Multifractal Random Walks as Fractional Wiener Integrals - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Information Theory Année : 2009

Multifractal Random Walks as Fractional Wiener Integrals

Résumé

Multifractal random walks are defined as integrals of infinitely divisible stationary multifractal cascades with respect to fractional Brownian motion. Their key properties are studied, such as finiteness of moments and scaling, with respect to the chosen values of the self-similarity and infinite divisibility parameters. The range of these parameters is larger than that considered previ- ously in the literature, and the cases of both exact and nonexact scale invariance are considered. Special attention is paid to various types of definitions of multifractal random walks. The resulting random walks are of interest in modeling multifractal processes whose marginals exhibit stationarity and symmetry.
Fichier principal
Vignette du fichier
multifractal-fbm-rev14.pdf (780.61 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00808604 , version 1 (09-04-2013)

Identifiants

Citer

Patrice Abry, Pierre Chainais, Laure Coutin, Vladas Pipiras. Multifractal Random Walks as Fractional Wiener Integrals. IEEE Transactions on Information Theory, 2009, 55 (8), pp.3825-3846. ⟨10.1109/TIT.2009.2023708⟩. ⟨hal-00808604⟩
371 Consultations
481 Téléchargements

Altmetric

Partager

More