3D-model retrieval using bag-of-features based on closed curves
Résumé
Bag-of-feature technique is a popular approach in areas of computer vision and pattern recognition. Recently, it plays an important role in shape analysis community and especially in 3D-model retrieval. We present our approach for partial 3D-model retrieval using this technique based on closed curves. We define an invariant scalar function on the surface based on the commute-time distance. Our mapping function respects important properties in order to compute robust closed curves. Each scale of our scalar function detects a small region. The form of these regions are encoded in the form of the closed curves. We generate a collection of closed curves from a source point detected automatically. Based on the collection of all closed curves extracted, we construct our bag-of-features. Then we cluster the bag-of-features in the sense in accurate categorization. The centres of classes are defined as keyshapes. This method is particularly interesting in the sense of quantifying the 3D-model by its keyshapes that are accumulated into an histogram. The results shows the robustness of our method (BOF) compared to a method based on indexed closed curves (ICC) on various 3D-models with different poses.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...