If f >0 (in the sense that (f, %0>H—1,H(} >0 for any ¢ >0), then u >0 a.e. on Q.

Proof. Let ¢ > 0 and ¢-(r) = @-(r + €) where ¢, is given in Figure 1, i.e. ¢-(r) =0if r >0,
¢e(r) =7 if —e <r <0 and ¢-(r) = —¢ if r < —e. Then we can use ¢.(u) € H}(Q2) as a test
function in the weak formulation satisfied by u and, since ¢.(u) < 0 on €,

| DVu- Vo) ds = [ wVT(6u0)) do = (1. 6.y <0
Q Q
But V(¢:(u)) = 1{_ccy<oy Vu and we deduce

1
IV (g (u)[72qyn < EEHVHLQ({75<U<O})NHv((bs(u))”LQ(Q)N = ew(e)|[V (¢ (W) L2~

with w(e) — 0 as ¢ — 0. Using Poincaré’s inequality in H}(2), and since |¢(u)| > § on
{u < —&/2}, we obtain

(meas({u < —¢/2))"* < 2[J6.(w)|p2(0) < Zdiam(@)][V(6o(w) 12y < 2diam(@(e).

Passing to the limit ¢ — 0, this gives meas({u < 0}) = 0 and concludes the proof. m
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